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ABSTRACT: Statistical aspects of 'biological effects' field surveys are discussed, with particular 
reference to the GEEP Workshop. Recommendations are  made on design criteria, for example, selection 
of sites and samples, and replication strategies (including formulae for sample size determination) The 
role of transforinations is discussed, both for univariate sub-lethal response data and the mulbvariate 
data arising from benthic community studies. Statistical analysis is categorised into testing methods, for 
establishing biological differences between field sites, and descriptive techniques, for representation of 
those differences. The former includes a non-parametric randomisation test for use with site-species 
arrays and the latter a survey of various multivariate ordination and clustering methods A final section 
outlines a procedure for comparison of different pollution indices, combining their power to detect 
specific contaminant inputs with their associated 'costs' 

INTRODUCTION 

A large number of statistical issues were raised in the 
planning of the GEEP Workshop, ranging from ques- 
tions of sampling design for pollution studies, through 
methods of univariate statistical analysis on the result- 
ing sub-lethal stress responses, and multivariate anal- 
yses of benthic community change, to techniques for 
comparison of the various pollution indicators. The 
intention of this paper is to describe some of the think- 
ing behind the statistical design and analysis for the 
workshop and,  more importantly, to elaborate on 
aspects relevant to future impact assessment pro- 
grammes. Thus, while illustrative results are drawn 
both from the data of the Frierfjord/Langesundfjord 
survey and the Solbergstrand mesocosm study, the 
structure of the paper reflects statistical aspects of field 
studies rather than laboratory experiments. 

Though much of what follows is relevant to any field 
study, attention is restricted here to a putative spatial 
pollution gradient examined at one point in time (as at 
the workshop), rather than to time series of observa- 
tions where the significance of an  impact is assessed in 
relation to temporal controls. The sections of the paper 
refer to the main statistical stages in such a study: 
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(a) survey design - the criteria for selection of sam- 
ples, and extent and type of replication; 

(b) pre-processing - the initial examination and pos- 
sible transformation of data for conformity with the 
assumptions of statistical analyses; 

(c) tests of null hypotheses of 'no biological differ- 
ences' between sites on a contaminant gradient; 

(d) descriptive and explanatory analyses, displaying 
the relationships between responses at  each site and 
relating those changes to the contaminant gradient; 

(e) retrospective assessment of the sensitivity of vari- 
ous response measures and analyses employed, a s  part of 
the continuous cycle of improving subsequent design. 

A further categorisation needs to b e  made clear at  
the outset. Methods examined a t  the workshop fell 
broadly into 4 groups: biochemical, cellular, physiolog- 
ical and community studies (see sections of this MEPS 
SPECIAL). However, for the statistical discussion, only 
a broad dichotomy is needed, distinguishing the 
benthic fauna1 community analyses from the individual 
organism studies. This distinction is reflected both in 
the constraints on sampling design and in the different 
analyses required - community studies principally 
employ multivariate statistics whilst the sublethal 
stress responses are primarily univariate. 
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DESIGN 

In selecting sample areas it is usually crucial to choose 
one or more sites which are spatial 'controls', i .e. rela- 
tively unimpacted (reference) sites for which compari- 
son can be  made with the contaminant-affected site(s). It 
is true that certain measures of sub-lethal stress in 
individual organisms have been the subject of sufficient 
reseach for their values to be  interpretable in an abso- 
lute rather than comparative sense. For example, 'scope 
for growth' in mussels (e.g. Widdows & Johnson 1988), a 
net energy balance arrived at by measurement of 
energy intake and losses of individual animals, takes 
values over a well-defined range, in which small or 
negative values are usually indicative of stressed popu- 
la t ion~.  Similarly, for some methods of examining 
benthic fauna1 communities, it may be possible to detect 
stress in samples from a single site, rather than by 
comparison with a reference site. For example, Warwick 
(1986) proposes a comparison of the k-dominance 
curves for species abundance and species biomass a t  a 
single site, different relative positions of the two curves 
indicating disturbed or undisturbed communities (see 
also Gray e t  al. 1988). However, even in these cases, 
credibility would be  greatly enhanced by demonstration 
of statistically significant differences in the chosen indi- 
cator (predicted a priori), between impacted and refer- 
ence sites or between sites differing in degree of impact. 
Discussion of spatial (and temporal) controls in observa- 
tional studies can b e  found in Green (1979). 

Four other major design features are considered 
below, separately for individual organism responses 
and benthic community data: 

(1) the desirability of selecting sites and faunistic 
samples such that 'nuisance' physical and biological 
variables are controlled within set limits (where it is 
known that vanation within these ranges has little 
effect on the biological measures); 

(2) the importance of proper replication a t  each site 
(with appropriate randomisation in sampling of the 
faunistic material); 

(3) the importance of background data (preferably 
the collection of pilot samples) for selecting appropriate 
sites/samples, erecting suitable hypotheses about 
changes in biological measures and choosing the right 
level of replication to ensure these are adequately 
testable; 

(4) the need to perform analyses 'blind' in order to 
minimise the dangers of self-fulfilling predictions. 

Univariate data from sub-lethal responses 

A simple maxim in experimental studies is to hold 
constant the values of any (nuisance) variables that are 

not of relevance to the treatment d~fferences being 
investigated, thus increasing precision in the measured 
response. This can apply equally to field studies so that, 
for example, it would be advantageous to collect indi- 
viduals of the target species withln the same narrow 
size range from all sites. Other variables may not be  
possible to control, for example the changes in salinity 
that may accompany sites on a decreasing pollution 
gradient down an estuary; prior experimental and 
observational evidence plays an important role here in 
deciding whether such confounded variables can be 
discounted (e.g. scope for growth in mussels has been 
shown not to be sensitive to modest salinity changes, 
Widdows 1985). 

It helps in the definition of what constitutes a 'site', 
and how to collect animals from it, to define the 'target 
population' which the sample animals are intended to 
represent. The objectives should make this clear; the 
intention is to demonstrate whether this defined geo- 
graphical location is more impacted than a control 
location, by like-with-like comparison of a very specific 
biological effects measure. Thus, it is quite legitimate 
to postulate a narrow target population, for example all 
mussels in the size range (3.5,4.5) cm, of one sex, 
located at MLW etc. However, spatial definition of a 
site must remain broad, along 100 m (say) of shoreline. 
If the 'sampled population' is spatially more restricted 
than this, e .g .  clumps of mussels are all taken from a 
single rock within 1 or 2 m of each other, some strong 
(and possibly unjustifiable) assumptions are needed to 
equate sampled and target populations. The risk here 
is obvious; all one may succeed in demonstrating is that 
mussels on a certain rock are significantly more 
impacted than those on another rock several kilometres 
away, leaving open the possibility that such differences 
could have been seen for a nearby rock also. A better 
strategy is therefore to collect individual animals (of 
desired size) across the full spatial extent of the site. 
Formal random selection is impractical, and largely 
unnecessary since the spatially stochastic distribution 
of populations will probably generate adequate ran- 
domness from evenly-spaced selection along the 
shoreline. Where randomisation can be used to good 
effect is when it is required to sub-sample from the full 
set of animals collected at a site, perhaps for separate 
biological measures or for chemical analysis of tissues. 
Interpretability is always improved by performing 
biological and chemical measures on the same indi- 
viduals; whilst this is possible for larger organisms (e.g. 
fish) it may be impractical for other commonly used 
species (e.g. bivalves). Random~sat~on in the division of 
animals for different analyses at least ensures that they 
all unbiasedly address the same 'sampled' (and thus 
'target') population. 

