Research Article
BibTex RIS Cite
Year 2023, Volume: 7 Issue: 2, 12 - 19, 15.05.2023
https://doi.org/10.33435/tcandtc.1161253

Abstract

References

  • [1] P. Nandi, A. Rawat, R. Ahammed, N. Jena, A. De Sarkar, Group-IV (A) Janus dichalcogenide monolayers and their interfaces straddle gigantic shear and in-plane piezoelectricity, Nanoscale 13 (2021) 5460-5478.
  • [2] H.D. Bui, H.R. Jappor, N.N. Hieu, Tunable optical and electronic properties of Janus monolayers Ga2SSe, Ga2STe, and Ga2SeTe as promising candidates for ultraviolet photodetectors applications, Superlattices and Microstructures 125 (2019) 1-7.
  • [3] M. Naguib, V.N. Mochalin, M.W. Barsoum, Y. Gogotsi, 25th anniversary article: MXenes: a new family of two‐dimensional materials, Advanced materials 26 (2014) 992-1005.
  • [4] P. Vogt, P. De Padova, C. Quaresima, J. Avila, E. Frantzeskakis, M.C. Asensio, A. Resta, B. Ealet, G. Le Lay, Silicene: compelling experimental evidence for graphenelike two-dimensional silicon, Physical review letters 108 (2012) 155501.
  • [5] Y. Zhang, H. Ye, Z. Yu, Y. Liu, Y. Li, First-principles study of square phase MX2 and Janus MXY (M= Mo, W; X, Y= S, Se, Te) transition metal dichalcogenide monolayers under biaxial strain, Physica E: Low-dimensional Systems and Nanostructures 110 (2019) 134-139.
  • [6] H.G. Abbas, T.T. Debela, J.R. Hahn, H.S. Kang, Multiferroicity of Non-Janus MXY (X= Se/S, Y= Te/Se) Monolayers with Giant In-Plane Ferroelectricity, The Journal of Physical Chemistry C 125 (2021) 7458-7465.
  • [7] Y. Chen, H. Zhang, B. Wen, X.B. Li, X.L. Wei, W. Yin, L.M. Liu, G. Teobaldi, The Role of Permanent and Induced Electrostatic Dipole Moments for Schottky Barriers in Janus MXY/Graphene Heterostructures: a First Principles Study, Dalton Transactions (2022).
  • [8] C.-C. Liu, W. Feng, Y. Yao, Quantum spin Hall effect in silicene and two-dimensional germanium, Physical review letters 107 (2011) 076802.
  • [9] P. Li, I. Appelbaum, Symmetry, distorted band structure, and spin-orbit coupling of group-III metal-monochalcogenide monolayers, Physical Review B 92 (2015) 195129.
  • [10] C. Ren, S. Wang, H. Tian, Y. Luo, J. Yu, Y. Xu, M. Sun, First-principles investigation on electronic properties and band alignment of group III monochalcogenides, Scientific Reports 9 (2019) 1-6.
  • [11] S.P. Koenig, R.A. Doganov, H. Schmidt, A. Castro Neto, B. Özyilmaz, Electric field effect in ultrathin black phosphorus, Applied Physics Letters 104 (2014) 103106.
  • [12] F.f. Zhu, W.j. Chen, Y. Xu, C.l. Gao, D.d. Guan, C.h. Liu, D. Qian, S.C. Zhang, J.f. Jia, Epitaxial growth of two-dimensional stanene, Nature materials 14 (2015) 1020-1025.
  • [13] X. Tang, S. Li, Y. Ma, A. Du, T. Liao, Y. Gu, L. Kou, Distorted Janus transition metal dichalcogenides: Stable two-dimensional materials with sizable band gap and ultrahigh carrier mobility, The Journal of Physical Chemistry C 122 (2018) 19153-19160.
  • [14] C. Xia, W. Xiong, J. Du, T. Wang, Y. Peng, J. Li, Universality of electronic characteristics and photocatalyst applications in the two-dimensional Janus transition metal dichalcogenides, Physical Review B 98 (2018) 165424.
  • [15] H.R. Jappor, M.A. Habeeb, Optical properties of two-dimensional GaS and GaSe monolayers, ELSEVIER RADARWEG 29(2022)1043.
  • [16] G. Liang, X. Yu, X. Hu, B. Qiang, C. Wang, Q.J. Wang, Mid-infrared photonics and optoelectronics in 2D materials, Materials Today 51 (2021) 294-316.
  • [17] Y. Li, Y.-L. Li, B. Sa, R. Ahuja, Review of two-dimensional materials for photocatalytic water splitting from a theoretical perspective, Catalysis Science & Technology 7 (2017) 545-559.
  • [18] G.S. Shanker, A. Biswas, S. Ogale, 2D materials and their heterostructures for photocatalytic water splitting and conversion of CO2 to value chemicals and fuels, Journal of Physics: Energy 3 (2021) 022003.
  • [19] X. Li, X. Wu, Two‐dimensional monolayer designs for spintronics applications, Wiley Interdisciplinary Reviews: Computational Molecular Science 6 (2016) 441-455.
  • [20] H.R. Jappor, S.A.M. Khudair, Electronic properties of adsorption of CO, CO2, NH3, NO, NO2 and SO2 on nitrogen doped graphene for gas sensor applications, Sensor Letters 15 (2017) 432-439.
  • [21] 21. H.R. Jappor, A.S. Jaber, Electronic properties of CO and CO2 adsorbed silicene/graphene nanoribbons as a promising candidate for a metal-free catalyst and a gas sensor, Sensor Letters 14 (2016) 989-995.
  • [22] B. Radisavljevic, M.B. Whitwick, A. Kis, Integrated circuits and logic operations based on single-layer MoS2, ACS nano 5 (2011) 9934-9938.
