TECHNICAL WORKING PAPER SERIES

INFORMATION THEORETIC APPROACHES
TO INFERENCE IN MOMENT CONDITION
MODELS

Guido W. Imbens
Phillip Johnson
Richard H. Spady

Technical Working Paper No. 186

NATIONAL BUREAU OF ECONOMIC RESEARCH
1050 Massachusetts Avenue
Cambridge, MA 02138
October 1995

We are grateful for comments by Gary Chamberlain and Ken West and to participants in
seminars at the University of Illinois (Urbana), Yale University, Harvard/MIT, and the
NSF/CEME Conference on Microeconometrics at University of Wisconsin (Madison). GWT and
RHS gratefully acknowledge support from the NSF under grant SBR 9511718 and from the
ESRC under the Analysis of Large and Complex Datasets initiative, respectively. This paper is
part of NBER's research program in Labor Studies. Any opinions expressed are those of the
authors and not those of the National Bureau of Economic Research.

© 1995 by Guido W. Imbens, Phillip Johnson and Richard H. Spady. All rights reserved. Short
sections of text, not to exceed two paragraphs, may be quoted without explicit permission
provided that full credit, including © notice, is given to the source.



NBER Technical Working Paper #186
October 1995

INFORMATION THEORETIC APPROACHES
TO INFERENCE IN MOMENT CONDITION
MODELS
ABSTRACT

One-step efficient GMM estimation has been developed in the recent papers of Back and
Brown (1990), Imbens (1993) and Qin and Lawless (1994). These papers emphasized methods
that correspond to using Owen’s (1988) method of empirical likelihood to reweight the data so
that the reweighted sample obeys all the moment restrictions at the parameter estimates. In this
paper we consider an alternative KLIC motivated weighting and show how it and similar discrete
reweightings define a class of unconstrained optimization problems which includes GMM as &
special case. Such KLIC-motivated reweightings introduce M auxiliary ‘tilting’ parameters,
where M is the number of moments; parameter and overidentification hypotheses can be recast
in terms of these tilting parameters. Such tests, when appropriately conditioned on the estimates
of the original parameters, are often startlingly more effective than their conventional
counterparts. This is apparently due to the local ancillarity of the original parameters for the

tilting parameters.

Guido W. Imbens Phillip Johnson
Department of Economics Department of Economics
Harvard University Harvard University
Cambridge, MA 02138 Cambridge, MA 02138
and NBER

Richard H. Spady
Nuffield College
Oxford OX1 INF
UNITED KINGDOM



Information Theoretic Approaches to Inference in
Moment Condition Models!

Guido W. Imbens?, Phillip Johnson®, and Richard H. Spady*

Abstract

One-step efficient GMM estimation has been developed in the recent pa-
pers of Back and Brown (1990), Imbens (1993) and Qin and Lawless (1994).
These papers emphasized methods that correspond to using Owen’s (1988)
method of empirical likelihood to reweight the data so that the reweighted
sample obeys all the moment restrictions at the parameter estimates. In this
paper we consider an alternative KLIC motivated weighting and show how
it and similar discrete reweightings define a class of unconstrained optimiza-
tion problems which includes GMM as a special case. Such KLIC-motivated
reweightings introduce M auxiliary ‘tilting’ parameters, where M is the num-
ber of moments; parameter and overidentification hypotheses can be recast
in terms of these tilting parameters. Such tests, when appropriately condi-
tioned on the estimates of the original parameters, are often startlingly more
effective than their conventional counterparts. This is apparently due to the
local ancillarity of the original parameters for the tilting parameters.

