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Abstract 

Using different optimization techniques, the optimum characteristics of multiple tuned mass dampers 

(MTMD) for reducing the dynamic response of primary structure due to various excitations are studied by 

many researchers. In this paper, the five practical MTMD models are considered which consist of different 

combinations of the mass, damping, stiffness coefficient and damping ratio in the MTMD. The criteria 

selected for the optimality is the minimization of the maximum value of the displacement dynamic 

magnification factor (DMF) of the primary structure with the MTMD system under external harmonic 

excitation. The optimum parameters of the MTMD systems are investigated using Sequential Quadratic 

Programming (SQP). Results obtained illustrate that the optimum MTMD-1 and MTMD-4 have nearly the 

same control performance and provide higher effectiveness than all the other types of MTMDs of the same 

mass ratio in reducing the displacement response of primary structure. Finally, a robustness analysis of 

optimally designed MTMD systems to investigate their performance under errors in the tuned frequencies is 

also performed in detail.  
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1. Introduction 

The tuned mass damper (TMD) is composed of a 

mass, spring and viscous damper attached to a 

primary system in order to control resonant 

vibrations. Thus, the natural frequency of the 

absorber system is tuned to a frequency close to the 

natural frequency of the primary system. When the 

external excitation is resonant with the primary 

structure, TMD is a beneficial vibration control 

device that reduces the structural vibration. 

 The first study into the design of a tuned mass 

damper is conducted by Den Hartog [1], who 
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derived a closed form solution for minimizing the 

dynamic response of a undamped primary system 

under harmonic excitation installed with a TMD. 

Since then, optimization of a TMD for various 

types of excitations have been extensively studied 

by many researchers [2-9]. A majority of those 

studies are concerned with improving the design 

procedure of optimum the TMD parameters.  

 Above-mentioned studies are concerned with 

the tuning of a single TMD to a specific vibration 

mode. Errors in estimation the structural frequency 

or manufacturing the TMD result in detuning of the 
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TMD from the frequency of the primary system. To 

overcome the detuning problem, the use of multiple 

tuned mass dampers with differing dynamic 

characteristics is first proposed by Xu and Igusa 

[10]. Then, MTMD systems also studied and 

improved by many investigators [11-20]. These 

studies show that MTMD device have a wider 

frequency range than a TMD, thus it provides better 

effectiveness and higher robustness than a TMD in 

suppressing dynamic vibrations. 

 In spite of several studies on the optimization of 

the MTMD under harmonic excitation, the effects 

of manufacturing type on the optimum parameters, 

effectiveness and robustness of the MTMD system 

have not yet been studied. Thus, the five practical 

MTMD models are considered which consist of 

different combinations of the mass, damping, 

stiffness coefficient and damping ratio in the 

MTMD. The objective of this study is to present 

and discuss the performance of these five practical 

MTMD models under the same external harmonic 

excitation in order to give a reference to select the 

MTMD. Here, the optimum parameters of the 

MTMD system for damped primary system are 

presented. The primary system is represented by a 

single-degree-of-freedom system which 

corresponds to a particular vibration mode to be 

controlled in a real system. The criterion selected 

for optimality is minimization of the maximum 

value of displacement DMF of the primary system. 

The optimum parameters of the MTMD system are 

obtained for different mass ratios and number of 

TMD units of the MTMD using Sequential 

Quadratic Programming (SQP).  

 

2. Modeling of structure-MTMD system 

The system configuration consists of a primary 

system attached by n tuned mass dampers with 

different dynamic characteristics as shown in Fig. 

1. The primary system is characterized by the 

stiffness ks, damping cs, and mass ms. The primary 

system and each TMD are modeled as SDOF 

system, thus, the total degrees of freedom of the 

structural system is n+1. The equations of motion 

for the primary system with MTMD subjected to 

harmonic excitation can be expressed as follows: 

 
 
Fig. 1. Primary structure - MTMD coupled system 
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where over dot denotes differentiation with respect 

to time t. m, c and k are the mass, damping 

coefficient and stiffness, respectively. Subscripts s 

and j denote the primary structure and the jth TMD, 

respectively. 
sx  and 

jx  indicate the vertical 

displacements. 

