ESTONIAN ACADEMY
PUBLISHERS
eesti teaduste
akadeemia kirjastus
PUBLISHED
SINCE 1952
 
Proceeding cover
proceedings
of the estonian academy of sciences
ISSN 1736-7530 (Electronic)
ISSN 1736-6046 (Print)
Impact Factor (2022): 0.9
Photoresist modification by silver colloid solution: the role of silver nanoparticles content; pp. 212–219
PDF | doi: 10.3176/proc.2012.3.11

Authors
Jovita Pudlauskaitė, Igoris Prosyčevas, Virginija Jankauskaitė, Tadas Kleveckas
Abstract

The aim of this work was to investigate the influence of silver nanoparticles deposited from a colloid solution into a photoresist composition on the morphology and optical properties of the grating. The Ag colloid was produced by chemical reduc­tion of silver nitrate and incorporated in the photoresist composition by mixing. The film of Ag colloid solution modified photoresist was obtained by spin coating on an optical quartz substrate and dried at 100 °C for 20 min. The grating with a period of 4 μm was formed by contact lithography.
The synthesized Ag nanoparticles were spherical or roughly spherical with diameters varying from 10 nm up to 60 nm. The content of Ag nanoparticles in the photoresist rose from 0.02 wt% to 4.66 wt% when the concentration of the Ag colloid solution increased from 10 to 30 wt%.
Analysis performed with atomic force microscope and scanning electron microscope showed that Ag nanoparticles changed geometrical parameters and optical properties of the gratings: their height decreased and diffraction efficiency increased in all orders. However, the increase of the Ag content up to 4.66 wt% considerably changed the grating geometry. In this case the ridges of the grating became concave, probably due to the Ag nanoparticles light diffusion. For this reason secondary reflections appeared during photolithography and the ridge of grating is affected by exposure. Therefore the ridge surface becomes soluble to etching solvents, and exposure areas are removed.

References

  1. Eksik, O., Erciyes, A. T., and Yagci, Y. In situ synthesis of oil based polymer composites containing silver nano­particles. J. Macromol. Sci., 2008, 45, 698–704.

  2. Carotenuto, G., Pepe, G. P., and Nicolais, L. Preparation and characterization of nano-sized Ag/PVP com­posites for optical applications. Eur. Phys., 2000, 16, 11–17.

  3. Evanoff, D. D. and Chumanov, G. Synthesis and optical properties of silver nanoparticles and arrays. ChemPhysChem., 2005, 6, 1221–1231.
http://dx.doi.org/10.1002/cphc.200500113

  4. Voue, M., Dahmouchene, N., and Coninck, J. D. Anneal­ing of polymer films with embedded silver nano­particles: effect on optical properties. Thin Solid Films, 2011, 519, 2963–2967.
http://dx.doi.org/10.1016/j.tsf.2010.12.109

  5. Sharma, V. K., Yngard, R. A., and Lin, Y. Silver nano­particles: green synthesis and their antimicrobial activities. Adv. Colloid Interf. Sci., 2009, 145, 83–96.
http://dx.doi.org/10.1016/j.cis.2008.09.002

  6. Li, T. L. and Hsu, S. L. C. Preparation and properties of conductive silver/photosensitive polyimide nano­composites. J. Polym. Sci., 2009, 47, 1575–1583.

  7. Maiti, M. and Bhowmick, A. K. Effect of solution con­centration on the properties of nanocomposites. J. Appl. Polym. Sci., 2006, 101, 2407–2411.
http://dx.doi.org/10.1002/app.23885

  8. Matsumoto, A., Ishikawa, T., Odani, T., Oikawa, H., Okada, S., and Nakanishi, H. An organic/inorganic nanocomposite consisting of polymuconate and silver nanoparticles. Macoromol. Chem. Phys., 2006, 207, 361–369.
http://dx.doi.org/10.1002/macp.200500430

  9. Melinte, V., Buruiana, T., Moraru, I. D., and Buruiana, E. C. Silver–polymer composite materials with antibacterial properties. Dig. J. Nanomater. Bios., 2011, 6, 213–223.

10. Porel, S., Singh, S., Harsha, S. S., Rao, D. N., and Radhakrishnan, T. P. Nanoparticle-embedded poly­mer: in situ synthesis, free-standing films with highly monodisperse silver nanoparticles and optical limitine. Chem. Mater., 2005, 17, 9–12.
http://dx.doi.org/10.1021/cm0485963

11. Valdes, S., Vargas, E. R., Ortiz, H. O., Valle, L. F. R., Nonell, J. M., Chaparro, M. M., Vela, G. N., Flores, I. Y., Rojas, D. E. M., and Ramirez, T. L. Silver nanoparticle deposition on hydrophilic multi­layer film surface and its effect on antimicrobial activity. Polym. Sci., 2011, 123, 1–8.

12. Šileikaitė, A., Puišo, J., Prosyčevas, I., Guobienė, A., Tamulevičius, S., Tamulevičius, T., and Janušas, G. Polymer diffraction gratings modified with silver nanoparticles. Mater. Sci. Medz., 2007, 13, 273–277.

13. Smirnova, T. N., Kokhtych, L. M., Kutsenko, A. S., Sakhno, O. V., and Stumpe, J. The fabrication of periodic polymer/silver nanoparticle structures: in situ reduction of silver nanoparticles from precursor spatially distributed in polymer using holographic exposure. Nanotechnology, 2009, 20, 1–11.
http://dx.doi.org/10.1088/0957-4484/20/40/405301

14. Balan, L., Turck, C., Soppera, O., Vidal, L., and Lougnot, D. J. Holographic recording with polymer nanocomposites containing silver nanoparticles photo­generated in situ by the interference pattern. Chem. Mater., 2009, 21, 5711–5718.
http://dx.doi.org/10.1021/cm901896g

15. Lee, P. C. and Meisel, D. Adsorption and surface Raman of dyes on silver and gold sols. J. Phys. Chem., 1982, 86, 3391–3395.
http://dx.doi.org/10.1021/j100214a025

16. Hutter, E. and Fendler, J. H. Exploitation of localized surface Plasmon resonance. Adv. Mater., 2004, 16, 1685–1706.
http://dx.doi.org/10.1002/adma.200400271

17. Trefry, J. C., Monahan, J. L., Weaver, K. M., Meyer­hoefer, A. J., Markopolous, M. M., Arnold, Z. S., Wooley, D. P., and Pavel, I. E. Size selection and concentration of silver nanoparticles by tangential flow ultrafiltration for SERS-based biosensors. J. Am. Chem. Soc., 2010, 132, 10970–10972.
http://dx.doi.org/10.1021/ja103809c

18. Baset, S., Akbari, H., Zeynali, H., and Shafie, M. Size measurement of metal and semiconductor nano­particles via UV–Vis absorption spectra. Dig. J. Nanomater. Bios., 2011, 6, 709–716.

19. Sakhno, O. V., Goldenberg, L. M., Stumpe, J., and Smirnova, T. N. Surface modified ZrO2 and TiO2 nanoparticles embedded in organic photopolymers for highly effective and UV-stable volume holograms. Nanotechnology, 2007, 18, 1–7.
http://dx.doi.org/10.1088/0957-4484/18/10/105704

20. Pillai, S. and Green, M. A. Plasmonics for photovoltaic applications. Sol. Energ. Mat. Sol. C., 2010, 94, 1481–1486.

Back to Issue