The importance of the right amount and kind of 
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replication cannot be overstressed. It is usually right to 
aim for a balanced design, with equal numbers of 
rep!icate animals analysed at each site. Replicate read- 
ings can also be taken at different hierarchical levels 
and it is important to allocate effort across the levels 
efficiently. An example from the workshop concerns 
stereological measurement of cell tissue structure 
(Lowe 1988). On sections of mussel mantle tissue the 
volume fraction of nutrient storage (VCT) cells is deter- 
mined by counting the proportion of points on an  
eyepiece graticule that fall on VCT cells (Lowe et  al. 
1982). The hierarchical levels here would be: the 
number of graticule points to count per field, the 
number of fields to observe per section, the number of 
sections to cut per animal and,  finally, the number of 
animals to sample per field site. In a nested structure of 
this sort, the significance of an effect at any level is 
judged by comparison of the variance at that level with 
the variance at  the level below (nested ANOVA); thus 
the presence of significant heterogeneity across sec- 
tions within an animal, across animals within a site etc. 
can all be tested for, if there is enough replication at the 
lower levels. But this is largely irrelevant (there will 
almost always be significant animal-to-animal varia- 
tion); the main purpose of the analysis is to examine 
variation between sites, and the appropriate replication 
variance to compare this with is that between animals. 
With typical levels of biological variability, no amount 
of effort in examining many sections, and many fields 
per section, will make up  for a design in which there 
are only 2 animals per site; the top level ANOVA F-test 
will be based on few residual degrees of freedom and 
will lack power to detect site-to-site changes. In this 
context, Gundersen & Osterby (1981) discuss optimal 
allocation of effort. 

In fact, the choice is often more complex since some 
techniques, particularly the biochemical and chemical 
analyses, involve replicate determinations on pools of 
animals rather than individuals; optimal selection of 
pool size is then also required. This too is tractable, as 
follows, at least for the case of a 2-level hierarchy in 
which several pools of animal tissue (taken at each site) 
are subsampled to give replicate assays. 

For any particular field site (or experimental condi- 
tion) define: 
n = number of pools analysed, 
p = number of animals in a pool, 
r = number of replicate determinations on each pool, 
o12 = variance from pool to pool (within a site) of the 
true pool means, and 
022 = variance of replicate determinations within a 
pool. 

Then, the observed mean value y of the response 
variable, averaged over all pools and replicates at that 
site, has variance: 

var(S;) = ;(oI2/p) + ( ~ ~ ~ / r ) ) / n  (1) 
The precision likely to result from proposed p and r 

values can be seen, for example bearing out the above 
comments abo.ut a law of diminishing returns as r tends 
to m. For evaluation, o2 values need to be estimated 
from current data. Defining V, as the observed var- 
iance between pool means and V2 as the observed 
variance of replicate determinations within a pool (and 
noting that V1 reflects contributions from both o12 and 
a?'), these estimates are: - .  

irI2 -- V, - (V2/r0), 622 = V2 (2) 
where ro = number of replicate determinations in the 
current data. 

Optimal future balance of effort between p and r 
depends on the structure of the 'cost' function. A 
reasonable description would be: 

Cost (man-hours) = do + d ln  + d2np + d3nr (3) 
where d3 = marginal cost (time) incurred to do an extra 
replicate determination, d2 = cost of a n  extra animal 
dissection, d l  = cost of preparing a n  extra pool, do = fixed 
costs. In fact, only the ratio d2/d3 needs to be  determined. 
Alittle algebra shows that, if the technique currently uses 
a pool size of p. animals, and ro replicate determinations 
are made,  then a switch to p' and r '  given by: 

r' = r o  + (d2 /d3)po8  1 - , K ; / l l  -K\, 
K = (d2a12)/(d3022), (4 

p' = P0 + (r0 - f)(d3/d2) 
will reduce the var(y) to a minimum, for the same fixed 
number of pools (n) and the same total cost (effort). 

An example from the Workshop is provided by 
cytochrome P-450 assays on mesocosm mussels 
(Livingstone 1988). Here, pool size w a s p o  = 6 and ro = 

2 replicate determinations were made. Estimated var- 
iances were V, = 169, V2 = 227; time (d2) per mussel 
dissection was about 0 .6  min and operator time (d3) for 
an  additional replicate assay about 10 min, giving r' = 

1.9, p' = 7.1. The closest integer solution, preserving 
fixed total 'cost', is r '  - 2, p' = 6, demonstrating that 
the current balance of effort is optimal. 

Returning to cellular-level responses, but retaining 
the simple two-level hierarchy, pool size is in effect 
constrained to p = 1, so optimal balance is now possible 
between n (number of animals) and r (number of meas- 
urements on each animal). This is again subject to fixed 
total effort, structured as: 

Cost (man hours) = c0 + cln + c2nr (5) 
where again all that is needed is the ratio cl/c2 of the time 
for one extra animal dissection, and histological prepara- 
tion, to the time for an  extra replicatemeasurement on the 
resulting slide. If the current technique uses no animals 
and ro readings, then it is optimal to switch to: 

r ' = ~~(cla22)/(c2a,2)1 
( 6 )  
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In the measurement of VCT volume fraction on a 
sample of Solbergstrand mussels (data taken prior to 
the workshop), no=10 mussels were examined and 
ro=5 fields viewed for each individual (1 section only 
taken per mussel). These gave VI=30, V2=25.5; c, and 
c2 were about 4 and 1.5 min respectively, giving 
r'  =1.6, n '=18. The suggestion is that it would pay to 
increase the number of mussels a t  the expense of 
reducing the number of fields viewed, the best integer 
solution of r ' =2 and n ' = 16 reducing overall variance 
by 20 %, for the same total effort. 

The above formulae are concerned with correct alloca- 
tionwithin an overall fixed effort; the question remains as 
to whether the total effort employed is sufficient to meet 
the objectives of the study. The choice of an  appropriate n 
(number of mussels or pools at the top replication level) is 
a function of (a) how large a change (6) in the biological 
response one wishes to detect, by comparison with the 
control, (b) the probability (P) with which the study 
should detect that level of change (the 'power' of the test, 
usually set a t  0.9 or 0.95), and  (c) the variance (02) of the 
response for a single mussel/pool. (If a variance-stabilis- 
ing transformation is required -see the next section -all 
these values should be defined on the transformed 
response scale). For a test of significance levelp < 0.05, n 
should be chosen to satisfy: 

where a-' = inverse of the unit normal distribution 
function, which is widely tabulated (e.g. for P = 0.95, 
@-'[PI = 1.64). Note that this is only a n  approximation 
to the correct result, the latter involving the more com- 
plex non-central t-distribution (less widely tabulated). 
However, the approximation is acceptable for n > 4 or 
5 ,  though an alternative is to read the precise values 
from a set of power curves (e.g. Bayne et al. 1981). 

Good design therefore requires prior knowledge of 
the likely behaviour of the biological response (e.g. its 
sampling variance) for the field conditions and conta- 
minant gradient expected. Prior information will also 
be  needed to judge availability of organisms, and the 
biological and physical variables that it may be  impor- 
tant to control (e.g. size range, degree of exposure to 
wave action etc.) and so define properly the sample 
sites and target populations. A pilot sampling pro- 
gramme is often essential and always desirable 

Finally, it is usually desirable for analyses to be 
carried out 'blind', i .e. such that the experimenter per- 
forms the preparation and measurement phases with- 
out knowledge of the source of his material. This was 
true of nearly all benchwork performed at the work- 
shop, on both field and mesocosm samples, and was not 
difficult to arrange in practice. It is recommended as a 
simple safeguard against (unconscious) biases on the 
part of the experimenter. However objective the pro- 

tocols for a technique may be,  there are usually stages 
in its execution that may call for some judgement (e.g. 
the decision to reject a replicate because of a suspected 
analytical failure, the selection of microscope fields in 
histological and histochemical work, the relative effort 
put into taxonomic identification in different benthic 
faunal samples etc.). I t  is wise not to risk selection 
biases where these can be simply avoided by recoding 
of material before analysis. 

