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ABSTRACT: Photomicrographs of 5 species of Cymatocyl~s were digitised, binarised and edited by 
hand to remove large debris contaminating the images. An artificial neural network (back-propagation 
of error) was trained to categorise 201 of these specimens after pre-processing the data by Fourier 
transformation. Of the 299 trials which were carried out, 28% demonstrated better than 70% correct 
categorisation of the data used in the training sets. The best performing network learned to differenti- 
ate the training data set with an error rate of 11 U/;,. The same network gave an error rate of 18% when 
presented with previously unseen data. The results of training back-propagation of error networks are 
presented and the performance and limitations are discussed and compared with more classical rnor- 
phometric and clustering techniques for the taxonomic separation of marine plankton. This automatic 
technique demonstrates the potential of neural network pattern classifiers for addressing the difficult 
taxonomic task of congeneric classification and also has wider implications for the automatic identifi- 
cation of field samples of marine organisms 
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INTRODUCTION 

Following the work of Simpson et al. (1991, 1992, 
1993) and Williams et al. (in press) on biological pat- 
tern recognition of phytoplankton by neural networks, 
we have attempted to expand this work into microzoo- 
plankton. There is a growing requirement within eco- 
logical research for automatic techniques for taxo- 
nomic classification. The use of neural networks, in 
biological science, is seen to be a 'new concept' which 
could potentially realise this goal (Culverhouse in 
press). It must be recognised that artificial neural net- 
works are not just simple techniques which can be 
readily applied to the problem. It is not a 'silver bullet' 

technique and a great deal of work has to be done, not 
only to assess the efficacy of the technique but to 
explore its general applicability within marine biologi- 
cal science. There are over 20 types of neural net- 
works, some of which are more applicable to this prob- 
lem than others. 

One of the main objectives of this work is to be able 
to take microscopic imagery of plankton from 'field' 
samples, directly or through a video system, into an 
associated computer to run through an artificial neural 
network classifier to obtain accurate taxonomic identi- 
fications. Reported work to date has been on prepared 
outline imagery of biological specimens (Simpson et al. 
1993) or from flow cytometry of cultured phytoplank- 
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ton species (Boddy et al. in press). The problem which 
has to be addressed now is the 'real time' identification 
of net, bottle or direct in situ video-sampled plankton 
which requires separation of multiple, overlapping and 
detritus-contaminated imagery, highly diverse species 
and different orientations of the biological specimens 
to the field of view. It will be many years before ade- 
quate solutions are found to these problems. In the 
meantime the neural network application shows great 
promise. Certain advances, such as using digitised 
images of naturally occuring plankton in place of cam- 
era lucida drawings, using binarised images which are 
only partly cleaned of debris prior to processing and 
finally increasing the categories to be identified from 2 
to 5 by the neural network, are presented. The task 
was made deliberately more difficult by using con- 
generic species of the tintinnid genus Cymatocylis, 
which taxonomists already experience difficulty in 
separating. 

The classical and new multivariate statistical 
approaches used to separate the species of this genus 
are given in Williams et al. (1994, this volume). but 
here we are developing and assessing a new technique 
to be used eventually for identification of individual 
species in plankton samples. 

METHOD 

Image pre-processing. Photomicrographs of 5 spe- 
cies of the genera Cymatocylis (C. calycifonnis, C. dry- 
galskii, C. vanhoffeni, C. convallana and C. parva) 
were obtained from microzooplankton samples taken 
off South Georgia (Williams et al. 1994). 

Photomicrographs of 201 examples of the 5 species 
were digitised, binarised and Fourier transformed. 
The images were digitised using a monochrome 
Panasonic W-cd50 camera (resolution 768 by 576 
pixels, 1:l aspect ratio) with 18 mm focal length auto- 
iris lens and stored as digital images on a Sun 3/160 
computer using a 16 MHz bandwidth framestore. 
Each image was clipped from 768 by 576 pixels to 
512 by 512 pixels for editing and subsequently manu- 
ally thresholded to provide binarised images. Large 
debris and other occlusions were also removed by 
manually painting each image (using a computer 
editing program). Small debris (less than approxi- 
mately 50 pixels in area) were left in images where 
they occurred. Images were then reduced further in 
resolution by pixel averaging to a final size of 256 by 
256 pixels to provide suitable-sized images for the 
2-dimensional Fast Fourier Transform processing 
(2D-FFT). The resulting Fourier power spectra were 
converted to normalised, differenced l-dimensional 
histograms as described in Sirnpson et al. (1991). The 

resulting data constituted the data set for the neural 
network learning trials. 

