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ABSTRACT 

Protein structure is a hot topic, not only to the specialist, but with others like the physicists. So this review is targeting those who are not 

biologists and have to deal with the protein in their research. In this review we travel with the protein structures from the amino acids and 

its classifications, and how the polypeptide chain is formed from these building blocks up to the final 3D structure. We introduced the 

secondary structure species like helices with its different types and how it is formed; also the beta sheet formation and types are 

explained briefly. Finally the tertiary and quaternary structures are presented. The approaches of molecular modeling as well as other 

important computational methods present significant contribution to studying proteins.  
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1. INTRODUCTION 

 One from the most important and used class of molecules is 

the proteins class. It is engineered to incorporate any molecule that 

one can imagine, and convert it from the ion structure into a large 

complex such as, sugar molecules, Fats and many other forms 

[1,2]. Protein different forms are the catalysis of a vast range of 

biological and chemical reactions which controls all the live cell 

reactions such as providing the cell membrane permeability for the 

different important fluids, cell toughness, and one from the most 

important process which is the metabolic molecules 

concentrations, as well as many other cell reactions [3-7]. 

Regardlessof its effect on the substance properties, the molecular 

3D structure in the protein molecule has a great effect on its 

functionality [8-11]. Understanding the 3D structure of any protein 

molecule is the way to realize its role and function through the 

biological reactions that took place inside and outside the 

biological cell and how it works even on the cell membrane itself. 

From the facts mentioned before and the more known about the 

proteins, this class of molecules is a very rich class with its 

different types of the molecular structures, for example one class 

of proteins is the Enzymes, the known enzymes are around 75000 

different molecules [12, 13]. 

In the protein structure there is very strange information that any 

protein is constructed from only 20 different amino acids (the 

standard amino acids) [8]. This makes protein structure and 

conformation a hot topic for many of the biological research 

groups. Simply proteins could be explained as biological 

polymers, it is a non-branched single chain of amino acids. As 

polymers are constructed by a polymerization process for such 

monomer, the amino acids are regarded as the monomers of the 

protein which polymerized in different arrangements. This 

arrangement produces the protein polypeptide chain, this chain did 

not last for a long time but it went in folding process by covalent 

bonds producing what so called secondary structure, which 

directly went also in the folding process producing the tertiary 

structure, than the quaternary structure which gives the protein its 

functionality and unique 3D structure. 

The aim of this mini-review is to help the non-biologists 

researchers especially the physicists to understand the protein 

structure and how it is built without going too much into 

sophisticated details.   

2. AMINO ACIDS 

 Now after the previous introduction one should ask, what 

are these amino acids? How it is constructed? 

Amino acids are more than 100 different structures, but what we 

mean are the 20 standards alpha amino acids. As is clear from 

figure 1, alpha amino acids are constructed in common from an 

alpha Carbon (αC) atom [14-17] (the term alpha) connected with 

an amid (NH2) group (the term amino) and carboxyl (COOH) 

group (the term acids) and Hydrogen (H) atom then an alkyl (R) 

group. Hence the major difference is the alkyl group as in figure 2. 

As it is presented in figure 2 the simplest alpha amino acid is the 

Glycine which has only a hydrogen atom instead of the alkyl, 

while the largest side chain comes in both leucine and iso-leucine 

which contains 4 carbon side-chains. Any polypeptide chain is 

constructed from a special arrangement of the mentioned alpha 

amino acids connected from the amino and carboxyl groups via 

peptide bonds. The polypeptide chain starts with the amino (NH2) 

group -called N terminal- and ends with the carboxyl group -called 

C terminal- (COO-)[18,19]. Normally the proteins molecular 

weight evaluated by what so called Dalton (D) every Dalton is the 

MW of the H atom. Despite the alpha amino acids are the building 

blocks of any protein, the human body could not produce all of 

them, for examplephe, val, Thr, Met, Trp, Ilu, Leu, His and Lys 

did not self-produced by the human body. This class of amino 

acids is called the essential amino acids[20-23] that should be 

essentially found in the human daily food, while there are others 

that could be produced in the human body (but it happen) under 
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certain conditions like Arg, Tyr, Pro, Glu, CysandGly are called 