 Combining Eqs. (1) and (2), the equations of 

motion can be given in the following matrix form: 

MX+CX+KX = F  (3) 

where M, C, K are the mass, damping and stiffness 

matrices, X , X  and X  are the acceleration, 

velocity and displacement vectors, respectively, F 

is the external force vector, that can be defined as: 
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 The amplitude of the displacement of the 

primary system is expressed in the normalized form 

as 
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where /st sx P k  is the static displacement of the 

structure, / s    is the frequency ratio between 

the external force and the structure, s  is the 

damping ratio of the structure, /j j sm m   is the 

mass ratio, /j j s    is the frequency ratio, and 

/ 2j j j jc m   is the damping ratio of jth TMD. 

Details can be found in Li and Ni [15]. 

 The natural frequency j  (i.e., /j j jk m  ) 

jth TMD is presented by 
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where T  is the average frequency of all MTMD 

and   is the non-dimensional frequency spacing of 

the MTMD.  

 Total mass of the MTMD system is expressed 

by the mass ratio defined as 
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where   is the mass ratio of the MTMD system. 

 Tuning frequency ratio of the MTMD system is 

expressed by 

T

s

f
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where s  (i.e., /s s sk m  ) is the natural 

frequency of the primary system. 

 The average damping ratio of the MTMD is 

expressed as 
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where , , andj j j jc m   are the damping ratio, 

damping coefficient, mass and natural frequency of 

jth TMD unit, respectively. 

 To illustrate the effects of manufacturing type 

on control performance of multiple tuned mass 

dampers for reducing undesirable vibration under 

the harmonic excitation, five different MTMD 

models are used in the following sections. Details 

in the considered MTMD models can be found in 

Li 2002 [21]. For different MTMDs, the 
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expressions for the quantities 
j  and 

j  are given 

in Table 1. 

 

3. Numerical application 

In this section, an optimization problem 

optimization is defined as minimization of Eq. (8) 

as follows: 

min ( ) with b bJ q l q u   (17) 

where q, J(q), lb and ub represent the optimization 

variables, the objective function, the lower and 

upper bounds of the optimization variables, 

respectively. The optimization variables are as 

follows: 

[ , , ]Tq f   (18) 

 The ranges are selected for the design 

parameters: 0 0.5
T
  , 0.5 1.5f  , 0 0.5  , 

with the search increment of each parameter set to 

be 0.001. The range of excitation frequency ratio is 

also assumed to be 0.5 1.5  Unfortunately, it is 

not easy to obtain an explicit solution for the 

optimal parameters analytically from Eq. (8). Thus, 

a numerical optimization is performed using the 

MATLAB fmincon function. SQP is a powerful 

nonlinear optimization algorithm in order to solve 

the above mentioned design problem. SQP is 

inbuilt fmincon function in Matlab. Firstly, the 

system parameter is defined, and initial values and 

boundaries for tuning parameters are set. 

 Then, Eq. (8) is calculated numerically. The 

results are used to find the objective function. After, 

the fmincon command is applied to update all 

parameters. The final step is to check whether the 

objective function is minimum or not. If the 

objective function is minimized, then the optimized 

set of parameters is obtained and the optimization 

problem has been successfully solved. Otherwise, 

the updated set of parameters should be used to 

solve Eq. (8) again and calculate the objective 

function. This process should be repeated until the 

optimized set of parameters is achieved. 

 To verify the above optimization technique, 

firstly the obtained optimum parameters and 

response amplitudes are compared with the 

literature results for undamped primary system. It 

can be observed from Table 2 that the present 

results are in good agreement with the literature 

results for optimum values. The maximum 

difference between the results is also found to be 

less than 2.5%. 

 

Table 1. Expressions for the quantities j  and j  for different MTMD models 
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Table 2. Optimal MTMD parameters for various numbers of TMD units ( 0.01  ) 

Optimum values 
n = 5  n = 15 

Present study Ref. [17] Present study Ref. [17] 

R 11.445 11.446  11.158 11.158 

f   0.9957   0.9957    0.9970   0.9970 

    0.1118   0.1113    0.1397   0.1399 

T    0.0239   0.0239    0.0166   0.0162 

4. Numerical results 

To investigate the difference between the optimum 

parameters and control performance of MTMD 

models, several numerical analyses are performed 

and discussed in following sections. The damping 

ratio of primary structure is assumed to be 0.02. 

Firstly, the variations in the optimum parameters 

and optimum R against the mass ratio are presented 

considering the different values of the total number 

in Figs. 2-5. Then, the variations in the optimum 

parameters and optimum R against the number of 

TMD units are presented considering the different 

values of the mass ratio in Figs. 6-9.  