  • [23] F. Bussolotti, H. Kawai, Z.E. Ooi, V. Chellappan, D. Thian, A.L.C. Pang, K.E.J. Goh, Roadmap on finding chiral valleys: screening 2D materials for valleytronics, Nano Futures 2 (2018) 032001.
  • [24] R. Stühler, F. Reis, T. Müller, T. Helbig, T. Schwemmer, R. Thomale, J. Schäfer, R. Claessen, Tomonaga–Luttinger liquid in the edge channels of a quantum spin Hall insulator, Nature Physics 16 (2020) 47-51.
  • [25] M. Yagmurcukardes, Y. Qin, S. Ozen, M. Sayyad, F.M. Peeters, S. Tongay, H. Sahin, Quantum properties and applications of 2D Janus crystals and their superlattices, Applied Physics Reviews 7 (2020) 011311.
  • [26] L. Zhang, Z. Yang, T. Gong, R. Pan, H. Wang, Z. Guo, H. Zhang, X. Fu, Recent advances in emerging Janus two-dimensional materials: from fundamental physics to device applications, Journal of Materials Chemistry A 8 (2020) 8813-8830.
  • [27] B. Hou, Y. Zhang, H. Zhang, H. Shao, C. Ma, X. Zhang, Y. Chen, K. Xu, G. Ni, H. Zhu, Room temperature bound excitons and strain-tunable carrier mobilities in janus monolayer transition-metal dichalcogenides, The journal of physical chemistry letters 11 (2020) 3116-3128.
  • [28] L. Gao, Flexible device applications of 2D semiconductors, Small 13 (2017) 1603994.
  • [29] J. Shang, C. Cong, L. Wu, W. Huang, T. Yu, Light sources and photodetectors enabled by 2D semiconductors, Small Methods 2 (2018) 1800019.
  • [30] J.W. Hill, C.M. Hill, Directly visualizing carrier transport and recombination at individual defects within 2D semiconductors, Chemical science 12 (2021) 5102-5112.
  • [31] C. Wang, Y. Jing, X. Zhou, Y.-f. Li, Sb2TeSe2 monolayers: Promising 2D semiconductors for highly efficient excitonic solar cells, ACS omega 6 (2021) 20590-20597.
  • [32] N. Ahmadvand, E. Mohammadi-Manesh, Engineering 2D semiconductors of PbI2@ NdI2 and NdI2@ CuI with respect of photovoltaic and solar cell applications, Surfaces and Interfaces 30 (2022) 101939.
  • [33] Q. Li, J. Lin, T.-Y. Liu, X.-Y. Zhu, W.-H. Yao, J. Liu, Gas-mediated liquid metal printing toward large-scale 2D semiconductors and ultraviolet photodetector, npj 2D Materials and Applications 5 (2021) 1-10.
  • [34] B. Wang, S.P. Zhong, Z.B. Zhang, Z.Q. Zheng, Y.P. Zhang, H. Zhang, Broadband photodetectors based on 2D group IVA metal chalcogenides semiconductors, Applied Materials Today 15 (2019) 115-138.
  • [35] 35. X. Song, J. Hu, H. Zeng, Two-dimensional semiconductors: recent progress and future perspectives, Journal of Materials Chemistry C 1 (2013) 2952-2969.
  • [36] J. Wang, H. Shu, T. Zhao, P. Liang, N. Wang, D. Cao, X. Chen, Intriguing electronic and optical properties of two-dimensional Janus transition metal dichalcogenides, Physical Chemistry Chemical Physics 20 (2018) 18571-18578.
  • [37] S.J. Clark, M.D. Segall, C.J. Pickard, P.J. Hasnip, M.I. Probert, K. Refson, M.C. Payne, First principles methods using CASTEP, Zeitschrift für kristallographie-crystalline materials 220 (2005) 567-570.
  • [38] J.P. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple, Physical review letters 77 (1996) 3865.
  • [39] D. Vanderbilt, Soft self-consistent pseudopotentials in a generalized eigenvalue formalism, Physical review B 41 (1990) 7892.
  • [40] H.J. Monkhorst, J.D. Pack, Special points for Brillouin-zone integrations, Physical review B 13 (1976) 5188.
  • [41] Y. Sun, Z. Shuai, D. Wang, Janus monolayer of WSeTe, a new structural phase transition material driven by electrostatic gating, Nanoscale 10 (2018) 21629-21633.
  • [42] H. Liu, Z. Huang, C. He, Y. Wu, L. Xue, C. Tang, X. Qi, J. Zhong, Strain engineering the structures and electronic properties of Janus monolayer transition-metal dichalcogenides, Journal of Applied Physics 125 (2019) 082516.
  • [43] J. Islam, A. Hossain, Semiconducting to metallic transition with outstanding optoelectronic properties of CsSnCl3 perovskite under pressure, Scientific reports 10 (2020) 1-11.
  • [44] J.D. Joannopoulos, P.R. Villeneuve, S. Fan, Photonic crystals: putting a new twist on light, Nature 386 (1997) 143-149.
  • [45] D.M. Callahan, J.N. Munday, H.A. Atwater, Solar cell light trapping beyond the ray optic limit, Nano letters 12 (2012) 214-218.
  • [46] M. Born, E. Wolf, Principles of optics: electromagnetic theory of propagation, interference and diffraction of light, Elsevier (2013).
  • [47] R. Coccioli, M. Boroditsky, K. Kim, Y. Rahmat-Samii, E. Yablonovitch, Smallest possible electromagnetic mode volume in a dielectric cavity, IEE Proceedings-Optoelectronics 145 (1998) 391-397.

