Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter April 6, 2013

Injection Molding of Fibre Reinforced Thermoplastics: Integration of Fibre Orientation and Mechanical Properties Computations

  • H. Miled , L. Silva , T. Coupez and J. F. Agassant

Abstract

Injection molding is widely used to process short fibre reinforced thermoplastics. The quality and especially the mechanical properties of the resulting part are linked to the mold conception (for example the gate(s) and the venting port(s) locations) and to the processing parameters which will govern fibre orientation distribution. Fibre orientation modelling is based on the well known Folgar and Tucker equation. The models differ one from another by the interaction parameter, the closure approximation and by the coupling with the rheology of the reinforced melt. Quantitative comparison with experiments is very tedious and generally limited to simple part geometries (plaque or disk). As a consequence, in complex geometries, fibre orientation distribution is experimentally checked using several techniques and the resulting anisotropic thermo-mechanical properties are computed using various homogenization theories. In this paper, we propose a first integrated approach of the injection molding of fibre reinforced thermoplastics starting from rheology of the material, orientation equation, interaction parameter and closure approximation. The resulting local fibre orientation distribution is then used in two ways in order to predict the mechanical properties of the part: first, using classical analytical homogenization theories, but based on the computed orientation tensor and not on an experimental one, and then, using numerical homogenization which consists in generating a Representative Elementary Volume (REV), determining its unidirectional mechanical properties and finally, in computing directly the anisotropic properties of the part.


Mail address: Jean-Francois Agassant, Mines-Paristech, Centre de Mise en forme des Matériaux, UMR CNRS 7635, B.P. 207, 06904 Sophia-Antipolis, Cedex, France. E-mail:

References

AdvaniS. G., TuckerIII, C. L., et al., “The Use of Tensors to Describe and Predict Fiber Orientation in Short Fiber Composites”, J. Rheol., 31, 751784(1987); DOI: http://dx.doi.org/10.1122/1.549945Search in Google Scholar

AdvaniS. G., TuckerIII, C. L., et al., “Closure Approximations for Three-dimensional Structure Tensors”, J. Rheol., 34, 367386(1990)10.1122/1.550133Search in Google Scholar

Ausias, G., et al., “Rheology of Short Glass Fiber Reinforced Polypropylene”, J. Rheol., 36, 525542(1992)10.1122/1.550362Search in Google Scholar

Bay, R. S., Tucker III, C. L., “Fiber Orientation in Simple Injection Moldings. Part II: Experimental Results”, Polym. Compos., 13, 332341(1992); DOI: http://dx.doi.org/10.1002/pc.750130410Search in Google Scholar

Brezzi, F., et al., “Further Considerations in Residual-free Bubbles for Advective-diffusive Equations”, Comput. Meth. Appl. Mech., 166, 2533(1998); DOI: http://dx.doi.org/10.1016/S0045-7825(98)00080-2Search in Google Scholar

Brooks, A. N., Hughes, T. F. R., et al., “Streamline Upwind/Petrov-Galerkin Formulations for Convection Dominated Flows with Particular Emphasis on the Incompressible Navier-Stokes Equations”, Comput. Meth. Appl. Mech. Eng., 32, 199259(1982), DOI: http://dx.doi.org/10.1016/0045-7825(82)90071-8Search in Google Scholar

Brown, L. M., Clarke, D. R., et al., “Work Hardening Due to Internal Stresses in Composite MaterialsActa Metall., 23, 821830(1975), DOI: http://dx.doi.org/10.1016/0001-6160(75)90198-4Search in Google Scholar

Camacho, C. W., et al., “Stiffness and Thermal Expansion Predictions for Hybrid Short Fiber Composites”, Polym. Compos., 11, 229239(1990), DOI: http://dx.doi.org/10.1002/pc.750110406Search in Google Scholar

Carreau, P. J., et al., “Rheological Properties of Filled Polymers”, Macromol. Sym., 108, 111126(1996), DOI: http://dx.doi.org/10.1002/masy.19961080110Search in Google Scholar