Multivariate data from benthic community studies 

Much of the above dscussion is equally apposite to 
the sampling of benthic faunal communities. Thus it is 
important to have replication at each site, those 
replicates to be properly representative of the 'target 
population' (i.e. community) of the area of interest. As 
with the littoral populations, this area shou!d not be  
defined to be too spatially compact. If it is, the replica- 
tion variance between sample cores (or grabs) repre- 
sents no more than local sampling fluctuation (termed 
'pseudo-replication' by Hurlbert 1984) rather than the 
relevant level of between-area variation within that 
site. There is a strong analogy with the earlier discus- 
sion on different levels of replication in measurements 
of cellular response. Tests of between-site differences 
rely on adequate 'top level' replication. 

Control of 'nuisance' physical variables, in selection 
of sites to be  compared, is another important aspect. 
The experience of the Workshop suggests that this can 
be  more difficult for benthic sampling than individual 
organism studies. For example, sediment grain size and 
water depth are known to be important determinants of 
community structure; ideally all selected sites should 
be chosen to have the same narrow range of median 
particle size and depth. Where no choice is possible of 
the impacted areas to be studied, and the depth or 
particle size differs in a way that is likely to be impor- 
tant between them, then separate control sites may 
need to be  selected for each (matched as closely as 
possible in terms of physical variables). Obviously, 
careful pilot sampling is called for here. 

An alternative scenario is that sediment structure is 
not grossly different in mean value between sites but 
varies in an important way within the boundanes of 
each site. The variable cannot be controlled by selec- 
tion, so must be controlled by statistical means (Coch- 
ran 1983, Chapter l ) ,  i.e. by regressing out its effect 
with an  analysis of covariance or its multivanate equi- 
valent. This is discussed further under 'Testing for 
structure' but the implication for design is that values of 
all relevant variables need to be determined from each 
replicate sample, thus matching the biological, physi- 
cal and chemical data as closely as possible. 
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PRE-PROCESSING OF DATA SCOPE FOR GROWTH (Jlh) a 

Both nnivariate data or, sub-!etha! responses dnd 
multivariate species counts from benthic communities 
may require some 'pre-processing', I.e. transformation 
or selection/pooling of variables. However, there can 
be a number of different motives for employing trans- 
formations. 

Univariate responses 

For univariate measures, the aim is usually to allow 
interval estimation and tests (t-tests, ANOVA etc.) to 
take place under the standard assumptions of approxi- 
mate normality and of equality of variance between 
responses at  different sites. A common violation is for 
the variance to increase with the mean, often associated 
with a right-skewed distribution of replicates at  a single 
site. A simple power transform ($- l ) / A ,  0 5 )I. 5 1, might 
then be appropriate (Box & Cox 1964, 1982). h controls 
the seventy of the transform, from no transform at  all 
( A = l ) ,  through square root and 4th root (A=0.5 and 0.25) 
to logarithmic (A-+O). Optimal choice of is possible but 
this is usually unduly precise; for example, the 'best '  
transformation for a specific response variable would 
then vary slightly from one data set to another. Usually 
adequate is a simple plot of standard deviation against 
mean, a straight line suggesting (from 'Taylor's power 
law') that variances will be stabilised by the log(y) 
transform, whereas a straight line for variance against 
mean indicates the less severe , y. Equivalently, round- 
ing the slope of a plot of log(standard deviation) against 
log(mean) to the values (0,0.5, 0.75, 1) suggests transfor- 
mations (none, ,, , ,, log) respectively. 

Fig. 1 displays 2 examples from the workshop, 
involving scope for growth determinations in mussels 
(Widdows & Johnson 1988) and induction of the 
enzyme EROD in flounder (Addison & Edwards 1988). 
The crosses denote replicate readings (n = 16 ind. for 
the former and n = 11 or 12 for the latter) for Field sites 
1 to 4 along the Langesundfjord gradient, from refer- 
ence to contaminated sites. Note that for scope for 
growth the variance is stable over quite a wide range of 
mean response and no transformation is needed.  By 
contrast, EROD activities have standard deviation 
closely proportional to the mean, together with a right- 
skewed error distribution; a log transform succeeds 
well in inducing normality and stabilising the variance. 

Multivariate data 

For benthic species abundance arrays, hypothesis 
testing methods which are multivanate extensions of 

€ROD (nrnoles/m~n/rng protein) 

l 

1 2 3 4 

FIELD SITE 

Fig. 1. (a) 'Scope for growth' determinations in mussels 
Myl lus  edulis, Widdows & Johnson (1988), (b) EROD actnuty 
In flounder Platichthys flesus, Addison & Edwards (1988) 
Data from Field sites 1 to 4 in Langesundfjord; total concen- 
tration of selected PAHs In whole mussel tissue is 2 .2 ,  5.9, 11.4 
and 15.5 yg g- '  respectively. Crosses. replicate mussels; bars. 
95 *h confidence intervals for mean response based on pooled 

SD (back-transformed, for EROD only, from log scales) 

classical univariate methods (e.g. MANOVA) usually 
assume errors that are independent, normal and 
homogeneous. The models are usually linear and addi- 
tive. There is a consensus that univariate methods are 
fairly robust to violations of normality (though less so to 
gross differences in variability, especially where repli- 
cate numbers are not balanced across sites). Much less 
is known about robustness in the multivariate case, 
though what work there is (e.g. Mardia et  al. 1979) 
suggests a similar pattern: tests concerning differences 
in means are reasonably robust to non-normality, those 
concerning variances and covariances are not. Only 
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proper sampling design can ensure independent 
errors, whereas it may be possible to achieve normally 
distributed, homogeneous errors and linear additive 
relationships by applying a n  appropriate transforma- 
tion. Tests for detecting departures from multivariate 
normality exist (e.g.  Mardia et al. 1979); whilst it is 
theoretically not sufficient to demonstrate 'marginal 
normality' (the separate component variables are uni- 
variate normal), this is a good start in practice. A 
multivariate extension of the Box & Cox (1964) proce- 
dure for choosing suitable power (or logarithmic) trans- 
formations is given by Andrews et  al. (1971). 

Logarithmic transformations are widely used and 
there are good reasons for this: all variables are put 
onto a common scale of variation (percentage variation) 
regardless of the original units of measurement, and it 
is true that population density does tend to vary spa- 
tially and  temporally on a percentage rate of change 
basis. Variance in log(y) corresponds to coefficient of 
variation in y so that significant heterogeneity of 
covariance matrices, for example in a MANOVA, can 
be simply interpreted as differing percentage vanation. 
These appealing properties theoretically disappear 
when using the transformation log(1 + y) rather than 
log(y), a s  one is often forced to do for species abun- 
dance data, in which zeros are almost always present. 
Further, l og ( l+  y) can be slightly unsatisfactory when y 
is not species abundance but, say, species biomass. The 
modified transformation is affected by a change of 
scale (biomass cm-' of surface rather than biomass 
m-*). Of course, one would normally change the loca- 
tion shift parameter (using log [0.001 + y ]  say) but there 
is a degree of arbitrariness in its choice. For this sort of 
reason a comparable power transformation, like ,,, is 
sometimes advocated (Field et al. 1982), though in 
practice the two transformations are rarely distinguish- 
able. 