A class of two-dimensional WSeTe monolayers under pressures with novel electronic and optical properties

Year 2023, Volume: 7 Issue: 2, 12 - 19, 15.05.2023
https://doi.org/10.33435/tcandtc.1161253

Abstract

The electronic and optical properties of the WSeTe monolayer have already been evaluated at different hydrostatic pressures up to 9 GPa using a first principles simulation based on dft. At all pressures, the material is semi-conductive and the band gap narrows. The examination of optical functions demonstrates that the WSeTe monolayer's absorption increases significantly as we travel towards the violet region as well as conductivity, making it useful in solar cells. All optical qualities increase as a result of the applied pressure. We contend that the extraordinary photovoltaic properties of the WSeTe monolayer have many applications in optical devices.

References

  • [1] P. Nandi, A. Rawat, R. Ahammed, N. Jena, A. De Sarkar, Group-IV (A) Janus dichalcogenide monolayers and their interfaces straddle gigantic shear and in-plane piezoelectricity, Nanoscale 13 (2021) 5460-5478.
  • [2] H.D. Bui, H.R. Jappor, N.N. Hieu, Tunable optical and electronic properties of Janus monolayers Ga2SSe, Ga2STe, and Ga2SeTe as promising candidates for ultraviolet photodetectors applications, Superlattices and Microstructures 125 (2019) 1-7.
  • [3] M. Naguib, V.N. Mochalin, M.W. Barsoum, Y. Gogotsi, 25th anniversary article: MXenes: a new family of two‐dimensional materials, Advanced materials 26 (2014) 992-1005.
  • [4] P. Vogt, P. De Padova, C. Quaresima, J. Avila, E. Frantzeskakis, M.C. Asensio, A. Resta, B. Ealet, G. Le Lay, Silicene: compelling experimental evidence for graphenelike two-dimensional silicon, Physical review letters 108 (2012) 155501.
  • [5] Y. Zhang, H. Ye, Z. Yu, Y. Liu, Y. Li, First-principles study of square phase MX2 and Janus MXY (M= Mo, W; X, Y= S, Se, Te) transition metal dichalcogenide monolayers under biaxial strain, Physica E: Low-dimensional Systems and Nanostructures 110 (2019) 134-139.
  • [6] H.G. Abbas, T.T. Debela, J.R. Hahn, H.S. Kang, Multiferroicity of Non-Janus MXY (X= Se/S, Y= Te/Se) Monolayers with Giant In-Plane Ferroelectricity, The Journal of Physical Chemistry C 125 (2021) 7458-7465.
  • [7] Y. Chen, H. Zhang, B. Wen, X.B. Li, X.L. Wei, W. Yin, L.M. Liu, G. Teobaldi, The Role of Permanent and Induced Electrostatic Dipole Moments for Schottky Barriers in Janus MXY/Graphene Heterostructures: a First Principles Study, Dalton Transactions (2022).
  • [8] C.-C. Liu, W. Feng, Y. Yao, Quantum spin Hall effect in silicene and two-dimensional germanium, Physical review letters 107 (2011) 076802.
  • [9] P. Li, I. Appelbaum, Symmetry, distorted band structure, and spin-orbit coupling of group-III metal-monochalcogenide monolayers, Physical Review B 92 (2015) 195129.
  • [10] C. Ren, S. Wang, H. Tian, Y. Luo, J. Yu, Y. Xu, M. Sun, First-principles investigation on electronic properties and band alignment of group III monochalcogenides, Scientific Reports 9 (2019) 1-6.
  • [11] S.P. Koenig, R.A. Doganov, H. Schmidt, A. Castro Neto, B. Özyilmaz, Electric field effect in ultrathin black phosphorus, Applied Physics Letters 104 (2014) 103106.