1. Introduction.

The literature on testing restrictions in a generalized method of moment context
(Hansen, 1982; Newey, 1985a, 1985b; Tauchen, 1985; Newey and McFadden, 1994) has
almost exclusively focused on a single test statistic. This statistic, the value of the ob-
jective function for the standard generalized method of moments (GMM) estimator, has,
under standard regularity conditions, a chi-squared distribution with degrees of free-
dom equal to the number of overidentifying moment restrictions. It has been reported
however (Brown and Newey; 1992a; Altonji and Segal, 1994: Burnside and Eichenbaum,
1994; Hall and Horowitz, 1994), that the finite sample properties of this test are often
very different from the asymptotic properties at sample sizes common in econometric
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practice. These poor finite sample properties have been linked to estimation of the
weight matrix whose sampling variation is ignored in the standard asymptotic approx-
imation in GMM models. Researchers have attempted to improve the properties of tests
based on this statistic by considering approximations to the finite sample distribution
based on bootstrap methods (Brown and Newey, 1992a; Hall and Horowitz, 1994).

In this paper we follow a different approach. Rather than attempt to improve the
approximation to the finite sample distribution of the standard statistic, we focus on
alternative statistics to test the overidentifying moment restrictions. Qur proposed stat-
istics are motivated by, but not limited to, a new class of estimators for generalized
method of moments problems that circumvent the need for estimating a weight matrix
in a two-step procedure by minimizing directly an information-theory based concept of
closeness between the estimated distribution and the empirical distribution. Such estim-
ators have been proposed in various contexts and in various forms by Cosslett (1981),
Haberman (1984), Back and Brown (1990), Little and Wu (1991}, Imbens (1993), Qin
and Lawless (1994), Imbens and Hellerstein (1994), and Corcoran, Davison and Spady
(1995). We focus on one member of this class of one-step estimators, the exponential
tilting (ET) estimator, that we view as more appealing than the empirical likelihood
(EL) or pseudo maximum likelihood (PML) estimator that has been the focus of most
research. Although the tests are motivated by these new estimators, they will be shown
to extend straightforwardly to the case where the parameters are estimated by standard
GMM methods. In fact, Monte Carlo evidence suggests that most of the gain can be
achieved using particular tests based on the standard two-step GMM estimators. These
tests are extremely easy to compute as the researcher, given an efficient estimate of the
parameters, only has to solve a strictly concave optimization program with first and
second derivatives straightforward to calculate.

In this paper we make three contributions. First, we suggest a new and more at-
tractive procedure for computing the one-step estimators. One characterization of these
one-step estimators in the literature has been as the solution to a set of equations with a
fixed number of equations. A second characterization is as the solution to a restricted op-
timization program with dimension larger than the number of observations. We provide
an alternative characterization as the solution to a restricted optimization program with
dimension unrelated to the number of observations. The objective function has the same
information-theoretic interpretation as the objective function in the high-dimensional
optimization program in the earlier characterization. This new characterization offers
considerable computational advantages so that the new estimator and its associated test
statistics can be computed in roughly the same time as a standard two-step GMM es-
timator. As a by-product of this new characterization of the one-step estimators we are



able to present direct links between the structure of inference for the new one-step and
the conventional two-step estimators.

Second, using either the conventional two-step GMM estimator or one of the new
one-step estimators we discuss a number of alternatives to the standard tests which
are typically based on a quadratic form in the average moments. We divide the test
statistics into three classes. The first class, containing the standard tests, compares the
average value of the moments at the estimated parameters to zero. The second class
of tests considers the tilting parameter that sets the weighted average of the moments
evaluated at the estimated parameters equal to zero and compares the value of this
tilting parameter to zero. This set of tests has a close connection to the alternative
characterization of the one-step estimators discussed above. The third class is based
on the directed distance between the empirical distribution function and the nearest
distribution function satisfying the moment restrictions using an information criterion
(likelihood or Kullback-Leibler information criterion) to measure the directed distance.
Particular cases of the distribution functions estimates implicit in this procedure have
been discussed in Back and Brown (1992) and Brown and Newey (1992b). All tests
are shown to have asymptotically the same chi-squared distributions with degrees of
freedom equal to the number of overidentifying moment restrictions. Because of analo-
gies to the parametric Wald, Lagrange multiplier and likelihood ratio tests, we expect
similar considerations used to distinguish between them in a parametric conxtext to be
important in our semiparametric context.