The Fourier processing employed here provides 
information that is invariant to ambient lighting condi- 
tions, specimen rotation and specimen translation. It 
does not, however, provide invariance to specimen 
scaling or specimen morphological variation. 

Fourier transforms of the original grey-level images 
(as against the binarised images) were not used 
directly in this study. This was due to the large amount 
of debris cluttering some of the images. Although it has 
already been noted that small debris was left in the 
edited images, it proved impossible to remove the 
larger debris from the grey-level images without intro- 
ducing additional features to the images as a result of 
the editing operation. The choice to use cleaned binary 
or raw grey-level images in this study was resolved by 
attempting to train neural networks directly on the 
Fourier components derived from the raw images. The 
networks failed to perform much better than chance, a 
fact assigned to the additional degrees of freedom 
obtained by this pre-processing method and the small 
size of the data sets (unpubl. results). 

Data validation. Prior to the experimental work each 
specimen's taxonomic label was validated by an inde- 
pendent group of 6 experts. Procedurally the 201 pho- 
tomicrographs were replicated 3 times and presented 
to each expert in random sequence, thus requiring 603 
image categorisations from each expert. Consistency 
within an expert and between experts was evaluated. 
Experts were found to be > 91 % consistent with them- 
selves and with each other. Given this high degree of 
consistency, the results from all the experts were used 
to select the validated data set for neural network 
training and testing. Of the 201 images, 18 were not 
categorised with 100% consistency across the panel of 
experts. These were removed from the data set of 
images used to train and test the neural networks. This 
validated data set was used in all experiments reported 
in this paper. 

Neural network configuration. Back propagation of 
error networks (BPN) were generated, trained and 
assessed with 'unseen' data as reported in Simpson et 
al. (1991). Network weights were randomly set within 
the numerical bounds of k0.1. Fourier histograms were 
presented in random sequence to each network for 
1000 training iterations. Data were split into 2 parts: 
(1) data used for training and (2) data used for testing 
network generalisation ability. Trials were conducted 
with randomised training set size and randomised 
generalisation set sizes within the bounds of the total 
data set. 

The network topology adopted for this research was 
a 15-3-5 net, a between-layers fully connected archi- 
tecture (as previously reported). The frequencies were 
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chosen to reflect the minimum set of harmonic series in 
which the salient features could still be discerned by 
experts. 

Individual species were not represented equally in 
the data set (due to availability of specimens) and com- 
prised (A) 40 Cymatocylis calyciformis, (B) 24 C. dry- 
galskii, (C) 38 C. vanhoffenj, (D)  43 C. convallaria, and 
(E) 40 C. parva. In an attempt to correct for the small 
data set size, stochastic noise was added to each of the 
Fourier histograms during training (Gyorgyi 1990). C. 
drygalskii were underrepresented in the data set and 
in an  attempt to compensate, 18 images, drawn at ran- 
dom from the population, were duplicated into the 
data set which, in conjunction with the additive noise, 
balanced the training population size for C. drygalskii. 
This data set totalled 201 images. 

RESULTS AND DISCUSSION 

Of the 100 trials using the above network and data 
pre-processing configurations, 84 succeeded in learn- 
ing the training set data and performing the 5-way dis- 
crimination with less than a 30 % root-mean-square 
error. The performance of the 3 top performing net- 
works is summarised in Table 1. The training sets for 
all 3 networks constituted less than half the data set of 
201 images. Network trial number 219 demonstrates a 
mean training error of 11 % and a mean test error (on 
unseen data) of 23 %; this performance was achieved 
with a training set size of 103 images and a test set of 
98 images. Network trial number 202 gave similar per- 
formance measures of 15% mean training error and 
33 % mean test error over 108 training images and 93 
test images. It should be re-stated that a network is 
trained on the training data and tested on unseen data 
(the test data) to assess its ability to generalise from the 
training data. 