A further important consideration is that, if all 
species are included, species abundances or biomass 
arrays are usually very sparse, the predominant entry 
being zero. Thus, approximate multivariate normality 
can only be attained by a transformation coupled with a 
substantial reduction in species considered, to the most 
abundant ones. This is also usually required in order 
that there is some chance of validity of the 'asymptotic' 
distributions of the relevant multivariate test statistics; 
the total number of observations (n samples X p 
species) should be 'large' in relation to the number of 
mean, variance and covariance parameters that need to 
be estimated ( 2 p  + p [p- 11/21. Alternatively, one might 
achieve reduction by pooling species into higher tax- 
onomic categories. The GEEP Workshop results con- 
tain examples where counting at  higher taxonomic 
levels does not significantly degrade the ability to dis- 
criminate field sites (Warwick 1988). There may there- 

fore be advantages in a pooling strategy both from a 
statistical and practical viewpoint, bearing in mind the 
lower levels of taxonomic expertise required. 

Analyses employing 'classical' hypotheses tests, 
under assumptions of multivariate normality, are by no 
means commonly used. Much more widespread are a 
variety of descriptive clustering and ordmation techni- 
ques whlch are not based on underlying distributional 
assumptions (and largely lack a framework for 
hypothesis testing, in consequence). Field et al. (1982) 
describe a strategy of this sort for species abundance 
data, based on hierarchical, agglomerative, group- 
average clustering and non-metric multi-dimensional 
scaling (MDS). In spite of the lack of model-based 
assumptions, transformations still play an important 
role, that of determining the relative weight given to 
rare and common species in assessing differences 
between samples. Either explicitly or implicitly many of 
these 'ad-hoc' multivariate methods take as their start- 
ing point a triangular matrix of similarities (or dis- 
similarities) in species abundances between every pair 
of samples. These can be correlation-based measures, 
but often other measures are appropriate. In sparse 
matrices, where many of the p species are jointly 
absent from any 2 samples whose similarity is being 
calculated, correlation can be unsatisfactory; it is argu- 
ably counter-intuitive for similarity between 2 samples 
to be increased by addition to the species list of a 
species not present in either sample. One coefficient 
which avoids this problem is the 'Bray-Curtis' dissimi- 
larity (Bray & Curtis 1957), defined as the absolute 
differences between the (possibly transformed) species 
count for two samples, summed over all species, and 
then divided by the total count over both samples and 
all species. 

The effects of the power transformations discussed 
earlier are particularly clear for this coefficient (though 
broadly similar conclusions will hold for a wide range 
of measures). No transformation (A = 1) will generally 
mean that only the few most numerically dominant 
species will contribute anything at all. Whilst this is 
likely to make it easy for an ordination to reflect faith- 
fully in a 2-dimensional plot all the information in the 
dissimilarity m a t e ,  it is certain to be very susceptible 
to the typically large absolute fluctuations in counts of 
the numerical dominants, and will have no chance of 
eliciting a structure where differences are in the 
medium-abundance or rare species. A mild transform 
such as the square root (i, = 0.5) will place most 
emphasis on the numerical dominants whilst not ignor- 
ing the medium-abun.dance species, whereas the 4th 
root ( h  = 0.25) and log (L-0) will further reduce the 
differential effects of dominant in relation to less 
dominant species and begin to differentiate between 
sites with many and few rare species. The logical 
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endpoint of this process is to consider for each species 
only whether it is present or absent in a sample (this is 
simply s transformation like any other). 111 fact, the 
need to use the log( l+y)  transform rather than log(y) 
slightly distorts this transformation sequence, the gen- 
eral effect of log(1 +y) being intermediate between , , 
and presence/absence for moderate or large counts but 
less severe than ,, in accentuating the difference 
between counts of 0 and 1. 

So, as the seventy of transformation increases, more 
species come into play in determining dissimilarity, 
thereby tending to increase the dimensionality of the 
ordination space in which the samples can be placed in 
'true' relation to each other. It should therefore be 
expected that the difficulty of ordinating the samples in 
a reduced space (usually 2-dimensions) will increase 
through a transformation sequence. This is borne out 
by meiofaunal analyses from the workshop mesocosm 
experiments (e.g.  Fig. 1 of Warwick et al. 1988), where 
such a sequence gave rise to steadily increasing 'stress 
values' for the MDS ordinations. 

TESTING FOR STRUCTURE 

The objective of a biological effects study of this type 
is to describe response differences observed between 
sites and then attempt to relate these to some measured 
or inferred contaminant gradient. However, there is an 
obligatory first stage, that of demonstrating that differ- 
ences of some sort genuinely exist before setting out to 
describe them. Descriptive multivariate methods in 
particular can easily fall into the trap of ignoring this 
stage; a hierarchical cluster analysis will always find 
clusters at some level of similarity, even from a set of 
random numbers! Significance testing thus plays an 
important role in this preliminary stage. 

Univariate responses 

For a sublethal response measured on a number of 
replicate animals at each of a number of sites, a global 
significance test for site differences is just the standard 
l-way analysis of variance (ANOVA), provided a trans- 
formation has succeeded in (roughly) stabilising the 
variance across sites and (very roughly) inducing nor- 
mality in the response. Where this is not possible, there 
is an equivalent non-parametric test - the Kruskal- 
Wallis test for a l-way layout (e.g.  Siege1 1956). Notice 
the implication that if these global tests fail to reject the 
hypothesis of no significant difference between sites (at 
the p < 0.05 level say) then no further analyses should 
be done. Such a policy diminishes the risk of the spuri- 
ous conclusions which can occur when pairs of sites are 

selected a posteriori, for comparison by a standard t- 
test, the Type I error not being controlled at 0.05 
because of the large number of pairwise comparisons 
that have been performed, either explicitly or im- 
plicitly. 

There are a number of 'multiple comparison' tests 
which attempt to control the Type I error rate to 0.05 
over all such a posteriori comparisons, e.g. the Tukey T 
and Scheffe S tests (ScheffC 1959). The latter, which 
can be  used when there are unequal numbers of 
replicates at each site, also has the attractive property 
that it will detect at least one significant difference 
between the site means (in some combination) if and 
only if the overall ANOVA F-test rejects the hypothesis 
of equality of site responses. The Tukey T-test (in its 
simple form) is restricted only to pairwise comparison 
of sites and to balanced numbers of replicates. How- 
ever, it does generally have greater power than the 
Scheffe S test so that a situation can occasionally arise 
in w h c h  the global F-test fails to find differences but 
the follow-up T-test would. This is only paradoxical if 
one (mistakenly) regards significance testing as an 
exact science, instead of a general guide to the approx- 
imate truth of hypotheses. Perhaps the most consistent 
approach to take in this case is that suggested above: 
regard a non-significant ANOVA F-test as a 'red light', 
stopping progress to further tests. 

For the data of Fig. 1, follow-up tests verify the clear 
picture of no differences in scope for growth between 
Field sites 1 and 2,  or between Sites 3 and 4, but a large 
difference between the 2 sets. For EROD data, Sites 2 
and 3 are the only two not to differ significantly in 
pairwise comparisons. 