  • [12] F.f. Zhu, W.j. Chen, Y. Xu, C.l. Gao, D.d. Guan, C.h. Liu, D. Qian, S.C. Zhang, J.f. Jia, Epitaxial growth of two-dimensional stanene, Nature materials 14 (2015) 1020-1025.
  • [13] X. Tang, S. Li, Y. Ma, A. Du, T. Liao, Y. Gu, L. Kou, Distorted Janus transition metal dichalcogenides: Stable two-dimensional materials with sizable band gap and ultrahigh carrier mobility, The Journal of Physical Chemistry C 122 (2018) 19153-19160.
  • [14] C. Xia, W. Xiong, J. Du, T. Wang, Y. Peng, J. Li, Universality of electronic characteristics and photocatalyst applications in the two-dimensional Janus transition metal dichalcogenides, Physical Review B 98 (2018) 165424.
  • [15] H.R. Jappor, M.A. Habeeb, Optical properties of two-dimensional GaS and GaSe monolayers, ELSEVIER RADARWEG 29(2022)1043.
  • [16] G. Liang, X. Yu, X. Hu, B. Qiang, C. Wang, Q.J. Wang, Mid-infrared photonics and optoelectronics in 2D materials, Materials Today 51 (2021) 294-316.
  • [17] Y. Li, Y.-L. Li, B. Sa, R. Ahuja, Review of two-dimensional materials for photocatalytic water splitting from a theoretical perspective, Catalysis Science & Technology 7 (2017) 545-559.
  • [18] G.S. Shanker, A. Biswas, S. Ogale, 2D materials and their heterostructures for photocatalytic water splitting and conversion of CO2 to value chemicals and fuels, Journal of Physics: Energy 3 (2021) 022003.
  • [19] X. Li, X. Wu, Two‐dimensional monolayer designs for spintronics applications, Wiley Interdisciplinary Reviews: Computational Molecular Science 6 (2016) 441-455.
  • [20] H.R. Jappor, S.A.M. Khudair, Electronic properties of adsorption of CO, CO2, NH3, NO, NO2 and SO2 on nitrogen doped graphene for gas sensor applications, Sensor Letters 15 (2017) 432-439.
  • [21] 21. H.R. Jappor, A.S. Jaber, Electronic properties of CO and CO2 adsorbed silicene/graphene nanoribbons as a promising candidate for a metal-free catalyst and a gas sensor, Sensor Letters 14 (2016) 989-995.
  • [22] B. Radisavljevic, M.B. Whitwick, A. Kis, Integrated circuits and logic operations based on single-layer MoS2, ACS nano 5 (2011) 9934-9938.
  • [23] F. Bussolotti, H. Kawai, Z.E. Ooi, V. Chellappan, D. Thian, A.L.C. Pang, K.E.J. Goh, Roadmap on finding chiral valleys: screening 2D materials for valleytronics, Nano Futures 2 (2018) 032001.
  • [24] R. Stühler, F. Reis, T. Müller, T. Helbig, T. Schwemmer, R. Thomale, J. Schäfer, R. Claessen, Tomonaga–Luttinger liquid in the edge channels of a quantum spin Hall insulator, Nature Physics 16 (2020) 47-51.
  • [25] M. Yagmurcukardes, Y. Qin, S. Ozen, M. Sayyad, F.M. Peeters, S. Tongay, H. Sahin, Quantum properties and applications of 2D Janus crystals and their superlattices, Applied Physics Reviews 7 (2020) 011311.
  • [26] L. Zhang, Z. Yang, T. Gong, R. Pan, H. Wang, Z. Guo, H. Zhang, X. Fu, Recent advances in emerging Janus two-dimensional materials: from fundamental physics to device applications, Journal of Materials Chemistry A 8 (2020) 8813-8830.
  • [27] B. Hou, Y. Zhang, H. Zhang, H. Shao, C. Ma, X. Zhang, Y. Chen, K. Xu, G. Ni, H. Zhu, Room temperature bound excitons and strain-tunable carrier mobilities in janus monolayer transition-metal dichalcogenides, The journal of physical chemistry letters 11 (2020) 3116-3128.
  • [28] L. Gao, Flexible device applications of 2D semiconductors, Small 13 (2017) 1603994.