The test data performance may be represented as 
tables of confusion, where the categorisations carried 
out by each network are compared to the desired cate- 
gorisations (as defined by the validations of the expert 
panel of taxonomists and by the morphological dis- 
criminant analyses). Confusion matrices for networks 
219 and 202 are presented in Table 2. 

Table 1. Performance measures for the (3) best performing 
network trials 

Network Mean training Mean test Actual test error 
error (%) error (%) (error/test size) 

202 14 5 32.5 30/90 
219 10.5 23.0 23/98 
224 16.1 40.0 39/98 

Confusion matrices were constructed using the entire 
data set aggregating the training and test data sets, 
since the data sets were relatively small, with a maxi- 
mum individual species specimen count of 43 for Cyma- 
tocylis convallaria. Although this hides the classification 
results for the 2 classes of data, it does allow comparison 
with both the expert panel and the morphological dis- 
criminant analyses. Both networks show good overall 
performance for 4 of the 5 species in the data set. How- 
ever the overall classification scores are pulled down by 
the rather poor discrimination for C. vanhoffeni (C in 
Table 2) with regard to C. drygalskii (B) and to C. caly- 
ciformis (A). Two species, C. convaflaria (D) and C. 
parva (E), separate well in both networks, with perfor- 
mances similar to that of the expert panel. The remain- 
ing 2 species, C. calyc~formis (A) and C. drygalski (B), 
are categorised with less than 12 % error (network 219) 
and 17 % error (network 202) respectively. 

Extending the comparisons between neural network 
and experts to the untested data that lay outside the 
consensus data set (unclassified data) of the expert 
panel, it can be observed in Table 3 that the categories 
found difficult by experts were also found difficult to 
classify by the neural networks as well as by the mor- 
phological discriminant analysis, which showed that 
species C (Cymatocylis vanhoffeni) and species B 
(C.drygalskii) caused some problem. 

More specifically, 3 of the 18 unclassified (by 
experts) specimens were also unclassed by the dis- 
criminant analysis. Nine of the remaining 15 speci- 

Table 2. Confusion matrices, showing discrepencies between 
network categorisations and the desired categorisations. 
A: Cymatocylis calyciformis; B: C. drygalski]; C: C. vanhof- 

feni; D. C. convallaria; E.  C. parva 

Network 202 
A B C D E 

Size: 40 24 3 8 4 3 4 0 
P - P - - 

A 33 1 8 1 0 
B 3 20 9 0 0 
C 1 3 20 0 0 
D 3 0 0 42 0 
E 0 0 1 0 40 

Yo 83 83 53 98 100 

Network 2 19 
A B C D E 

Size: 40 24 38 4 3 4 0 

A 3 7 0 5 1 0 
B 0 21 10 0 0 
C 1 3 23 0 0 
D 2 0 0 42 0 
E 0 0 0 0 4 0 

Yo 93 88 61 98 100 
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Table 3 Expert unclassified data shown agalnst unclassed/ Table 5. Internal body contents size of Cymatocylis spp. as a 
inconsistent data in networks and discriminant analysis. percentage of body area (from thresholded images), A :  C. 
A: Cymatocylis calycjformis; B: C. drygalskii; C: C. vanhof- calyciformis; B: C. drygalskii; C :  C. vanhoffeni; D: C. conval- 

feni; D :  C. convallaria; E. C, parva lana; E:  C. parva 

A B C D E  

Expert panel 2 3 7 5 1 
Network 202 7 4 18 1 0 
Network 219 3 3 15 1 0 
Discruninant 0 4 4 2 0 

Table 4 .  Confusion resolution for data unclassified by discrim- 
inant analysis. Networks 202 and 219. A: Cymatocyl~s caly- 

ciformis; B: C. drygalskii; D: C. convauaria 

Specimen Initial Discriminant Network Network 
classification 202 209 

6 0 D Unclassed A A 
3 2 B Unclassed A A 
29 B Unclassed D D 

mens were correctly classed by network 202 by assum- 
ing the correct class to be that defined by the morpho- 
logical analysis, and 8 of the 15 were correctly classed 
by network 219. 

