Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter November 5, 2013

Superplasticity of coarse-grained Ti-13V-11Cr-3Al alloy

  • Amir Hossein Sheikhali , Maryam Morakkabati , Seyed Mahdi Abbasi and Arash Rezaei

Abstract

The superplastic behavior of Ti-13V-11Cr-3Al alloy with beta single phase structure and average grain size of 220 μm was investigated. It was found that elongation increases with temperature at strain rates of 0.1 and 1 s−1. The optimum condition for superplastic deformation of the alloy was achieved in the temperature range 1030–1080°C and with a strain rate of 0.1 s−1. In this condition the amount of elongation reaches 200%. Grain refinement occurred during deformation which can be attributed to the occurrence of dynamic recovery and continuous dynamic recrystallization. In addition, it was seen that in the temperature range 930–1080°C, the strain rate sensitivity parameter (m) was higher than 0.3, which is an appropriate value for superplastic deformation. A high value of m, elongation over 100%, and coarse-grained microstructure of the alloy suggested that superplastic behavior of the Ti-13V-11Cr-3Al alloy can be similar to the behavior of coarse-grained superplastic alloys.


* Correspondence address, Mr Amir Hossein Sheikhali, No. 220, Khavaran Street, Tehran, Iran, Tel.: +982133581214, Fax: +982133581214, E-mail:

References

[1] R.Boyer, G.Welsch, E.W.Collings: Materials Property Handbook-Titanium Alloys, ASM International, USA, (1994).Search in Google Scholar

[2] H.G.Suzuki, E.Takakura, D.Eylon: Mater. Sci. Eng. A263 (1999) 230. 10.1016/S0921-5093(98)01153-8Search in Google Scholar

[3] H.Yoshimura, J.Nakahigashi: Int. J. Hydrogen Energy27 (2002) 769. 10.1016/S0360-3199(01)00157-4Search in Google Scholar

[4] M.A.Murzinova, G.A.Salishchev, D.D.Afonichev: Phys. Met. Metall.104 (2007) 195. 10.1134/S0031918X07080133Search in Google Scholar

[5] M.J.Tan, G.W.Chen, S.Thiruvarudchelvan: J. Mater. Proc. Technol.192–193 (2007) 434.Search in Google Scholar

[6] O.A.Kaibyshev: Superplasticity of Alloys, Intermetallices and Ceramics, Springer, Berlin, (1992). 10.1007/978-3-642-84673-1Search in Google Scholar

[7] R.W.Hertzberg: Deformation and Fracture Mechanics of Engineering Materials, John Wiley & Sons, USA, (1996).Search in Google Scholar

[8] J.Nakahigashi, H.Yoshimura: J. Mater. Sci. Eng.49 (2000) 1307.Search in Google Scholar

[9] Z.Zhanglong, G.Hongzhen, C.Li, Y.Zekun: Rare Met.28 (2009) 523. 10.1007/s12598-009-0101-8Search in Google Scholar

[10] J.S.Kim, Y.W.Chang, C.S.Lee: Metall. Mater. Trans.29A (1998) 217. 10.1007/s11661-998-0174-2Search in Google Scholar

[11] G.A.Salishchev et al: High Perform. Met. Mater. Appl. (2002) 85.Search in Google Scholar

[12] X.J.Zhu, M.J.Tan, S.Thiruvarudchelvan: Mater. Forum29 (2005) 233.Search in Google Scholar

[13] D.Lin, F.Sun: Intermetallics12 (2004) 875. 10.1016/j.intermet.2004.02.039Search in Google Scholar

[14] D.Lin, A.Shan, D.Li: Scr. Mater.31 (1994) 1455. 10.1016/0956-716X(94)90055-8Search in Google Scholar

[15] D.Lin, A.Shan, Y.Liu, D.Li: Scr. Mater.33 (1995) 681. 10.1016/0956-716X(95)00283-2Search in Google Scholar

[16] P.Griffiths, C.Hammond: Acta Metall.20 (1972) 935. 10.1016/0001-6160(72)90087-9Search in Google Scholar

[17] Y.Zhao, X.Zhang, W.Zeng: Mater. Sci. Eng. A324 (2010) 248.Search in Google Scholar

[18] R.S.Rosen, S.P.Paddon, M.E.Kassner: J. Mater. Eng. Perform.8 (1999) 361. 10.1361/105994999770346927Search in Google Scholar

[19] J.Hu, D.Lin: Mater. Sci. Eng. A441 (2006) 142. 10.1016/j.msea.2006.08.011Search in Google Scholar

[20] D.G.Robertson, H.B.McShane: Mater. Sci. Tech.14 (1998) 339. 10.1179/026708398790301403Search in Google Scholar

[21] V.V.Balasubrahmanyam, Y.V.R.K.Prasad: Mater. Sci. Eng. A336 (2002) 150. 10.1016/S0921-5093(01)01982-7Search in Google Scholar

[22] B.Poorganji, T.Furuhara, H.Abe, T.Maki: J. The Miner. Met. Mater. Society (2007) 64.10.1007/s11837-007-0013-8Search in Google Scholar

[23] I.Philippart, H.J.Rack: Mater. Sci. Eng. A254 (1998) 253. 10.1016/S0921-5093(98)00619-4Search in Google Scholar

[24] R.Srinivasan, I.Weiss: Beta Titanium Alloys in the 1990's, TMS, Pennsylvania (1993).Search in Google Scholar

[25] V.V.Balasubrahmanyam, Y.V.R.KPrasad: Mater. Sci. Tech.17 (2001) 1222. 10.1179/026708301101509296Search in Google Scholar

[26] D.G.Robertson, H.B.McShane: Mater. Sci. Tech.13 (1997) 575. 10.1179/026708397790285566Search in Google Scholar

[27] I.Weiss, S.L.Semiatin: Mater. Sci. Eng. A243 (1998) 46. 10.1016/S0921-5093(97)00783-1Search in Google Scholar

[28] J.Luo, M.Li, W.Yu, H.Li: Mater. Sci. Eng. A504 (2009) 90. 10.1016/j.msea.2008.10.020Search in Google Scholar

[29] I.Philippart, H.J.Rack: Mater. Sci. Eng. A243 (1998) 196. 10.1016/S0921-5093(97)00800-9Search in Google Scholar

[30] R.Srinivasan: Scr. Metall.27 (1992) 925. 10.1016/0956-716X(92)90418-ESearch in Google Scholar

[31] H.J.Christ, M.Decker, S.Zeitler: Metall. Mater. Trans. A31 (2000) 1507. 10.1007/s11661-000-0161-8Search in Google Scholar

[32] D.Hull, D.J.Bacon: Introduction to Dislocations, Butterworth-Heinmann, USA, (2001).Search in Google Scholar

[33] H.McQueen, D.Bourell: J. Metall.39 (1987) 28.Search in Google Scholar

[34] D.Lin, A.Shan, M.Chen: Intermetallics4 (1996) 489. 10.1016/0966-9795(96)00027-1Search in Google Scholar

[35] D.Lin, D.Li, Y.Liu: Intermetallics6 (1998) 243. 10.1016/S0966-9795(97)00072-1Search in Google Scholar

[36] F.J.Humphreys, M.Hatherly: Recrystallization and related annealing phenomena, Elsevier Pub., New York, (2004).Search in Google Scholar

Received: 2012-11-16
Accepted: 2013-06-05
Published Online: 2013-11-05
Published in Print: 2013-11-14

© 2013, Carl Hanser Verlag, München

Downloaded on 5.5.2024 from https://www.degruyter.com/document/doi/10.3139/146.110965/html
Scroll to top button