biologia plantarum

International journal on Plant Life established by Bohumil Němec in 1959

Biologia plantarum 64:150-158, 2020 | DOI: 10.32615/bp.2019.151

The enhancement of salt stress tolerance by salicylic acid pretreatment in Arabidopsis thaliana

L.-L. YU1, Y. LIU1, F. ZHU3, X.-X. GENG1, Y. YANG1, Z.-Q. HE2,*, F. XU1,*
1 Applied Biotechnology Center, Wuhan University of Bioengineering, Wuhan 430415, P.R. China
2 Biotechnology Research Center, China Three Gorges University, Yichang 443002, P.R. China
3 College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, P.R. China

Salicylic acid (SA) is an important plant hormone involved in the activation of defense responses against environmental stresses. However, there are still large of unsolved mysteries about how SA pretreatment affects the establishment of plant stress tolerance. In this study, application of SA at different concentrations and different times were conducted to investigate their effects on the response of Arabidopsis seedlings to salt stress. The pretreatment with 10 or 20 μM SA for more than 6 h promoted Arabidopsis seedlings resistance to salt stress. On the other hand, pretreatment with 200 μM SA reduced Arabidopsis resistance to salt stress and aggravated oxidative damage to the seedlings. At all concentrations used, SA pretreatment inhibited the total respiration and promoted reactive oxygen species (ROS) generation. However, the ROS content in 10 or 20 μM SA pretreated seedlings decreased to the basal level within 6 h and high activities of antioxidant enzymes and alternative oxidase were maintained. Notably, the SA-enhanced salt stress resistance was significantly impaired by blocking alternative oxidase (AOX) pathway. Our findings indicate that SA-mediated salt stress response is in a dose- and time-dependent manner and that the effects were related to the induction of AOX capacity and antioxidant system.

Keywords: alternative oxidase, antioxidant enzymes, reactive oxygen species, resistance index.

Received: March 6, 2019; Revised: October 21, 2019; Accepted: December 2, 2019; Published online: February 26, 2020  Show citation

ACS AIP APA ASA Harvard Chicago IEEE ISO690 MLA NLM Turabian Vancouver
YU, L.-L., LIU, Y., ZHU, F., GENG, X.-X., YANG, Y., HE, Z.-Q., & XU, F. (2020). The enhancement of salt stress tolerance by salicylic acid pretreatment in Arabidopsis thaliana. Biologia plantarum64, Article 150-158. https://doi.org/10.32615/bp.2019.151
Download citation