  • [29] J. Shang, C. Cong, L. Wu, W. Huang, T. Yu, Light sources and photodetectors enabled by 2D semiconductors, Small Methods 2 (2018) 1800019.
  • [30] J.W. Hill, C.M. Hill, Directly visualizing carrier transport and recombination at individual defects within 2D semiconductors, Chemical science 12 (2021) 5102-5112.
  • [31] C. Wang, Y. Jing, X. Zhou, Y.-f. Li, Sb2TeSe2 monolayers: Promising 2D semiconductors for highly efficient excitonic solar cells, ACS omega 6 (2021) 20590-20597.
  • [32] N. Ahmadvand, E. Mohammadi-Manesh, Engineering 2D semiconductors of PbI2@ NdI2 and NdI2@ CuI with respect of photovoltaic and solar cell applications, Surfaces and Interfaces 30 (2022) 101939.
  • [33] Q. Li, J. Lin, T.-Y. Liu, X.-Y. Zhu, W.-H. Yao, J. Liu, Gas-mediated liquid metal printing toward large-scale 2D semiconductors and ultraviolet photodetector, npj 2D Materials and Applications 5 (2021) 1-10.
  • [34] B. Wang, S.P. Zhong, Z.B. Zhang, Z.Q. Zheng, Y.P. Zhang, H. Zhang, Broadband photodetectors based on 2D group IVA metal chalcogenides semiconductors, Applied Materials Today 15 (2019) 115-138.
  • [35] 35. X. Song, J. Hu, H. Zeng, Two-dimensional semiconductors: recent progress and future perspectives, Journal of Materials Chemistry C 1 (2013) 2952-2969.
  • [36] J. Wang, H. Shu, T. Zhao, P. Liang, N. Wang, D. Cao, X. Chen, Intriguing electronic and optical properties of two-dimensional Janus transition metal dichalcogenides, Physical Chemistry Chemical Physics 20 (2018) 18571-18578.
  • [37] S.J. Clark, M.D. Segall, C.J. Pickard, P.J. Hasnip, M.I. Probert, K. Refson, M.C. Payne, First principles methods using CASTEP, Zeitschrift für kristallographie-crystalline materials 220 (2005) 567-570.
  • [38] J.P. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple, Physical review letters 77 (1996) 3865.
  • [39] D. Vanderbilt, Soft self-consistent pseudopotentials in a generalized eigenvalue formalism, Physical review B 41 (1990) 7892.
  • [40] H.J. Monkhorst, J.D. Pack, Special points for Brillouin-zone integrations, Physical review B 13 (1976) 5188.
  • [41] Y. Sun, Z. Shuai, D. Wang, Janus monolayer of WSeTe, a new structural phase transition material driven by electrostatic gating, Nanoscale 10 (2018) 21629-21633.
  • [42] H. Liu, Z. Huang, C. He, Y. Wu, L. Xue, C. Tang, X. Qi, J. Zhong, Strain engineering the structures and electronic properties of Janus monolayer transition-metal dichalcogenides, Journal of Applied Physics 125 (2019) 082516.
  • [43] J. Islam, A. Hossain, Semiconducting to metallic transition with outstanding optoelectronic properties of CsSnCl3 perovskite under pressure, Scientific reports 10 (2020) 1-11.
  • [44] J.D. Joannopoulos, P.R. Villeneuve, S. Fan, Photonic crystals: putting a new twist on light, Nature 386 (1997) 143-149.
  • [45] D.M. Callahan, J.N. Munday, H.A. Atwater, Solar cell light trapping beyond the ray optic limit, Nano letters 12 (2012) 214-218.
  • [46] M. Born, E. Wolf, Principles of optics: electromagnetic theory of propagation, interference and diffraction of light, Elsevier (2013).
  • [47] R. Coccioli, M. Boroditsky, K. Kim, Y. Rahmat-Samii, E. Yablonovitch, Smallest possible electromagnetic mode volume in a dielectric cavity, IEE Proceedings-Optoelectronics 145 (1998) 391-397.
There are 47 citations in total.