Multivariate data 

The multivariate case, arising from specles abun- 
dance matrices (or from simultaneous examination of 
multiple sub-lethal responses), must again be  divided 
into whether or not the data can be  transformed to 
approximate multivariate normality, with sufficiently 
many samples by comparison with the number of 
species to validate classical theory. If so, there exists a 
l-way MANOVA analysis (e.g. Mardia et  al. 1979) for 
testing differences between sites, by comparison with 
variation and covariation observed between replicates 
within a site, exactly analogous to the univanate l-way 
ANOVA. The test corresponding to the ANOVA F-test 
is known as Wilk's lambda; an alternative statistic 
likely to have greater power for detecting a gradation 
of sites is 'Roy's greatest root' (Seber 1984). Pairwise 
differences between sites can be tested by 
Mahalanobis' distances (Seber 1984). (Note that the 
latter are not 'multiple comparison' tests and do not 



220 GEEP WORKSHOP: STATISTICS 

control the overall Type I error rate.) If the null 
hypothesis that sites have the same species composi- 
tion is rejected, then canonical discriminant analysis 
(CDA) can provide a reduced-space description of 
species' contributions to site differences. Examples of 
the use of these test statistics at  the workshop can be 
found in Gray e t  al. (1988) and Warwick et  al. (1988). 

An alternative parametric approach sometimes sug- 
gested for matrices of species counts is the log-linear 
model (Fienberg 1970). The assumptions are that 
counts of the number of individuals of any particular 
species found in replicate cores (or grabs) at  one site 
will have a Poisson distribution, and that the variation 
of these counts from core to core within a site will be 
independent of the variation for any other species (i.e. 
the data is not genuinely multivariate, only multi- 
category). Provided that rarer species are again 
deleted, so that 'large sample' likelihood theory can be 
invoked, the log-linear model provides a test of 
whether the species composition changes across sites, 
by testing for a significant interaction in the 2-way 
layout. If no change is detected in composition, a test of 
the site main effects will examine whether there are 
changes in absolute numbers. However, there is con- 
siderable empirical evidence that the Poisson model is 
often inadequate. This can be  examined by calculating 
the among-core variances for any particular species at  
each site; for a Poisson distribution these should equal 
the respective among-core means. In fact, this will only 
happen if the individuals of a species are distributed 
randomly and independently throughout the area rep- 
resented by that site (technically, if they form a spatial 
Poisson Process, e.g. Diggle 1983). It is much more 
common for species to be spatially clustered or for their 
mean density to be locally variable because of small- 
scale environmental variation. Replicate field mac- 
rofauna data from the workshop bear this out. The 
variance-to-mean ratio of the four replicate grab counts 
at  each site/species combination was almost always in 
excess of 1, its median value being 4.1  (quartiles 2 .6  
and 8.9) over the 50 sitehpecies combinations display- 
ing greatest total abundance. Log-linear models were 
therefore not used a t  the workshop. 

Most descriptive multivariate analyses, for example 
hierarchical clustering, principal co-ordinate analysis, 
multi-dimensional scaling (MDS) etc., make no para- 
metric assu.mptions at all. What are required here are 
tests for the presence of structure which make similarly 
few model assumptions. This is a neglected area, 
though one of us (KRC) has advocated such a test based 
on the principles of permutation and randomisation 
tests (Hope 1968). It operates on the triangular matrix 
(described in the last section) whose entries are the 
similarities or dissimilarities in species abundance or 
biomass calculated between every pair of benthic 

samples. Such matrices are the starting point for many 
descriptive analyses, both in clustering and ordination. 
Even the 'classical' technique of correlation-based 
principal components involves an implicit dssimilarity 
matrix of simple Euclidean distances between 
replicates (after normalisation), thus allowing a n  alter- 
native non-parametric test for site differences to the 
normality-based MANOVA tests discussed above (see 
Gray et  al. 1988, for a comparison). 

The test is very simple, in concept. Assume that the n 
samples consist of r replicate cores at each of k sites. 
Under the null hypothesis of no between-site differ- 
ences, one could allocate the r 'labels' for Site 1 at  
random to any of the k X r cores, Site 2 labels to a 
further r cores at  random (without replacement) and so 
on. The similarity matrix then constructed between the 
newly labelled cores will clearly be some permutation 
of the entries in the original matrix. One can then 
construct a test statistic likely to reflect the joint similar- 
ity of replicates within a site, contrasted with the 
similarities between sites, and calculate this statistic for 
the original data and each of a large number of random 
relabellings. If it is more extreme for the original data 
than for (say) 95 % of the random relabellings then the 
null hypothesis is rejected by a p < 0.05 randomisation 
test. (Alternatively, if the number of sites and replicates 
is small, one might be able to enumerate all possible 
relabellings and so construct an equivalent permuta- 
tion test). 

In order to make the test as non-parametric as poss- 
ible, and bearing in mind that non-metric MDS, one of 
the most powerful ordination methods (Kruskal & Wish 
1978), relies only on the rank order of similarities in the 
original matrix, it is desirable that the test statistic 
should be a function only of these ranks. A natural 
choice is the difference between the average rank 
similarity 'between replicates within a treatment' and 
'between replicates in different treatments'. It can be 
standardised so that a value of 0 reflects the null 
hypothesis of no site differences, and + 1 corresponds to 
an  alternative in which all replicate cores within a site 
are more similar to each other than any replicates 
across sites. The test (termed ' l -way ANOSIM', by 
analogy with l-way ANOVA) is straightforwardly 
generalised to the case where there are unequal num- 
bers of replicates at each site. If global differences are 
found, it can be followed by pairwise comparisons of 
sites, using precisely the same randomisation/permuta- 
tion principles, provided there are sufficient replicates 
at  each site (4,  in the balanced case) to generate a large 
enough set of possible permutations. (Note that these 
are the analogue of pairwise t-tests in the univariate 
case and suffer from the same dangers of repeated 
comparisons.) 

Benthic data from the workshop can be used to 
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Fig. 2 .  Non-metric multi-dimensional scaling (MDS) plot in 2 
dimensions for benthlc macrofaunal data (Gray et al. 1988) 
from 4 replicate grabs at Sites A to E, G in Langesundfjordl 
Frierfjord. Species abundances were ,,-transformed and 
between-sample similarities calculated with the Bray-Curtis 

coefficient. 'Stress' for the MDS is low, at 0.10 

illustrate the test. Fig. 2 displays an MDS ordination for 
nlacrofaunal abundances from the Frierfjord Sites A to 
E, G (Gray et al. 1988) with 4 replicate grabs per site. 
The data was 4th root transformed and Bray-Curtis 
similarities calculated. An ANOSIM test on the whole 
data is unnecessary - 3 groups of sites stand out as 
clearly different. However, the similarities for Sites B to 
D can be tested on their own; the statistic takes the 
value 0.45 and the hypothesis of 'no site differences' is 
rejected by a p < 0.01 randomisation test. Pairwise 
tests show that Site D differs from the other 2 sites, B 
and C being indistinguishable. (The pairwise compari- 
sons are permutation tests, with minimum attainable 
significance level 0.03, there being only 35 distinct 
possible relabelllngs). 

exhibits a different, and narrow, range of animal 
weights; between-site differences are then totally con- 
founded with weight differences. The confounding can 
only be removed by inputting strong prior ~nformation, 
e.g. a known value for the comnlon slope in the 
response-versus-weight regressions. This simple illus- 
tration carries over to the multivariate case. If classical 
multivariate normal assumptions are permissible for 
species abundance data (appropriately reduced and 
transformed) then it may be possible to exploit the 
analogous multivariate analysis of covariance (MAN- 
COVA) to remove any between-site differences caused 
by uncontrolled differences in, for example, sediment 
grain size. However, the univariate analogy demon- 
strates that this will only be possible if (a) physical data 
is available for each replicate core (or grab), and (b) 
variation in the physical data is large enough for there 
to be overlapping values between sites. 