conditional essential amino acids [24,25]. The rest amino acids are 

produced regularly in the human body. The easiest and straight 

forward way to supply your body with the essential amino acids is 

the mammalian meat, but vegetarians depend only on plants in 

their diet so they have to complement their food by scientifically 

assigned menu [26].  While all the standard 20 Amino acids are 

alike in the structure but they differ in the side chain, in this case 

this side chain affects the amino acid reactivity through its 

physical and chemical properties. 

 
Figure 1.The common structure of the alpha amino acids. 

 

For example the amino acids with polar side chain [27, 28] tend to 

form the protein surface during the poly peptide chain folding 

while those with non-polar side chain went to the innermost core 

of the protein 3D structure. The presence of the polar side chains 

on the protein surface makes it easily soluble in the polar buffers 

like water. Some of the 20 basic amino acids are hydrophobic in 

acidic forms like Aspartic and Glutamic while others have 

basiceffects like Lysine, Arginine andHistidine. Some hydrophilic 

amino acids have polarity not from the alkyl side chain but from 

the carboxyl and/or the amide group like Serine, Asparagine, 

Glutamine and Threonine [29,30]. 

 
Figure 2.The Structure of the 20 basic amino acids. 

3. PRIMARY STRUCTURE OF THE PROTEIN 

 To form the protein backbone (poly peptide chain) the 

selected amino acids should be linked via peptide bonds [31-33]. 

The peptide bonding is a chemical bond from the covalent 

bonding type. The poly peptide chain is a repeat of amino-alfa 

carbon- carboxyl (+N-αC-COO-).This bond is formed in general 

by releasing OH from the carboxyl and H from the amino forming 

water molecule. As a result of this arrangement it is always the 

Nitrogen atom and the CO group which are in the location with 

respect to the alpha carbon along the protein backbone, as a 

consequence every polypeptide chain have a charged N terminal 

as start and ends with charged C terminal. There are two types of 

the peptide bonded amino acids chain, if the amount of the amino 

acid molecules is between 20 and 30, it is called peptide, 

otherwise, for longer chains it is called poly peptide chain [34]. 

Hence the folding process and the forming of the 3D structure 

from peptides is called complex and that from polypeptide chain 

called protein and both have a superior role in the biological 

reactions inside the cell. 

 

4. SECONDARY STRUCTURE OF PROTEIN 

 After the formation of the polypeptide chain even during 

the protein elongation, the polypeptide chain starts to form the 

secondary structure sub units which are called according to its 3D 

geometry as alpha helices and beta sheets. 

4.1 Alpha helix (α helix) 

During his X-Ray investigations on the wool fibers in the 30s of 

the last century, William Thomas Astbury discovered the coil 

shape in the fiber structure [35-37], or what is called the helical 

structure of the protein molecules. Alpha helix is a right hand or 

left hand coiled polypeptide chain or in other words it is a spiral 

conformation. In this structure every amino group gives an 

electron to that carboxyl group of the amino acid located in the 

third or the fourth order before that amino group along the 

polypeptide chain [38-40]. Some amino acids have a high 

tendency to form alpha helix like Methionine, Alanine, Leucine, 

Glutamine andLysine[41-43]. On the other handProline and 

Glycine approximately have no tendency to form helices [44-

47].In some cases more than one helix could coil together forming 

what called super helix [48-50].Thesuper helices are more stable 

than the normal helices. As an example for the presence of super 

helix is the growth-hormone[51,52] of humans also the Rop 

protein both contain super helices [53,54] and other many 

biological molecules.  