Details

Primary Language English
Subjects Chemical Engineering
Journal Section Research Article
Authors

Idrees Oreibi 0000-0002-6160-9421

Jassim M. Al-ıssawe 0000-0002-9773-8188

Early Pub Date November 16, 2022
Publication Date May 15, 2023
Submission Date August 12, 2022
Published in Issue Year 2023 Volume: 7 Issue: 2

Cite

APA Oreibi, I., & M. Al-ıssawe, J. (2023). A class of two-dimensional WSeTe monolayers under pressures with novel electronic and optical properties. Turkish Computational and Theoretical Chemistry, 7(2), 12-19. https://doi.org/10.33435/tcandtc.1161253
AMA Oreibi I, M. Al-ıssawe J. A class of two-dimensional WSeTe monolayers under pressures with novel electronic and optical properties. Turkish Comp Theo Chem (TC&TC). May 2023;7(2):12-19. doi:10.33435/tcandtc.1161253
Chicago Oreibi, Idrees, and Jassim M. Al-ıssawe. “A Class of Two-Dimensional WSeTe Monolayers under Pressures With Novel Electronic and Optical Properties”. Turkish Computational and Theoretical Chemistry 7, no. 2 (May 2023): 12-19. https://doi.org/10.33435/tcandtc.1161253.
EndNote Oreibi I, M. Al-ıssawe J (May 1, 2023) A class of two-dimensional WSeTe monolayers under pressures with novel electronic and optical properties. Turkish Computational and Theoretical Chemistry 7 2 12–19.
IEEE I. Oreibi and J. M. Al-ıssawe, “A class of two-dimensional WSeTe monolayers under pressures with novel electronic and optical properties”, Turkish Comp Theo Chem (TC&TC), vol. 7, no. 2, pp. 12–19, 2023, doi: 10.33435/tcandtc.1161253.
ISNAD Oreibi, Idrees - M. Al-ıssawe, Jassim. “A Class of Two-Dimensional WSeTe Monolayers under Pressures With Novel Electronic and Optical Properties”. Turkish Computational and Theoretical Chemistry 7/2 (May 2023), 12-19. https://doi.org/10.33435/tcandtc.1161253.
JAMA Oreibi I, M. Al-ıssawe J. A class of two-dimensional WSeTe monolayers under pressures with novel electronic and optical properties. Turkish Comp Theo Chem (TC&TC). 2023;7:12–19.
MLA Oreibi, Idrees and Jassim M. Al-ıssawe. “A Class of Two-Dimensional WSeTe Monolayers under Pressures With Novel Electronic and Optical Properties”. Turkish Computational and Theoretical Chemistry, vol. 7, no. 2, 2023, pp. 12-19, doi:10.33435/tcandtc.1161253.
Vancouver Oreibi I, M. Al-ıssawe J. A class of two-dimensional WSeTe monolayers under pressures with novel electronic and optical properties. Turkish Comp Theo Chem (TC&TC). 2023;7(2):12-9.

Journal Full Title: Turkish Computational and Theoretical Chemistry


Journal Abbreviated Title: Turkish Comp Theo Chem (TC&TC)