There were 3 specimens that were unclassified using 
discriminant analysis to 95 % confidence and also were 
not in the set of expert consensus: specimen numbers 
60 (Cymatocylis convallaria), 32 and 29 (both C. dry- 
galskill. These were also mis-classified by the best 
performing networks (BPN) as shown in Table 4, but 
interestingly both network 202 and network 219 mis- 
classed these specimens in a uniform manner, ascrib- 
ing specimen 60 to C, calyciformis instead of C. conval- 
laria, and specimens 32 and 29 to C. calyciformis and 
C. convallaria instead of C. drygalskii as initially iden- 
tified by an 'expert' tintinnid ecologist (Pierce & Turner 
1993). 

A B C D E 

< l D %  28 7 19 16 25 
< 50 % 3 14 17 22 9 
>50% 10 6 7 9 5 

Total 4 1 27 43 4 7 39 

The present set of training trials were carried out on 
only a small number of images per species, and the vari- 
ation in image data due to specimen gut density was 
thought to be responsible for the mis-categorisations. 
Table 5 summarises the internal structure of each spec- 
imen in the data set as a percentage of body area. The 
differences in body contents may be observed in the 
selected images presented in Fig. 1, where the Cymato- 
cylis calycifomis and C. convallaria images both show 
bright areas of internal structure in the body, whereas 
the C. vanhiiffen1 and C. parva images show none. 

There were specimens with substantial amounts of 
body content for all species in the data set. However, 
performing a linear correlation between network per- 
formance and image body occlusions (described in 
Table 5) showed there was no correlation between size 
of the body contents and neural network generalisa- 
tion performance (Pearson's product moment correla- 
tion of less than 0.2 for all categories in Table 3 against 
performance for network 219 and network 276, with 
3 degrees of freedom) this result demonstrates an 
additional resilience to noise within the data set by the 
neural network paradigm. 

Both of the BPNs (202 and 219) show a high degree 
of similarity in their results. Both networks fail to attain 
a minimum of 83 % correct categorisation on only 1 of 
the 5 species in the study, Cymatocylis vanhoffeni. 
Both find the remaining 4 species relatively easy to dis- 

C. calyciformis - 
Fig. 1. Cymatocylis spp. used in the trials 
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tinguish, but with some confusion between C. van- 
hoffeni (C) with regard to C. drygalskii (B) and to C. 
calyciformis (A) .  The relationship between network 
learning and generalisation ability and obvious 
morphological differences present in the specimens is 
difficult to discover, due to the 2-d~mensional Fourier 
pre-processing and the subsequent collapse to a 1- 
dimensional histogram as a final data reduction. 

Overlays of the Fourier components of each speci- 
men for each species in the neural network data set are 
shown in Fig. 2. Treating these as signatures, it may be 
observed that Cymatocylis parva, C. convallaria and C. 
calyciformis all show strong 'average' values that stand 
out in a visual inspection of the graphs. C. vanhoffeni 
and C. drygalskii have less clear signatures. This diffi- 
culty is perhaps indicative of the problem facing the 
BPN when being trained with these data. The variance 
for each species' Fourier histograms correlates well 
with the difficulty experienced by the BPNs. 

This is strongly suggestive of the problem facing the 
BPNs that the performance of the neural networks is 
limited by the paucity of information given by the cur- 
rent pre-processing method. This may be because fea- 
tures evident in the original data (spatial representa- 
tions of the specimens) may well be hidden or 
obscured by the Fourier analysis. The collapse of 2- 
dimensional informat~on into a slngle histogram has 
great value as a data reduction technique and in 
reducing neural network complexity, although it can 
have disadvantages. 

We are currently exploring other pre-processing 
techniques suitable for neural network utilisation, as 
well as developing extensions to the existing Fourier 
technique. The measure of utility of an artificial neural 
network should be the degree of correlation between 
the taxonomic description of a specimen (obtained 
through a consensus of experts) and the categorisation 
developed by a neural network when trained on other 
images of the same species. Expert opinion is normally 
based on a number of morphological and ecological 
parameters. Williams et al. (1994) demonstrate this for 
the 5 species in question here.  

A direct comparison between these morphometric 
and ecological tests and BPN categorisations provides 
a way of objectively observing the categorisations 
obtained by experts and neural networks. Figs. 3 & 4 
show such an objective morphometric function for the 
5 tintinnid species. Overlaid on Fig. 4 is the set of spec- 
imens that the experts failed to form a consensus on; 
Fig. 3 is overlaid with the set of specimens that the arti- 
ficial neural network (trial 219) failed to CO-categorise 
with expert opinion. 