4.2 Pi helix (π helix) 

Pi helix is another form of the protein secondary structure. It is 

really rare to find a Pi helix in such protein structure as one could 

speculate that only 15% of the known structures contain Pi helix 

[55,56]. Founding Pi helix in such structure could be from such 

inserting just an amino acid into the structure of any alpha helix. 

This intrusion of such amino acids destabilizes the structure [57]. 
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This structure destabilization makes the formation of Pi helices 

subjected only to give some functionality advantages, so normally 

it is located in the active sites [58,59]. In alpha helix the amino 

acids are arranged in helical structure with approximately amino 

acid every 100o if the complete turn is 360o which means that 

every turn contains in average  3.6 amino acid [60-63], but in pi 

helices there are amino acid every 87o this means that we have 4.1 

amino acid every turn (360o). Another difference between pi and 

alpha helices is that in pi helices every carboxyl group is linked to 

the amino group of the next fifth amino acid not the fourth one 

[64- 68]. Typically the Pi helices are very short structure, its 

sequence contains between 7 and 10 amino acids in its backbone. 

The foundation of Pi helix in any structure is very difficult 

because of its shortness [69] it is always found as shown in figure3 

in between two alpha helices [64,69-70].  

 
Figure 3. A short secondary structure Pi helix located between two long 

secondary structure alpha helices 

4.3 Beta sheet (β sheet) 

β sheet or β plated sheet is a common protein secondary structure 

it is considered as the second superabundant secondary structure in 

the protein 3D geometry [38, 71-73]. Beta sheet is constructed by 

linking laterally two or more polypeptide chains (backbone) by 

what is called beta strands (β-strands), during the backbone 

linking by the β-strands a twisting takes place forming the known 

secondary structure [74-77]. As it is mentioned before the amino 

acids are directed by the N terminal and C terminal, also the beta 

sheet is directed as always symbolized in the protein structure 

(carton method) as a wide arrow aiming to the C terminal as 

shown in figure 4. Beta sheets could be built up either in parallel 

method, in this case it is called parallel beta sheet or in anti-

parallel method and is called anti-parallel beta sheets [78-82] as 

shown in figure 5. 

 
Figure 4.The arrow notation of the beta sheet the direction ims to the C 

terminal. 

 
Figure 5.Parallel and anti-parallel beta sheets. 

 

In parallel beta sheets the backbones arranged in a manner that the 

amino groups direction is the same or are adjacent in both 

backbones, while in anti-parallel structure the backbones are 

arranged in a way that the amino groups are adjacent to the 

carboxyl group in the next backbone [83-87]. 

The secondary structure of any protein is a mixture between the 

helices and the sheets [88-90], while the beta strands are hydrogen 

bonds but the helix structure is more stable than the beta sheets 

[91-93]. 

5.TERTIARY AND QUATERNARY STRUCTURE OF THE PROTEIN 

From the time that the ribosome start to elongating and 

synthesizing the protein by linking and elongating the amino 

acids, the polypeptide chain starts to form 3D structure called the 

tertiary structure [18, 94-97], by folding the amino acids sequence 

into a secondary structure then tertiary structure. Any tertiary 

structure is constructed from one or more clusters every cluster is 

formed from the folding of part of the secondary structure [98], 

and called protein domain. The interaction between the amino 

acids species (Alkyls, amino groups, carboxyl groups or hydrogen 

atoms) could take place in different ways to form the tertiary 

structure of such protein. The 3D geometry of such protein could 

be changed into alternative structures called protein conformation; 

if the protein environment is a cellular ambient hence the stable 

conformer of the protein is called the native conformer or the 

native protein. While some proteins are functional at the level of 

tertiary structure [99], but the majority needs more complications 

to become functional. For those proteins with more subunits 

interact and folded to form the functional protein. If the interacted 

subunits are two, the quaternary structure is called dimer; if it is 

constructed from three subunits it called trimer, etc.  