 The change of the optimum frequency spacing 

with respect to the total number for the five MTMD 

models in shown in Fig. 2, for the two cases: (a) 

μ=0.01 and (b) μ=0.05. From Fig. 2, it is observed 

that the optimum values of the frequency spacing 

increase with the increase of both the mass ratio and 

total number for five MTMD models. It is seen also 

from these figures that with the increase of number 

of MTMD the frequency spacing increases but 

when the total number is beyond a certain value (in 

this case n=12) the increase in the optimum 

frequency spacing stays almost stationary. 

Compared with the other curves of the optimum 

frequency spacing curve in these figures, as can 

also be seen, the optimum values of the frequency 

spacing for the optimum MTMD-1 and MTMD-5 

are very similar. In Fig. 2(a), it also observed that 

the difference in the optimum values of the 

frequency spacing for five optimum MTMDs is 

almost undetectable when the total number is less 

than 8.  

 The change of the optimum tuning frequency 

ratio with respect to the total number is illustrated 

in Fig. 3 for the five MTMD models, for the two 

cases: (a) μ = 0.01 and (b) μ = 0.05. It can be shown 

that, for the optimum MTMD-1, MTMD-4 and 

MTMD-5, the optimum tuning frequency ratio 

generally increases with an increase in the total 

number and decreases with the increasing of the 

mass ratio. However, the optimum tuning 

frequency ratio reveals the irregular variation type 

for the optimum MTMD-2 and MTMD-3.  

 The relationship of the optimum average 

damping ratio with respect to the total number for 

the five MTMD models for the two cases: (a) μ = 

0.01 and (b) μ = 0.05, is shown in Fig.4. It is shown 

in Fig. 4 that the optimum average damping ratio 

increases with the increasing of the mass ratio and 

decreases with an increase in the total number. 

However, the MTMD-2 and MTMD-3 provide the 

higher values of the optimum damping ratio for 

larger mass ratio when the total number is larger 

than or equal to 8. 

 The optimum value of R is plotted against the 

total number for the five MTMD models for the two 

cases: (a) μ = 0.01 and (b) μ = 0.05, as shown in Fig. 

5. It can be seen that the total number of MTMDs 

is most important factor on the effectiveness of the 

MTMD. However, when the total number of 

MTMDs is increased beyond a certain number (in 

this case n =12) for both mass ratios, little further 

effect on structure response is shown. Furthermore, 

from these figures, the optimum MTMD-1 and 

MTMD-4 provides better effectiveness than all the 

other types of MTMD of the same mass ratio in 

suppressing structural vibrations. 
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 a) μ = 0.01 b) μ = 0.05 

 

Fig. 2. βopt - n relationship of five MTMD models 

 

 
 a) μ = 0.01 b) μ = 0.05 

 

Fig. 3. f opt - n relationship of five MTMD models 

 

 
 a) μ = 0.01 b) μ = 0.05 

 

Fig. 4. ξopt - n relationship of five MTMD models 
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 a) μ = 0.01 b) μ = 0.05 

 

Fig. 5. Ropt - n relationship of five MTMD models 

 

 
 a) n = 5 b) n = 15 

 

Fig. 6. βopt - μ relationship of five MTMD models 

 

 
 a) n = 5 b) n = 15 

 

Fig. 7. f opt - μ relationship of five MTMD models 
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 a) n = 5 b) n = 15 

 

Fig. 8. ξopt - μ relationship of five MTMD models 

 

 
 a) n = 5 b) n = 15 

 

Fig. 9. Ropt - μ relationship of five MTMD models 

 

 The variation of the optimum frequency spacing 

of the MTMD system versus the mass ratio is 

illustrated in Fig. 6 for the two cases: (a) n = 5 and 

(b) n = 15. As the mass ratio increases, the optimum 

frequency spacing increases. The difference in the 

optimum frequency spacing between five MTMD 

models increases slightly with the increase of mass 

ratio. It is also observed that the optimum 

frequency spacing of the MTMD system increases 

with an increase in both the mass ratio and the total 

number of MTMDs. 

 The variation of the optimum tuning frequency 

ratio of the MTMD system versus the mass ratio is 

illustrated in Fig. 7 for the two cases: (a) n=5 and 

(b) n=15. From these figures, it observed that with 

the increase of mass ratio of MTMD the optimum 

tuning frequency ratio decreases whereas with the 

increase of total number of MTMD the optimum 

tuning frequency ratio increases. The difference in 

the optimum tuning frequency ratio between five 

MTMD models increases apparently with the 

increase of mass ratio.  In addition, the optimum 

tuning frequency ratio for MTMD-2 and MTMD-3 

is smaller than the other MTMD systems. 