It can be seen that in all 5 species, experts found 
specimens that are either between cluster boundaries 
(image numbers 32, 47 and 60 for example) or within 

1 :L 
61n number 

C. calyciformis 

C. convallaria 

C. parva 

Fig. 2. Fast Fourier Transform 16 bin histograms for the  entire 
da ta  set  (overlaid on  e a c h  other)  

cluster pools (image numbers 167, 70 and 126 for 
example). Since the experts did not adhere to the 
discriminant analysis provided in these figures it must 
be assumed that additional parameters are being 
employed by experts in the species recognition task. 

The artificial neural network, on the other hand, 
used a con~pletely different source of parametric infor- 
mation, the 2D-FFT data. Yet similar clusterings to the 
experts' have been obtained. Comparing network and 
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> 0 
0 Neural Network failed images (labelled) 

162 D calyciformis 
+ convallaria 

Â A drygalskii 
3 parva 

A A 
4 3 5 *  A A 

unclassed 
A 

A17% A o vanhoffeni 
A A 173 A 

Fig. 3.  Discriminant analysis plot overlaid with network 219 misclassifications (numbered data points; centre of numeral string is 
directly below each trial 219 misclassification) of Cymatocylis spp 

Expert misclassed images (labelled) 

a calyciformis 
+ convallaria 
A drygalskii 
0 oarva 

unclassed 
o vanhoffeni 

Fig. 4 .  Discriminant analysis plot with expert rnisclassifications (numbered data points; centre of numeral string is directly below 
each trial 219 misclassification) of Cymatocylis spp. 

expert difficulty on a per species basis, both network 
219 and network 276 failed to correctly categorise 34 of 
the 183 images that every expert concurred on. Of the 
18 images that experts failed to agree on, 8 caused 
problems for the networks. A good agreement existed 
between the networks and the experts, in that the 
specimens most difficult to identify came from the 
same species on both counts. Table 6 summarises the 

difficulties. Plotting these problem specimens on the 
same graph (Fig. 3) a similar set of ambiguities may be 
seen, with examples of inter-pool miscategorisations 
(43, 53, 127) and intra-pool miscategorisations (131, 62, 
175). The networks demonstrate failure rates of less 
than 22 % for 4 of the 5 species, with Cymatocylis van- 
hofleni being the worst performer with a 49% failure 
rate. Although no complete explanation can be  given 
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Fig. 5. Discrirrunant analysis plot, showing specimens of CymatocyLis spp. classified, and unclassified, at the 95% confidence level 

for this poor performance, there is an agreement with 
the morphometric discriminant analysis (depicted in 
Fig. 5) and with expert opinion. Seven of the 10 images 
listed as 'mis-classed' by the discriminant analysis 
were classified correctly (as judged by the panel of 
experts) by both networks. Interestingly, all 3 tests 
(expert, network and morphology based) show that 
most confusions occur between C. vanhoffeni and C. 
drygalskii, shown in Figs. 3, 4 & 5 respectively. Two 
additional boundary problems occur with the statistical 
tests with specimen number 105 (between C. parva 
and C. convallaria) and specimen number 60 (between 
C. calycifonnis and C. convallana). 

Given the small populations of specimens under 
scrutiny here, it is difficult to understand how effective 
a judge of species characteristics the BPN networks 
are. A review of the problems experienced by the 
expert panel in classifying the data set demonstrates a 

Table 6. Comparison of performance. A: Cyrnatocylis calyci- 
formis; B: C. drygalskil; C: C. vanhoffeni; D: C. convallaria; 

E: C. parva 

A B  C D E  

Training set size 40 24 38 43 40 
Data set size 42 27 45 47 41 

Network 202, % error 17 22 49 6 0 
Network 219, % error 7 19 42 6 0 
Experts, % error 5 11 16 11 2 
Discriminant, % error 0 15 9 4 0  

good correlation with networks 219's behaviour (Pear- 
son's product moment correlation 0.86, with 3 degrees 
of freedom). 