Dinh, S. M., Amstrong, R. C., et al., “A Rheological Equation of State for Semi-concentrated Fiber Suspensions”, J. Rheol., 28, 207(1984)10.1122/1.549748Search in Google Scholar

Eduljee, R. J., et al., “The Influence of Aggregated and Dispersed Textures on the Elastic Properties of Discontinuous-fiber Composites”, J. Compos. Sci. Technol., 50, 381391(1994), DOI: http://dx.doi.org/10.1016/0266-3538(94)90026-4Search in Google Scholar

Eshelby, J. D., et al., “The Determination of the Elastic Field of an Ellipsoidal Inclusion, and Related Problems”, Proceedings of the Royal Society A, 241, 376396(1957), DOI: http://dx.doi.org/10.1098/rspa.1957.0133Search in Google Scholar

Ferrari, M., Marzari, N., et al., “A Mori-Tanaka Theory for Textured Short-fiber Composites: Application”, ASME J. Energy Resources Technology, 114, 101104(1992), DOI: http://dx.doi.org/10.1115/1.2905928Search in Google Scholar

Folgar, F., TuckerIII, C. L., et al., “Orientation Behavior of Fibers in Concentrated Suspensions”, J. Reinf. Plast. Compos., 3, 98119(1984), DOI: http://dx.doi.org/10.1177/073168448400300201Search in Google Scholar

Ghosh, T., et al., “Rheology of Short Fiber Filled Thermoplastics”, Polym. Compos., 16, 144153(1995), DOI: http://dx.doi.org/10.1002/pc.750160206Search in Google Scholar

González, C., Llorca, J., “Mechanical Behavior of Unidirectional Fiber-reinforced Polymers under Transverse Compression: Microscopic Mechanisms and Modeling”, Compos. Sci. Technol., 67, 27952806(2007), DOI: http://dx.doi.org/10.1016/j.compscitech.2007.02.001Search in Google Scholar

Halpin, J. C., et al., “Stiffness and Expansion Estimates for Oriented Short Fiber Composites”, J. Compos. Mater., 3, 732734(1969)Search in Google Scholar

Llorca, J., Segurado, J., et al., “Three-dimensional Multiparticle Cell Simulations of Deformation and Damage in Sphere-reinforced Composites”, Mater. Sci. Eng. A, 365, 267274(2004), DOI: http://dx.doi.org/10.1016/j.msea.2003.09.035Search in Google Scholar

Miled, H., et al., “Numerical Simulation of Fibre Orientation and Resulting Thermo-elastic Behavior in Reinforced Thermoplastics”, in Mechanical Response of Composites, Camanho, P. (Ed.), Springer, Berlin Heidelberg(2008), DOI: http://dx.doi.org/10.1007/978-1-4020-8584-0_15Search in Google Scholar

MiledH., et al., “Modélisation de l'orientation de Fibres Induite par l’écoulement et Comportement Thermo-elastique Anisotrope a l’état Solide”, Thèse de Doctorat, Ecole Des Mines De Paris (2010)Search in Google Scholar

Mori, T., Tanaka, K., et al., “Average Stress in Matrix Average Elastic Energy of Materials with Misfitting Inclusions”, Acta Metall., 21, 571574(1973), DOI: http://dx.doi.org/10.1016/0001-6160(73)90064-3Search in Google Scholar

Mortensen, A., Llorca, J., et al., “Metal Matrix Composites”, Annual Review of Materials Research, 40, 243270(2010), DOI: http://dx.doi.org/10.1146/annurev-matsci-070909-104511Search in Google Scholar

Olivier, P., et al., “Micromechanics of Particle-reinforced Elasto-viscoplastic Composites: Finite Element Simulations versus Affine Homogenization”, Int. J. Plastic., 23, 10411060(2007), DOI: http://dx.doi.org/10.1016/j.ijplas.2006.09.003Search in Google Scholar

Phelps, J., TuckerIII, C. L., “An Anisotropic Rotary Diffusion Model for Fiber Orientation in Short- and Long-Fiber Thermoplastics”, J. Non-Newtonian Fluid Mech., 156, 165176(2009), DOI: http://dx.doi.org/10.1016/j.jnnfm.2008.08.002Search in Google Scholar