Another class of sorting is the subunits similarity; if the quaternary 

structure is formed from identical subunits it gains the prefix 

homo, hence called homo-dimer, homo-trimer, homo-tetramer, 

etc....On the other hand if the quaternary structure sub units are 

different, then it gains the prefix hetro that one could say hetero 

dimer and so on.Famous example is the hemoglobin which is one 
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from the most important mammalian proteins; it is the protein 

which captures the oxygen and transports it through the blood 

serum. Hemoglobin is constructed from four subunits two beta 

sheets and two alpha helices, hence the hemoglobin structure is 

called hetro-tetramer, while as it is constructed from two beta 

sheets and two alpha helices if we consider every subunit is 

constructed from alpha helices and beta sheets, hence it could be 

named homo dimer of dimers. The 3D structure of any protein is 

not only important for its functionality but also as any deformation 

in this structure during unfolding refolding process or the 

molecular conformations of the protein molecule could cause 

some diseases. Moreover the miss folding could cause protein 

aggregation which is also a cause of diseases in some cases. 

Protein aggregation also in some diseases is a corner stone in the 

disease mechanism. Alzheimer is an example of the protein 

aggregation disease, one from the hypothesis of the Alzheimer 

causes is the beta amyloid peptide aggregation [100-103]. 

6. MOLECULAR MODELING APPROACH  

Protein folding problem was the first step paving the way towards 

mathematical prediction of (tertiary, 3-dimensional) protein 

structure given the (primary, linear). Nowadays computational 

methods are developed specially to define and understand the 

structure of theprotein. The most challenging problems in this 

field are becoming problems concerned with different 

computational approaches not limited to molecular modeling but 

also including mathematical modeling and numerical analysis. The 

possible interaction between heavy metal and protein is followed 

up with molecular modeling [104]. Metals are coordinated through 

the hydrogen bonding of amide and carboxyl groups. Based on 

this study, the mechanism describing the interaction between Cr 

and protein as described [105]. Divalent metals in hydrated form 

are interacting with two chains of protein through two hydrogen 

bonding of carboxyl and/or amide groups which is confirming the 

previous molecular modeling findings for the interaction between 

metals and protein [106-107]. Molecular modeling was confirming 

those obtained through docking in order to describe the possible 

interaction between chitosan in nano scale and αB-Crystallin 

protein [108]. Recently, a comprehensive review is conducted for 

modeling studies of monoamine transporters [109]. Molecular 

modeling could be used effectively for visualization, 

understanding then predicting the interaction between proteins and 

surfaces in order to control cellular function [110]. It is stated that, 

modeling studies of 3D protein structures are considered as an 

important and essential tool for understanding the BMP-2 release 

kinetics for orthopedic applications [111]. It is also reported 

that,the protein engineering is considered as a pivotal tool for 

designing proteins with improved characteristics [112]. Molecular 

modeling and different classes of simulation could be used as a 

very beneficial tool for understanding the relation between the 

protein structure and different protein function [113-118]. Finally 

Molecular Modeling is a strong tool in molecular structure 

identification not only for protein as mentioned before but also for 

other kinds of molecules [119,121] 

7. CONCLUSION 

Protein structure recognition and conformation is one from the 

most important and very sophisticated research topics. some times 

this conformation is regarded as important part from doing its 

function in the biological interaction inside, and outsidethe 

biological cell, even ontop and through the cell membrane.  

Studying the protein structure and protein folding even the protein 

molecular conformation of the native protein and the novo-

synthesized protein is the key to understand the majority of 

biological interaction and diseases mechanisms.  

The setting up of new techniques and developing exciting methods 

to monitor the protein during the folding/unfolding process even 

the biological interaction is the way to understand fully these 

interactions and how we can control it. 

Molecular modeling with different levels of theories is considered 

among the most important tools for understanding protein 

structure, folding and hence is confirming and/or starting the data 

obtained with experimental techniques dealing with protein issues. 
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