Third, in a Monte Carlo investigation we report nomimal and actual size and present
QQ plots for a number of examples and sample sizes in which standard tests have been
found to have poor performance. In particular we focus on three examples including
one previously studied by Hall and Horowitz (1994) and another studied by Burnside
and Eichenbaum (1994) which also resembles the case considered by Altonji and Segal
(1994). We find that some of the proposed tests consistently across all experiments have
nominal size much closer to actual size than the standard tests. We interpret the superior
performance of some of the test statistics by exploiting links to testing in parametric
models, We argue that the tests with better size can be interpreted as conditional on an
approximately locally ancillary statistic. Such conditioning has been argued in various
cases to lead to better inference (McCullagh, 1984). A well known special case of this
argument, presented by Efron and Hinkley (1978), suggests using the observed rather
than expected Fisher information.

While we focus on testing overidentifying restrictions in a cross—section context,
our results have clear relevance beyond this. Tests can be used to construct confidence
intervals, and tests with good finite sample properties lead to confidence intervals with



good finite sample properties. Extensions of the estimation techniques to allow for
autocorrelation structures are suggested in Back and Brown (1990). A second limitation
of the current study is that we focus solely on first order asymptotic approximations
to sampling distributions. It may well be the case that in important applications the
sampling distributions of the proposed statistics are still too far away from their limiting
distribution to be useful without further corrections. In such cases one may wish to
combine our proposed statistics with methods for improving the finite sample properties
such as bootstrapping or Edgeworth or saddle-point approximations. In this sense
we view the current research as complementing the research by Newey and Brown
(1993) and Hall and Horowitz (1994): by focusing on statistics with better small sample
properties refinements based on the bootstrap and other approximations are more likely
to perform well.

2. Exponential Tilting.

Let {2}, be realizations of 2 random variable Z with distribution function F(z),
satisfying Pr(Z € Z) = 1 for some compact subset Z of RX. We are interested in
a parameter 0y € O satisfying E{Y(Z,0,)] = 0 where 1(-,-) is a known function from
Z x O to RM. We assume that 8, is the unique solution to E[(Z,8)] = 0. We focus on
the case where the number of moment restrictions, M, exceeds the number of unknown
parameters, K.

The standard solution to this estimation problem (Hansen, 1982, Newey and Mc-
Fadden, 1994) is to estimate # as the solution to

mjnQw(9) )
where
aw0) = [ S0 W [ S wta0)]

for some positive semidefinite matrix W. Under standard regularity conditions the
minimand of Qw(#) is consistent for §,. It is not, typically, efficient if dim(¥) >
dim(f). In that case an efficient estimator can be based on minimizing Qw(8) for
W = Wo = E[(Z,00)¥(Z,60)]. A feasible version of this efficient procedure is based
on an initial consistent estimate § of 8, obtained by minimizing Qw(0) for an arbitrary
choice of W such as the dim(s) dimensional identity matrix. The inverse of the optimal
weight maErix, W, is then estimated as W = 7{;2¢(z;,§)¢(z;, gy, Finally an efficient
estimator 8., is obtained by minimizing Qy(9).

If the model is correctly specified, and there is indeed a unique value 6, such that



Ef(Z,0,)] = 0, then -
VNymm — 60) -2 N(0,(I'A7'T)7Y)

where A = E[W(Z,00)(Z,00)), and T = E[Z%(Z,60)]- In addition the normalized
objective function, evaluated at the estimated parameters, converges to a chi-squared

distribution:
N - Q(fgmm) —+ X} (M — K).