When multivariate normal assumptions are not valid, 
and description is to be via clustering or ordination 
techniques, no equivalent structure exists for neutralis- 
ing an uncontrolled nuisance variable, though its effect 
may be seen as an axis in an ordination plot, and 
informally distinguished from contaminant-induced 
effects along other axes. There is therefore strong moti- 
vation for controlling important nuisance variables. Of 
course, in some environments, a major physical deter- 
minant of community type (e.g. sediment structure or 
water depth) will change systematically in line with an 
anticipated contaminant gradient, with little variation 
between replicates at a site. The confoundng is then total 
and convincing statistical analysis impossible under any 
assumptions; such designs should be avoided. 

DESCRIPTION OF STRUCTURE 
Effects of 'nuisance' variables 

Univariate responses 
So far, discussion has concerned testing for any struc- 

ture in the biological responses for different sites, how- 
ever induced. In order to relate effects more closely to 
contaminant levels, it may first be desirable to remove 
effects of physical or biological 'nuisance' variables not 
controlled in the design phase. For example, in collect- 
ing certain species it may not be possible to select 
individuals from a narrow weight range. However, 
weight-induced differences in the biological response 
can be corrected for by a standard analysis of 
covariance (ANCOVA). This consists of linear regres- 
sions (possibly after transformation) of the response on 
the weight, usually fitting common slope but different 
intercepts across the sites. A test of equality of inter- 
cepts is then the global test of any between-site biolog- 
ical differences. 

This univariate ANCOVA approach fails if each site 

When a univariate sub-lethal response is demon- 
stated (by ANOVA) to vary significantly between sites, 
the standard procedure is to compute 95 % confidence 
intervals (CIs) for the mean response at each site, based 
on a pooled estimate of standard deviation across all 
sites; these means and CIs could usefully b e  plotted (as 
y) against an X axis representing the contaminant gra- 
dient in some form. If a transformation has been per- 
formed prior to the calculation of means and the 
ANOVA, it is often desirable to back-transform to the 
original y scales for this plot. For a transform 
y ' = log(y), the reverse transform for the mean y ' will 
be exp(ym) ,  and similarly back-transforming the 
endpoints of the 95 % C1 on the log scale will give a 
95 % C1 on the original scale. This interval will not be 
symmetric about the back-transformed mean but this is 
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to be  expected - a transform would have been 
required, in part, because of the lack of symmetry of the 
variation on the original scales. Fig. 1 illustrates this in 
its display of 95 % CIs for mean 'scope for growth' and 
EROD responses, in the latter case back-transforming 
from a log scale. The reason for emphasising back- 
transformation is that, in this descriptive phase, the 
statistical significance of a between-site difference is 
less important than its biological significance. It may 
often be  easier to think in terms of original scales when 
assessing the practical s~gnificance of changes. 

Linking to the contaminant gradient. In relating 
observed biological responses to chemical causes, it 
must be accepted that field studies of a contaminant 
gradient down a n  estuary (for example), will always 
involve a large number of chemical compounds; most of 
these will covary very precisely, as point contaminant 
inputs are steadily diluted. There will be little prospect 
of discriminating the effects of particuiar contaminanls 
by purely statistical means (such as a multiple regres- 
sion of biological response on a suite of chemical data). 
This is compounded by the fact that, typically, the 
biological responses are generalised sub-lethal stress 
measures, responsive to a wlde variety of pollutants. 
Which variable(s) to display as the x-axis contaminant 
gradient in the above plots of response means (and CIs) 
is therefore a decision for the biologist, but the choice 
would usually reflect the closest possible coupling of 
contaminant availability to the organism with observed 
biological effect. Thus, scope for growth in mussels 
might be related to tissue concentrations of some total of 
polyaromatic hydrocarbons (= 2.2, 5.9, 11.4, 15.5 pg g-' 
for the 4 sites in Fig. l a ,  see Appendix 1, Table 4). If there 
are a minimum of 4 or 5 sites along a well-spaced 
contaminant gradient x-axis, then it may be possible to 
fit a dose-response curve. This could be approximately 
linear or, perhaps over a wider range of doses, a sig- 
moidal curve such as the 4-parameter logistic: 

(or its converse), where x is  often taken as  log(dose). This 
model is non-linear in the 4 parameters, so fitting would 
be by some iterative non-linear least squares technique, 
such as the modified Marquadt aiogorithm (Nash 1979). 
Here, 6 and E represent the maximum and minimum 
responses, with the other 2 parameters controlling the 
dose at which 50 O/O of maxlmal response is achieved (the 
equivalent of the LC50 in lethal toxicity studies) and the 
dose range over which the response effectively changes. 

Multivariate data 

Many ways have been proposed of visualising the 
structure in a species abundance/biomass matrix. 

Three areas are distinguished here: ordination, cluster- 
ing and a set of important special techniques. Broadly 
speaking, an  ordination is an attempt to present a 
picture of the relationship between the samples, in 
terms of their similarity of species abundance or biomass 
(in either absolute or compositional form). In this pic- 
ture, preferably 2-dimensional, the relative distance 
apart of any pair of samples is intended to reflect their 
relative dissimilarity. By contrast, cluster analysis 
attempts to form discrete groupings of samples, where 
samples within a group have a more similar species 
composition than those in separate groups. Ordination 
and clustering are not methods in competition with each 
other, though this has been a common assumption in the 
past. It is often a good strategy to do both and then plot 
the samples in the ordination space, with cluster mem- 
bership indicated appropriately - see for example Fig. 8 
of Warwick et  al. (1988). In general, neither ordination 
nor clustering techniques use knowledge about the 
source of each sample. Thus, one can examine the 
outcome for evidence that samples within a site are 
placed nearer to each other in the ordination, or cluster 
more often in the same groups, than would be expected 
by chance; of course, this is what the ANOSIM test of the 
previous section does, more formally. 

No attempt will be made here even to list, much less 
discuss, all the possible ordination and clustering 
methods, though some of the more useful techniques 
will be  outlined. 

Ordination. This can be  defined as an  analysis of an  
n samples by p species matrix whereby a new set of 
variables is found, numbering less (usually much less) 
than p, which optimally predicts the structure in the 
relationships among the original p variables. Ordina- 
tion methods differ from each other in (a)  the optimality 
criterion and (b)  how the ordination algorithm 'finds' 
the new axes which represent the new variables. Prin- 
cipal components analysis (PCA, Seber 1984) max- 
imizes the amount of variation accounted for by the 
new axes, and proceeds by way of an eigenanalysis on 
the p-by-p correlation (or covanance) matrix. The new 
axes are uncorrelated. PCA is simple to perform and 
does a good job within its limitations, though the new 
axes are rarely interpretable as simple environmental 
factors 'causing' the structure in the species-abun- 
dance data. Principal coordinates analysis (PCoA, 
Gower 1966) starts with an  n-by-n matrix of 'distances' 
(dissimilarities) among the samples, and then proceeds 
as in the PCA. The same result as for the PCA can be 
obtained if the distance is defined appropriately There 
are 2 potential advantages of PCoA over PCA, that the 
eigenanalysis is easier to do if n < p ,  and that one is 
free to choose any of a large number of possible dis- 
tance measures, using one appropriate to the data and 
the objectives. 
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Multi-dimensional scaling (MDS) f ~ n d s  a specified 
number of new axes which attempt to preserve some 
relationship among the between-sample distances, in 
the case of non-metric MDS their rank order (Kruskal & 

Wish 1978). The latter was mentioned in the previous 
section, and its application to the macrofaunal samples 
from Fnerfjord/Langesundfjord is illustrated in Fig. 2. 
The attraction of non-metric MDS lies in its depend- 
ence on rank rather than quantitative values in the 
between-samples dissimilarity matrix; it uses only 
statements of the form 'Sample A is more simllar to 
Sample B than it is to Sample C' and constructs a 'map' 
of the samples, in 2 dimensions say, which attempts to 
satisfy all such conditions. The extent to which this has 
been achieved is given by a 'stress' statistic, low values 
(< 0.1, say) indicating success. It is clear from the type 
of input that the final plot will have arbitrary onenta- 
tion and scale. Non-metric MDS is an iterative proce- 
dure and more computationally demanding than PCA 
or PCoA (much more than 100 samples is prohibitive). 