In summary several proposals can be made: (1) that 
the low numbers of Cymatocylis images in the present 
trials were insufficient for good generalisations; an 
alternative view, (2) that the pre-processing tech- 
niques employed in this work failed to provide suffi- 
cient information specific to each species to enable a 
neural network to cluster the specimens correctly; and 
(3) that morphological variation between these species 
makes the categorisation task impossible. 

The latter proposal may be quickly discounted, how- 
ever, as it has already been shown that the categorisa- 
tions are solvable using 2 morphological features com- 
mon to all the Cyrnatocylis spp, in question. The 2 
remaining proposals can be additive in their effect on 
neural network behaviour, but must be left for further 
work to disambiguate. 

CONCLUDING REMARKS 

From our previous work in attempting to apply this 
artificial neural network technique to taxonomic classi- 
fication of planktonic images, it was predicted that 
over 100 images of each species type would be 
required for adequate generalisation of a neural net- 
work, to allow it to effectively discriminate between 
categories. Here we have taken 5 morphologically sim- 
ilar species and, deliberately using a smaller data set 
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than suggested above, have attempted to automati- 
cally categorise photomicrographs of specimens. The 
attempt met with a qualified success. 

We have demonstrated a neural network system that 
is capable of learning descriptions of 5 tintinnid spe- 
cies following training using 24 to 43 examples of these 
species. These results show that large data sets a re  not 
necessarily required for separation of species, al- 
though an obvious requirement of any data set is that it 
is a representative sample of the morphological vari- 
ability of the species. 

A direct comparison with Williams et  al. (1994), who 
have applied multivariate statistical analysis to the 
Fourier transformed data set used in this neural net- 
work study, indicates that the data a re  clearly discrirn- 
inable to 95 % confidence. This sets the goal for neural 
network performance to attain, since the multivariate 
analysis demonstrates the potential for discrimination 
using the  Fourier processed data set. However, this 
must be  set against the unequal task required of the 
neural network. Supervised learning of a back propa- 
gation network requires a pool of training data, and 
assessment of the success of training can only be mea- 
sured using a previously 'unseen' (by the network) test 
data set, good performance at both tasks being indica- 
tive of the ease of fitting a model to the training data 
set and of the network's generalisation abilities from 
that model. The degree of success provides a measure 
of the applicability of the automatically generated 
model to the wider case of morphology of tintinnid spe- 
cies. Using the same terminology, the multivariate sta- 
tistical analysis also constructs a 'model', but of the 
entire data pool; it makes no comment on the wider 
implications of clustering behaviour on a larger data 
set, given the construction of a model. 

An additional burden on the neural network, evident 
from the morphological study of Cymatocylis by 
Williams e t  al. 1994), is the wide variance of morphol- 
ogy across the 201 specimens that constitute the data 
set. This variance inevitably makes the sub-sampling 
of the data set, necessary for the creation of training 
and test data sets, sensitive to sample size and results 
in pools of training and test data which can be  unrep- 
resentative of the whole population. If a n  unrepresen- 
tative data set is used to train a neural network then 
the ability of such a network to generalise to other mor- 
photypes not seen in the training set will be impaired. 
Increasing the set size will improve the situation pro- 
vided that the enlarged sample becomes more repre- 
sentative of the real population as more specimens are  
introduced to the set. This will have a direct bearing on 
the utility of cultured populations of species in the 
evaluation of new technologies and techniques for tax- 
onomic classification, where morphological variation 
within cultures will be minimal. 

This article was submitted to the editor 

We have applied exactly the same pre-processing, 
neural network algorithms and experimental protocols 
(with the addition of using photomicrographs rather 
than hand drawn outlines from camera lucida images) 
as those used in our previous work. We are  not aware 
of any robust discriminant techniques in existance that 
can be applied to morphologically diverse species, as 
this and our previous studies have done, and yet still 
obtain useful taxonomic classifications automatically. 

This research extends our previous work in demon- 
strating the ability of artificial neural network classi- 
fiers to handle debris filled images, similar to those 
used by planktologists studying field samples under 
the microscope. To operate in true field conditions, a 
network must be capable of functioning correctly even 
when multiple specimens and highly cluttered images 
are  presented. Although the work presented here 
is a step towards this goal there are still a number of 
profound problems to be solved. 
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