‘An alternative to this two-step procedure, with in the first step a consistent estim-
ator 8 and in the second step an efficient estimator égmm, is the empirical likelihood (Qin
and Lawless, 1994) or pseudo maximum likelihood (Cosslett, 1981; Back and Brown,
1990; Imbens, 1993) estimator. Define 6., as the part of the solution corresponding to 8
of

N N

N .
maaxz -llv[ln 7 — In(1/N)] subject to > #(zi,0)mi =0 and Y m=1. (2)
™ =t i=1

=1

The solution for §.. can also be characterized by writing down the corresponding es-
timating equations for 6, and t., which is /N times the Lagrange multiplier for the
restriction ¥ 4(2,0) - mi = 0. The estimating equations are ¥, Pa(z;,éc,,fc,) = 0,

where w
! '
Pel(Z,a,t) = ( ¢ 33:(2,0)/(1 +,t 1])(z,0)) ) .
¥(z,0)/(1 + t'¥(z,0))
with the dimension of the tilting parameter ¢, or the normalized Lagrange multiplier in

the maximization (2), equal to M. Under regularity conditions 0.1 is efficient for 8y, i.e.
V/N(8.; — 80) has the same asymptotic distribution as VN(0ymm — 00).

A second alternative, and the estimator we focus on in this discussion, is the expo-
nential tilting estimator. In the context of estimating probabilities in a contingency table
with known marginals this estimator is known as the raking estimator (Ireland and Kull-
back, 1968; Little and Wu, 1991). Efron (1982) discusses least favorable distributions
based on exponential tilting in the context of contructing confidence intervals. Haber-
man (1984) discusses the exponential tilting estimator for general estimation problems
with moment restrictions not depending on unknown parameters. Imbens (1993) and
Qin and Lawless (1994) mention it as an alternative to the empirical likelihood estim-
ator in the genéral GMM case. Instead of maximizing the empirical likelihood as in (2),
this estimator is based on minimizing the distance between the estimated distribution
and the empirical distribution based on a closeness concept derived from the Kullback-
Leibler information criterion. Reversing in (2) the role of the unrestricted estimates of

(3)



the probabilities, 1/N, by the restricted probabilities, m, we get the ET estimator:

N N
m%xi mi[In(1/N) = In subject to Et,b(z.-,ﬂ)m =0 and Y} m=1  (4)
=1

i=1 =1

The estimating equations corresponding to this estimator are PR pd(z.-,éd,fd) =0,

where

pulz,0,1) = ( t'3%(2,0) exp(t'(z,9)) ) . (5)

wmm ¥(2,0) exp(t'y(z, 0))

The form of the ET estimator differs from that of the EL estimator in that the cor-
rection to the probabilities is based on an adjustment of the exponent rather than an
adjustment of the denominator. It closely resembles expressions obtained in saddle-
point approximations (Daniels, 1954; Barndorff-Nielsen and Cox, 1987, 1989; Spady,
1991), where the term exponential tilting was coined. As in the empirical likelihood
case, this estimator, 8.,, is as efficient as the standard GMM estimator. The choice of
tilting function, g(M¥(z,0)} = 1/(1 + M(2,0)) in the empirical likelihood case and
g(AM'¥(z,8)) = exp(Ny(z,0)) in the exponential tilting case is similar to the choice of
carrier function in the test statistic expansions discussed in Chesher and Smith (1993).
Other choices for the tilting function are discussed in Johnson (1995).

While the computational methods described in the next section, and the tests de-
veloped in a subsequent section can be extended to the EL estimator we focus on the
ET estimator for two reasons. The first reason concerns the interpretation of both es-
timators as minimizing the (directed) distance between the estimated probabilities m;
and the empirical frequencies 1/N. It seems appealing to weight the discrepancies using
the best estimate of these probabilities (i.e., #;), as in the ET procedure, rather than
by an inefficient estimate of these probabilities (i.e., 1/¥), as in in the EL procedure.
A similar argument is advanced by Hansen, Heaton and Yaron (1994) to distinguish
their continuously updating GMM estimator from the conventional GMM estimator.
They make a connection between this argument and the distinction between 2SLS and
LIML procedures, with 25LS corresponding to weighting with inefficient estimates of
the optimal weights and LIML corresponding to weighting with efficient estimates.