Supplementary files

Download fileYu6199 Suppl.pdf

File size: 552.25 kB

References

  1. Ashraf, M., Akram, N., Arteca, R., Foolad, M.: The physiological, biochemical and molecular roles of brassinosteroids and salicylic acid in plant processes and salt tolerance. - Crit. Rev. Plant Sci. 29: 162-190, 2010. Go to original source...
  2. Bai, X., Dong, Y., Kong, J., Xu, L., Liu, S.: Effects of application of salicylic acid alleviates cadmium toxicity in perennial ryegrass. - Plant Growth Regul. 75: 695-706, 2015. Go to original source...
  3. Beers, R.F., Jr., Sizer, I.W.: A spectrophotometric method for measuring the breakdown of hydrogen peroxide by catalase. - J. biol. Chem. 195: 133-140, 1952. Go to original source...
  4. Borsani, O., Valpuesta, V., Botella, M.A.: Evidence for a role of salicylic acid in the oxidative damage generated by nacl and osmotic stress in Arabidopsis seedlings. - Plant Physiol. 126: 1024-1030, 2001. Go to original source...
  5. Bradford, M.M.: A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. - Anal. Biochem. 72: 248-254, 1976. Go to original source...
  6. Cao, Y., Zhang, Z.W., Xue, L.W., Du, J.B., Shang, J., Xu, F., Yuan, S., Lin, H.H.: Lack of salicylic acid in Arabidopsis protects plants against moderate salt stress. - Z. Naturforsch. 64: 231-238, 2009. Go to original source...
  7. Choudhury, F.K., Rivero, R.M., Blumwald, E., Mittler, R.: Reactive oxygen species, abiotic stress and stress combination. - Plant J. 90: 856-867, 2017. Go to original source...
  8. Das, K., Roychoudhury, A.: Reactive oxygen species (ROS) and response of antioxidants as ROS-scavengers during environmental stress in plants. - Front. Environ. Sci. 2: 2014. Go to original source...
  9. De Souza, W.R., Vessecchi, R., Dorta, D.J., Uyemura, S.A., Curti, C., Vargas-Rechia, C.G.: Characterization of Rubus fruticosus mitochondria and salicylic acid inhibition of reactive oxygen species generation at Complex III/Q cycle: potential implications for hypersensitive response in plants. - J. Bioenerg. 43: 237-246, 2011. Go to original source...
  10. Fragniere, C., Serrano, M., Abou-Mansour, E., Metraux, J.P., L'Haridon, F.: Salicylic acid and its location in response to biotic and abiotic stress. - FEBS Lett. 585: 1847-1852, 2011.
  11. Gilliland, A., Singh, D.P., Hayward, J.M., Moore, C.A., Murphy, A.M., York, C.J., Slator, J., Carr, J.P.: Genetic modification of alternative respiration has differential effects on antimycin A-induced versus salicylic acid-induced resistance to Tobacco mosaic virus. - Plant Physiol. 132: 1518-1528, 2003. Go to original source...
  12. Horváth, E., Csiszár, J., Gallé, Á., Poór, P., Szepesi, Á., Tari, I.: Hardening with salicylic acid induces concentration-dependent changes in abscisic acid biosynthesis of tomato under salt stress. - J. Plant Physiol. 183: 54-63, 2015. Go to original source...
  13. Horváth, E., Szalai, G., Janda, T.: Induction of abiotic stress tolerance by salicylic acid signaling. - J. Plant Growth Regul. 26: 290-300, 2007. Go to original source...
  14. Hossain, M.A., Bhattacharjee, S., Armin, S.M., Qian, P., Xin, W., Li, H.Y., Burritt, D.J., Fujita, M., Tran, L.S.: Hydrogen peroxide priming modulates abiotic oxidative stress tolerance: insights from ROS detoxification and scavenging. - Front. Plant Sci. 6: 420, 2015. Go to original source...
  15. Huang, L.S., Cobessi, D., Tung, E.Y., Berry, E.A.: Binding of the respiratory chain inhibitor antimycin to the mitochondrial bc1 complex: a new crystal structure reveals an altered intramolecular hydrogen-bonding pattern. - J. mol. Biol. 351: 573-597, 2005. Go to original source...
  16. Jayakannan, M., Bose, J., Babourina, O., Rengel, Z., Shabala, S.: Salicylic acid in plant salinity stress signalling and tolerance. - Plant Growth Regul. 76: 25-40, 2015. Go to original source...