 In Fig. 8 is shown the optimum average 

damping ratio of the MTMD system versus the 

mass ratio for the two cases: (a) n = 5 and (b) n = 

15. The optimum average damping ratio increases 

with an increase in the mass ratio and decreases 

with an increase in the total number of MTMD. 

Furthermore, for high values of the mass ratio, the 

optimum average damping ratio of the MTMD-2 
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and MTMD-3 systems is also greater compared to 

that of the optimum other MTMD systems.  

 In Fig. 9 is shown the optimum value of R 

versus the mass ratio for the two cases: (a) n = 5 and 

(b) n = 15. As can be seen from these figures, the 

displacement of the primary system decreases with 

the increase of the mass ratio of the MTMD system. 

It is also observed that the optimum MTMD-1 and 

MTMD-4 practically provides the same 

effectiveness. Another observation from Fig. 9 is 

that the optimum MTMD-5 attains nearly the same 

effectiveness as the optimum MTMD-1 and 

MTMD-4. Thus, the optimum MTMD-1, MTMD-

4, and MTMD-5 provides better effectiveness. 

 R curves for all cases are plotted against the 

excitation frequency ratio normalized by the 

structural natural frequency as shown in Fig. 10. It 

is observed that MTMD-1 and MTMD-4 provide 

superior vibration suppression performance 

comparing to that of the other cases. However, 

compared with the other control models, MTMD-1 

and MTMD-4 also provides smooth performance in 

a narrow frequency range centered at the tuned 

frequency. 

 In real structures, the control performance of 

MTMDs can be significantly detuned when there 

are some errors in the identifying the structural 

frequency or manufacturing the MTMD. Thus, the 

robustness of MTMD against error in the tuning 

frequency ratio is also investigated and the results 

are shown in Fig. 11. The abscissa is the error in the 

optimal tuning frequency ratio while the ordinate is 

the maximum R. As can be seen that the 

effectiveness of MTMD-1 and MTMD-4 are better 

than that of the other cases when the MTMD system 

is optimal. However, it is also observed that 

MTMD-1 and MTMD-4 provides better 

effectiveness than the other cases at the range of the 

errors from -5% to +2%. But MTMD-1 and 

MTMD-4 provides worse effectiveness with 

respect to the rest of the MTMD models when the 

error is beyond +2%. 

 

5. Conclusions 

In this paper, the optimum parameters of five 

MTMD models with the damped primary structure 

under external harmonic excitation are presented in 

detail. The optimum parameters of the MTMD 

model (i.e., the damping ratio, tuning frequency 

ratio and frequency spacing) are found using SQP 

method based on mass ratio and number of the 

MTMD. The performances of these five MTMD 

models have been also investigated through 

comprehensive numerical analyses based on 

detuning resulting from a frequency deviation in 

MTMD device. The following conclusions can be 

drawn from the present study: 

 

 

 
 a) n = 5, μ = 0.05 b) n = 15, μ = 0.05 

 

Fig. 10. Frequency response curves of the primary system with five MTMD models 
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 a) n = 5 b) n = 15 

 

Fig. 11. Robustness of MTMD systems to variations in the tuning frequency 

 

 

1. The optimum damping ratio and response of the 

primary system decreases with the increase of 

number of MTMD while the optimum 

frequency spacing and tuning frequency ratio 

increases.  

2. The tuning frequency ratio and response of the 

primary system decreases with the increase of 

mass ratio of MTMD while the optimum 

frequency spacing and damping ratio increases. 

3. The optimum MTMD-1 and MTMD-4 gain 

nearly the same control performance, and 

provide the better effectiveness than the 

optimum MTMD-2, MTMD-3 and MTMD-5. 

4. The robustness of MTMD-1 and MTMD-4 are 

generally better than the other cases when the 

change of the frequency tuning ratio is small. 

5. The optimum MTMD-1 can be preferred in the 

other control devices when the 

manufacturability, effectiveness and robustness 

are considered. 

6. To overcome the problems of the detuning, the 

errors of estimate of the parameters of the 

structure or MTMD system are should be 

considered in the design process of MTDM 

devices. 
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