Redjeb, A., et al., “Simulation Numérique de l'orientation de Fibres en Injection de Thermoplastiques Renforcés”, Thèse de Doctorat, Ecole des Mines de Paris (2007)Search in Google Scholar

Segurado, J., Llorca, J., et al., “A Computational Micromechanics Study of the Effect of Interface Decohesion on the Mechanical Behavior of Composites”, Acta Mater., 53, 49314942(2005), DOI: http://dx.doi.org/10.1016/j.actamat.2005.07.013Search in Google Scholar

Sepehr, M., et al., “Comparison of Rheological Properties of Fiber Suspensions with Model Predictions”, J. Polym. Eng., 24, 579610(2004), DOI: http://dx.doi.org/10.1515/POLYENG.2004.24.6.579Search in Google Scholar

Sepehr, M., et al., “Rheological Properties of Short Fiber Model Suspensions”, J. Rheol., 48, 10231048(2004), DOI: http://dx.doi.org/10.1122/1.1773783Search in Google Scholar

Shapery, R. A., “Thermal Expansions Coefficients of Composite Materials Based on Energy Principles”, J. Compos. Mater., 2, 380404(1968), DOI: http://dx.doi.org/10.1177/002199836800200308Search in Google Scholar

Silva, L., et al., “Three-dimensional Injection Molding Simulation”, in Injection Molding, Technology and Fundamentals, Kamal, M. R., Isayev, A. I., Liu, S. J. (Eds.), Hanser Publishers, Munich(2009), DOI: http://dx.doi.org/10.3139/9783446433731.015Search in Google Scholar

Sun, C. J., et al., “Effect of Particle Arrangement on Stress Concentrations in Composites”, Mater. Sci. Eng. A, 405, 287295(2005), DOI: http://dx.doi.org/10.1016/j.msea.2005.06.032Search in Google Scholar

Totry, E., et al., “Effect of Fiber, Matrix and Interface Properties on the In-plane Shear Deformation of Carbon-Fiber Reinforced Composites”, Compos. Sci. Technol., 70, 970980(2010), DOI: http://dx.doi.org/10.1016/j.compscitech.2010.02.014Search in Google Scholar

Vincent, M., Agassant, J. F., et al., “Experimental Study and Calculations of Short Glass Fiber Orientation in a Center Gated Molded Disc”, Polym. Compos., 7, 7683(1986), DOI: http://dx.doi.org/10.1002/pc.750070203Search in Google Scholar

Vincent, M., et al., “Description and Modeling of Fiber Orientation in Injection Molding of Fiber Reinforced Thermoplastics”, Polymer, 46, 67196725(2005), DOI: http://dx.doi.org/10.1016/j.polymer.2005.05.026Search in Google Scholar

Vincent, M., et al., “Flow Induced Fibre Micro-Structure in Injection Molding of Fibre Reinforced Materials”, in Injection Molding, Technology and Fundamentals, Kamal, M. R., Isayev, A. I., Liu, S. J. (Eds.), Hanser Publishers, Munich, 253272(2009), DOI: http://dx.doi.org/10.3139/9783446433731.007Search in Google Scholar

Vogler, T. J., et al., “Composite Failure under Combined Compression and Shear”, Int. J. Solids and Structures, 37, 17651791(2000), DOI: http://dx.doi.org/10.1016/S0020-7683(98)00323-0Search in Google Scholar

Wang, J., et al., “An Objective Model for Slow Orientation Kinetics in Concentrated Fiber Suspensions: Theory and Rheological Evidence”, J. Rheol., 52, 11791200(2008), DOI: http://dx.doi.org/10.1122/1.2946437Search in Google Scholar

Received: 2012-01-23
Accepted: 2012-07-20
Published Online: 2013-04-06
Published in Print: 2012-11-01

© 2012, Carl Hanser Verlag, Munich

Downloaded on 21.5.2024 from https://www.degruyter.com/document/doi/10.3139/217.2602/html
Scroll to top button