  17. Khan, S.U., Bano, A., Gurmani, A.: Abscisic acid and salicylic acid seed treatment as potent inducer of drought tolerance in wheat (Triticum aestivum L.). - Pak. J. Bot. 44: 43-49, 2012.
  18. Kumar, D., Chapagai, D., Dean, P., Davenport, M.: Biotic and abiotic stress signaling mediated by salicylic acid. - In: Pandey, G.K. (ed.): Elucidation of Abiotic Stress Signaling in Plants. Pp. 329-346. Springer, New York 2015. Go to original source...
  19. Lee, S., Kim, S.G., Park, C.M.: Salicylic acid promotes seed germination under high salinity by modulating antioxidant activity in Arabidopsis. - New Phytol. 188: 626-637, 2010. Go to original source...
  20. Lichtenthaler, H.K., Wellburn, A.R.: Determinations of total carotenoids and chlorophylls a and b of leaf extracts in different solvents. - Biochem. Soc. Trans. 11: 591-592, 1983. Go to original source...
  21. Matos, A.R., Mendes, A.T., Scotti-Campos, P., Arrabaça, J.D.: Study of the effects of salicylic acid on soybean mitochondrial lipids and respiratory properties using the alternative oxidase as a stress-reporter protein. - Physiol. Plant 137: 485-497, 2009. Go to original source...
  22. Maxwell, D.P., Nickels, R., McIntosh, L.: Evidence of mitochondrial involvement in the transduction of signals required for the induction of genes associated with pathogen attack and senescence. - Plant J. 29: 269-279, 2002. Go to original source...
  23. Miura, K., Okamoto, H., Okuma, E., Shiba, H., Kamada, H., Hasegawa, P.M., Murata, Y.: SIZ1 deficiency causes reduced stomatal aperture and enhanced drought tolerance via controlling salicylic acid-induced accumulation of reactive oxygen species in Arabidopsis. - Plant J. 73: 91-104, 2013. Go to original source...
  24. Miura, K., Tada, Y.: Regulation of water, salinity, and cold stress responses by salicylic acid. - Front. Plant Sci. 5: 4, 2014. Go to original source...
  25. Moore, A.L., Albury, M.S., Crichton, P.G., Affourtit, C.: Function of the alternative oxidase: is it still a scavenger? - Trends Plant Sci. 7: 478-481, 2002. Go to original source...
  26. Nakano, Y., Asada, K.: Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. - Plant Cell Physiol. 22: 867-880, 1981.
  27. Nazar, R., Iqbal, N., Syeed, S., Khan, N.A.: Salicylic acid alleviates decreases in photosynthesis under salt stress by enhancing nitrogen and sulfur assimilation and antioxidant metabolism differentially in two mungbean cultivars. - J. Plant Physiol. 168: 807-815, 2011. Go to original source...
  28. Norman, C., Howell, K.A., Millar, A.H., Whelan, J.M., Day, D.A.: Salicylic acid is an uncoupler and inhibitor of mitochondrial electron transport. - Plant Physiol. 134: 492-501, 2004. Go to original source...
  29. Okuma, E., Nozawa, R., Murata, Y., Miura, K.: Accumulation of endogenous salicylic acid confers drought tolerance to Arabidopsis. - Plant Signal Behav. 9: e28085, 2014. Go to original source...
  30. Overmyer, K., Brosché, M., Kangasjärvi, J.: Reactive oxygen species and hormonal control of cell death. - Trends Plant Sci. 8: 335-342, 2003. Go to original source...
  31. Pál, M., Szalai, G., Kovács, V., Gondor, O.K., Janda, T.: Salicylic acid-mediated abiotic stress tolerance. - In: Hayat, S., Ahmad, A., Alyemeni, M.N. (ed.): Salicylic Acid: Plant Growth and Development.Ppp. 183-247. Springer, Dordrecht 2013. Go to original source...
  32. Palma, F., López-Gómez, M., Tejera, N., Lluch, C.: Salicylic acid improves the salinity tolerance of Medicago sativa in symbiosis with Sinorhizobium meliloti by preventing nitrogen fixation inhibition. - Plant Sci. 208: 75-82, 2013. Go to original source...
  33. Pospíąil, P., Yamamoto, Y.: Damage to photosystem II by lipid peroxidation products. - Biochim. biophys. Acta 1861: 457-466, 2017.
  34. Ransac, S., Mazat, J.P.: How does antimycin inhibit the bc1 complex? A part-time twin. - Biochim. biophys. Acta 1797: 1849-1857, 2010.