Finally, reciprocal averaging (RA, Hill 1973) and 
correspondence analysis (CA) are ordinations of count 
data, proposed initially for 'contingency tables' obey- 
ing the assumptions of a Poisson error distribution (see 
the discussion on log-linear models in the previous 
section). Various algorithms exist, including one for 
'detrended correspondence analysis' (DECORANA, 
Hill & Gauch 1980), but a simple RA-CA type solution 
can be  obtained by doubly-standardizing (both rows 
and colun~ns) an  n-by-p matrix of counts, and then 
subjecting it to a PCA. The endpoint of a correspond- 
ence analysis is a simultaneous display of both the 
relation of the samples to each other (in terms of their 
species composition) and the relation of the species to 
each other (in terms of their degree of CO-occurrence in 
these samples). Most of the other ordination (and clus- 
tering) methods have some associated way of identify- 
ing which species have the major responsibility for the 
observed pattern of the samples. 

A related technique is that of 'best variable subset' 
selection (Orloci 1978). This attempts to select the sub- 
set of species having the maximum predictive informa- 
tion about the full species set (for any subset of that 
size). The subset will tend to have low redundancy, i.e. 
to contain species which have low correlations with 
each other. The result is often similar to that of a PCA, 
except that each component will be represented by a 
single species, which aids interpretation. The disad- 
vantages are that the components will not be  com- 
pletely independent, and the amount of structure 
accounted for by a given number of components will 
not be  as high a s  in PCA. 

Though the above discussion concentrates on the use 
of multivariate techniques on species abundancehio- 
mass arrays, the methods are obviously more widely 

applicable. For workshop data, they were used to 
describe the field and mesocosm contaminant gra- 
dients, vid a site PCA in which species counts were 
replaced by values of chemical variables (metals, 
PAHs); see Figs. 14 and 18 of Gray et al. (1988). 
ANOSIM (or MANOVA) tests can then determine 
objectively whether a contaminant gradient is present 
(which proved not to be the case for the mesocosm 
sediments, in spite of the dosing). Gray et  al. (1988) also 
employ PCA to summarise the information in the differ- 
ent  diversity indices that can be computed from the 
site/species arrays. Here again a site ordination is per- 
formed but with the different diversity values replacing 
species counts (Fig. 9 of Gray et al. 1988). This can be a 
useful counterweight to the dubious practice of cal- 
culating a large number of different diversity indices; 
here a few simple indices define the diversity relation- 
ship between the sites, and this can be adequately 
displayed in 2 dimensions. (It is less clear cut than the 
relationship defined by species counts, Fig. 2 of this 
paper). Adding additional diversity measures to the 
PCA did not force a higher dimensional solution nor 
alter the 2-dimensional picture in any way. 

Clustering. This can be defined as an  analysis on an 
n-by-p data matrix whereby a partitioning of the n 
samples into subsets is found, numbering less (usually 
much less) than n,  such that the relationships among 
the subsets optimally predict the relationships among 
the original samples. Clustering methods differ from 
each other in (a) the optimality criterion and (b) how 
the clustering algorithm 'finds' the sample subsets, but 
clustering strategies are more diffuse than for ordina- 
tion and less easily summarized. They are best defined 
by a number of dichotomous choices regarding 
strategy. A method may be hierarchical or non-hierar- 
chical. If the fonner, then the algorithm may be  
agglomerative (repeatedly fuses samples or groups 
until all samples are in one group) or divisive 
(repeatedly divides what is initially one group contain- 
ing all the samples). The fusions or divisions are based, 
respectively, on some n-by-n distance matrix or some 
p-by-p similarity (e.g. correlation) matrix. Divisive 
methods are usually monothetic (the next division is 
based on a statistic related to one variable), whereas 
agglomerative methods are usually polythetic (the next 
fusion is based on a statistic calculated from all varia- 
bles). In hierarchical methods, samples or clusters of 
samples are compared via a particular Linkage strategy: 
nearest neighbour, furthest neighbour, group average 
of cluster members, etc. The clusters produced can be 
overlapping or discrete; usually hierarchical methods 
produce discrete clusters and non-hierarchical 
methods overlapping clusters. Finally, clustering can 
be constrained by external criteria (e.g.  that any cluster 
must contain samples contiguous in space), or it can be  
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unconstrained and then evaluated by mapping the 
clusters (and seeing whether samples are contiguous). 
More recent developments in clustenng methods com- 
bine strategy choices that do not usually go together, 
for example polythetic divisive clustering (Lefkovitch 
1979). For an  introductory text on clustering see Everltt 
(1974). 

Other methods. There are a large number of other 
techniques for comparing and summarising the infor- 
mation in benthic faunal samples, chiefly characterised 
by their exploitation of some aspect of community 
structure which is independent of the particular species 
involved. The summaries are either univanate statis- 
tics, such as the diversity indices mentioned earlier 
(e.g. Pielou 1975), or some estimated probability 
density (or distribution) function such as the sample 
'species abundance distribution' (e.g. Engen 1978). 
This latter is usually presented as a histogram of the 
numbers of different species represented by xindividu- 
als in the sample, the X scale being conventionally 
grouped into log2 classes (see Fig. 5 of Gray et al. 1988). 
Other structural aspects of communities studied 
include the 'species biomass distribution' (a similar 
construct but with the X axis being log weight or size 
classes) and 'biomass-size spectra' (the X axis again 
consists of increasing size classes but the y axis is total 
biomass of all organisms in each size class, of whatever 
species), see Figs. 1 to 3 of Schwlnghamer (1988). 
Another graphical indicator of community change, the 
'ABC method' (Warwick 1986), contrasts the pattern of 
biomass-dominants and numerical-dominants in a 
sample (see Fig. 13 of Gray et al. 1988). 

There is a large literature on the mathematics of this 
subject, particularly on diversity indices and 'species 
abundance distributions'. Nonetheless, the derivation 
of sampling properties of some of the graphically-based 
community measures - a necessary prerequisite for 
their use in categorising pollution-induced change - is 
still very much an area of current statistical research 
and will not be considered further in this paper. 

Linking to the contaminant gradient. Much of the 
previous discussion on relating sub-lethal responses to 
specific chemical causes applies equally to benthic 
community data. (Of course, when the community 
structure 1s summansed in a univariate measure, such 
as a single diversity index, precisely the same argu- 
ments apply). Typically there will be a large number of 
closely correlated chemical compounds involved in any 
sediment contaminant gradient and little discriminat- 
ing power is to be expected in distinguishing speclfic 
chemical causes from biological effects; rather, one 
would select 2 or 3 classes of contaminants to represent 
the gradient: perhaps total PAH, total PCB and 1 heavy 
metal (or, as in Fig. 15 of Gray et al. 1988, the combina- 
tion of metal levels given by the first principal compo- 

nent from a PCA on the site/metals array). Even this 
would be over-ambitious if these 2 or 3 representatives 
were highly correlated along the gradient. 