  35. Sawada, H., Shim, I.-S., Usui, K.: Induction of benzoic acid 2-hydroxylase and salicylic acid biosynthesis - modulation by salt stress in rice seedlings. - Plant Sci. 171: 263-270, 2006. Go to original source...
  36. Scott, I.M., Clarke, S.M., Wood, J.E., Mur, L.A.: Salicylate accumulation inhibits growth at chilling temperature in Arabidopsis. - Plant Physiol. 135: 1040-1049, 2004. Go to original source...
  37. Sharma, P.: Salicylic acid: a novel plant growth regulator - role in physiological processes and abiotic stresses under changing environments. - In: Tuteja, N., Gill, S.S. (ed.): Climate Change and Plant Abiotic Stress Tolerance. Pp. 939-990. Wiley, Weinheim 2014. Go to original source...
  38. Singh, A.P., Dixit, G., Mishra, S., Dwivedi, S., Tiwari, M., Mallick, S., Pandey, V., Trivedi, P.K., Chakrabarty, D., Tripathi, R.D.: Salicylic acid modulates arsenic toxicity by reducing its root to shoot translocation in rice (Oryza sativa L.). - Front. Plant Sci. 6: 340, 2015. Go to original source...
  39. Stevens, J., Senaratna, T., Sivasithamparam, K.: Salicylic acid induces salinity tolerance in tomato (Lycopersicon esculentum cv. Roma): associated changes in gas exchange, water relations and membrane stabilisation. - Plant Growth Regul. 49: 77-83, 2006.
  40. Stewart, R.R., Bewley, J.D.: Lipid peroxidation associated with accelerated aging of soybean axes. - Plant Physiol. 65: 245-248, 1980. Go to original source...
  41. Sun, X., Yuan, S., Lin, H.H.: Salicylic acid decreases the levels of dehydrin-like proteins in Tibetan hulless barley leaves under water stress. - Z. Naturforsch. 61: 245-250, 2006. Go to original source...
  42. Szepesi, Á., Csiszár, J., Gémes, K., Horváth, E., Horváth, F., Simon, M.L., Tari, I.: Salicylic acid improves acclimation to salt stress by stimulating abscisic aldehyde oxidase activity and abscisic acid accumulation, and increases Na+ content in leaves without toxicity symptoms in Solanum lycopersicum L. - J. Plant Physiol. 166: 914-925, 2009. Go to original source...
  43. Uarrota, V.G., Moresco, R., Schmidt, E.C., Bouzon, Z.L., Nunes Eda, C., Neubert Ede, O., Peruch, L.A., Rocha, M., Maraschin, M.: The role of ascorbate peroxidase, guaiacol peroxidase, and polysaccharides in cassava (Manihot esculenta Crantz) roots under postharvest physiological deterioration. - Food Chem. 197: 737-746, 2016. Go to original source...
  44. Velikova, V., Yordanov, I., Edreva, A.: Oxidative stress and some antioxidant systems in acid rain-treated bean plants: protective role of exogenous polyamines. - Plant Sci. 151: 59-66, 2000. Go to original source...
  45. Verma, V., Ravindran, P., Kumar, P.P.: Plant hormone-mediated regulation of stress responses. - BMC Plant Biol. 16: 86, 2016. Go to original source...
  46. Wang, S.D., Zhu, F., Yuan, S., Yang, H., Xu, F., Shang, J., Xu, M.Y., Jia, S.D., Zhang, Z.W., Wang, J.H., Xi, D.H., Lin, H.H.: The roles of ascorbic acid and glutathione in symptom alleviation to SA-deficient plants infected with RNA viruses. - Planta 234: 171-181, 2011. Go to original source...
  47. Wani, A.B., Chadar, H., Wani, A.H., Singh, S., Upadhyay, N.: Salicylic acid to decrease plant stress. - Environ. Chem. Lett. 15: 101-123, 2016.
  48. Wasti, S., Mimouni, H., Smiti, S., Zid, E., Ben Ahmed, H.: Enhanced salt tolerance of tomatoes by exogenous salicylic acid applied through rooting medium. - Omics 16: 200-207, 2012. Go to original source...
  49. Xie, Z., Chen, Z.: Salicylic acid induces rapid inhibition of mitochondrial electron transport and oxidative phosphorylation in tobacco cells. - Plant Physiol. 120: 217-226, 1999. Go to original source...
  50. Xu, F., Zhang, D.W., Zhu, F., Tang, H., Lv, X., Cheng, J., Xie, H.F., Lin, H.H.: A novel role for cyanide in the control of cucumber (Cucumis sativus L.) seedlings response to environmental stress. - Plant Cell Environ. 35: 1983-1997, 2012.