An ordination then provldes a good means for dis- 
playing the relations between the biological pattern 
and the chemistry, by superimposing symbols of differ- 
ent sizes, representing chemical values, at the sample 
positions on the faunal ordination plot, e .g.  Field et al. 
(1982). (This technique was used for workshop data, 
Fig. 15 of Gray et al. 1988, though its usefulness was 
limited by the lack of replicate chemical values 
matched to the replicate faunal samples.) At best, one 
may be able to distinguish a clear axis of an  increasing 
chemical gradient, possibly 2 axes if 2 types of conta- 
minant change in different ways along the gradient 
and induce different community changes. (More likely 
a second axis could reflect an  important but uncontrol- 
led physical variable, not confounded with the chemi- 
cal gradient). This visual approach could be formalised 
by multiple regression of the chemical variable on the 
ordination axes (or bivariate multiple regression for 2 
chemical/physical variables). When multivariate nor- 
mal assumptions are justifiable for the species abun- 
dance matrix, a wider range of inference is available, in 
terms of multivariate ANCOVA and multivariate corre- 
lation analysis (Canonical Correlation). The discussion 
on confounding effects of physical variables, in the 
section on testing structure, is equally relevant here. 

COMPARISON OF METHODS 

Whilst it is important to examine differing biological 
effects measures in combination (particularly across 
differing levels of biological organlsabon) it can be 
important in some cases to establish the relative effec- 
tiveness of each of a set of measures, in detecting the 
type and degree of pollution impact present in a par- 
ticular field study. Questions of comparative sensitivity 
can be addressed at varylng levels of statistical sophis- 
tication. For illustration, assume that the problem is to 
discriminate 2 sites, an impacted area and a reference 
site, at each of which n replicates of a particular biolog- 
ical response are available. The 2-sample t-test of 'no 
between-site differences' gives (possibly after transfor- 
matlon) the usual Student statistic t,  a standardised 
difference of the mean response at the 2 sites (this is 
just the ANOVA F statistic in a different guise). At the 
simplest level, if this is non-significant then the biologi- 
cal variable has no demonstrated sens~tlvlty to that 
impact (it may have had some sensitivity if more 
replicates had been taken, but this suggestion cannot 
be examined without more data). At the next level, 
significant responscJs could be ordered - as a measure 
of relative performance - by their t (or p) values. How- 
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ever, this could be misleading, since no account is 
taken of how the discriminating ability of a test fluc- 
tuates with changes ir? the sample size n (i.e. cha~iyes  
in experimental effort). By doubling its sample size an 
'inferior' test could become 'superior', perhaps still with 
less experimental effort than for the initially 'superior' 
test. 

A better basis for a comparative study is to define 
sensitivity to a specific impact as the power to detect 
that impact (in a standard, 2-tailed, 0.05 significance 
level test), expressed as a function of sample size. More 
conveniently, one can then ascertain the critical sample 
size, N., necessary to ensure that the power P (the 
probability of detecting the impact) is at  least 0.95 
(say). N o  can then be  converted to more readily com- 
parable units of 'cost'; this might initially be man- 
hours, though some consideration of technical sophisti- 
cation costs may also be  involved. Where there is diffi- 
culty in constructing 'costs', at least the suggested 
power functions will allow comparisons of the form 
'measure A needs to treble its replicate numbers to 
match the sensitivity of B, for this impact', and a qual- 
itative knowledge of the operating requirements for the 
2 techniques might then suffice. 

Assuming that the observed difference between the 
response means at  the reference and polluted sites 
represents the true impact level, then N o  can be com- 
puted exactly using the non-central t distribution (e.g. 
Scheffe 1959) or, as suggested in the design section of 
this paper, by the approximation: 

For example, when power P = 0.95, k = 6.6nlP. The 
approximation will be adequate for N '  2 4 and 
P > 0.5. Of course, the true difference in mean 
response between reference and impacted areas is only 
known to within certain limits, and these can be  trans- 
formed into a 95 % confidence interval for the critical 
sample size, given by the above equation for N' but 
with 

k = (0.5n)(2 + Q - ' ( ~ ) ] ~ / ( t + 2 ) ~  (lower limit), (10) 
k = (0.5n)(2 + @ - ' ( ~ ) l ~ / ( t - 2 ) ~  (upper Limit). 

The procedure is illustrated on the Fig. 1 data and a 
further set from the workshop (Addison & Edwards 
1988, Widdows & Johnson 1988). Comparing the 
endpoint sites of the field gradient, t = 5.0 (n = 16) for 
mussel 'scope for growth', and t = 13.2 (n  = 11) for 
log(ER0D) in flounder, whereas a n  activity measure of 
a further enzyme, log (BPH), from the flounder MFO 
system gave t = 2.2 (n = 11). Clearly, the impact is 
sufficiently large on the first 2 measures for it to be  
detected (with 95 % certainty) from modest numbers of 
replicates, the estimates of critical sample size N' 

being 10 and 4 respectively; by contrast N' = 31 for 
the third measure. The 95 % confidence intervals for 
N' are (6.24), (4,4) and (10,2500) respectively. The 
exercise can be repeated for intermediate sites on the 
gradient, comparing against both reference and other 
impacted sites, so that sensitivity can be  assessed over 
different ranges of the 'dose' scale. (The idea extends 
straightforwardly to the situation where a dose- 
response curve has been fitted to the data.) 

Benthic community responses are harder to fit into a 
framework of this sort, unless they lead to univariate 
measures of community change (e .g ,  diversity indices) 
calculated on a number of replicate samples from each 
site. If they do, there is no theoretical difficulty in 
comparing their 'sensitivity' directly with that of sub- 
lethal stress responses for the same sites, using exactly 
the above procedures. However, as the GEEP Work- 
shop demonstrated, multivariate and graphical 
methods of description and testing are more sensitive 
than diversity indices, and usually to be  preferred. 
Although, for example, the ANOSIrYl test will improve 
its ability to discriminate between sites as the number 
of replicate cores increases, nothing at all is known 
about the formal relation between power and sample 
size in this case. Some progress might be possible with 
l-dimensional ordination solutions by, for example, 
examining the positions of replicates from each site on 
the first PC axis or the first Canonical Discriminant axis. 
However, there will be  selection biases here which 
cannot easily be compensated for (such axes are auto- 
matically chosen to reflect the direction of greatest 
observed change). 

Returning to the sub-lethal response examples 
above, the exercise was carried to the point of deter- 
mining man-hours per replicate and converting N o  to 
an equivalent man-hour total. (The relationships 
between total effort and numbers of replicates were 
approximately linear). In fact, the con~parison between 
scope for growth, EROD and BPH is not changed by 
this additional information, the relative 'critical man- 
hours' of laboratory time necessary to demonstrate 
(with 95 % certainty) a difference between the 2 
endpoint sites being approximately 15, 6 and 50 h 
respectively (with a very wide confidence interval for 
the latter of course). Other relevant 'costs' include 
those for consumables (e.g. < $ 1 per replicate for the 
physiology but $ 5  to 10 per replicate for the biochemis- 
try) and,  of course, more major issues of capital equip- 
ment requirements and other 'level of sophistication' 
costs. However, it is unrealistic to expect to produce a 
univariate measure which places these 'costs' on a 
common footing for a full cost-benefit analysis; the 
objectives and background conditions for any future 
study will always dictate a different weighting of the 
factors involved. 
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