The second reason concerns the relative robustness of the two estimators. The

influence function of estimators defined by estimating equations p(z, 8,¢) is proportinal
to p(z,8,t) (Huber, 1980);

IF(z,0,t) = E[Tﬁ%(z, 0, " (z,0,0)

At the limiting values §y and ¢ = 0 the influence functions for the two estimators EL
and ET are identical, reflecting their first order equivalence. However, if we evaluate



the influence function for the EL estimator at f = ¢, it can become unbounded even if
¥(z, 8) is bounded. This in contrast with the influence function for the ET estimator
that is affected to a much lesser extent by perturbations of 2.

As an illustration, consider estimation of # given moment functions that optimally
are weighted by the true probabilities, ¥,(2,0) = z1 — 8 and ¥2(z,0) = 2z;. Let Z =
{z|llz{l € c1}, and © = {0 € RE|)10]| £ ¢}, implying bounded moment functions .
The influence function for the EL estimator is proportional to

_ (Z[ —0)/(1 +tZz)
pei(z,6,1) = ( z/(1 + t23) ) '

At t = ¢, the influence function is unbounded if € 2 v/¢,. The influence function for the
ET estimator is proportional to
o= (0

In contrast to the estimating equations for the EL estimator, these estimating equations
are bounded for any finite { as long as 2z, and z; are bounded. In our experience this
has led to a sampling distribution for the EL estimator that has more outliers, and that
requires more observations to be well approximated by a normal distribution, than the
ET estimator.

3. Computational Aspects.

In this section we provide an alternative characterization of the ET estimator that
leads to a computationally more tractable optimization problem. The issue is that both
the constrained optimization formulation in (4) and the estimating equation formulation
in (5) are not attractive from a computational point of view. The optimization prob-
lem has dimension N + dim(8) which is larger than the sample size. The estimating
equation formulation requires solving a system of equation in dim(8) + dim(3) unknown
parameters, where some of the equations are potentially unstable because the matrix of
expected derivatives does not have full rank at the limiting values of the parameters.
Formally, at & = 8 and t = 0 the (K + M) x (K + M) dimensional matrix of derivatives
Edpe/8(8,t') has rank M. An alternative characterization in Imbens (1993) of 6 as
the solution to a system of equations where the matrix of derivatives does have full rank
has the disadvantage that the dimension of this system is much larger at M x (K + 1).

The key to our alternative characterization is that the estimated probabilities in the
ET approach have the form

N
mi = exp(t'¥(2i,6)) / 1 exp(t'(2;,6)). (6)



Concentrating out 7 in (4) by substituting this into the optimization program we get

N exp(t'y¥(z:,8))

N
[ln(1/N) — t4(2i,8) + In (Y exp(td(z;,0)))]  (7)

19 i=1 Z lexP( ’I/) % 8)) -
. N exp(t"!)(zivo)
biect t i -
subject to gd’(z TN exp(t(z;,0)

The restriction that ¥ m; = | is automatically satisfied in substituting (6) for m;. Sim-
plifying (7) we get

exp(t'qb(z‘,a))
max —Zhb zi, ) ST x50z, 0)) + lnlgexp(t z,b(z,,ﬂ))]
: ul exp(t'P(z.0))
subject to ;#J(za,ﬂ)zﬁl oz, 0) 0.

Because the first term in the objective function is zero when the restrictions are satisfied,
it can be dropped. Now define the empirical counterpart of the moment generating
function of 1, written as a function of 8, as

M(t,0)= --Eexp(t’tf)(z‘,ﬂ)), (8)

l"l

and its logarithm as K(t,8):

K(t,0) = In M(t,8) = In [Zexp(t ” z,,o))] In N. (9)
=1
Let K(t,9), Ks(t,0), Ku(t,0), Kes(t,9) and Kp(t,8) denote first and second (cross)
derivatives of K(t,8). Then we can write the optimization problem in (7) more com-
pactly as
max K(t,0) subject to Ky(t,60) =0, (10)

or alternatively as max, M(t,0) subject to M,(t,d) = 0. At the solution ('Ed,ée(), the
derivatives I{;(t,0) and Kj(t,8) are both equal to zero. In fact, the estimating equa-
tions formulation, 3 pei(2i,t,8) = 0 is equivalent to choosing t and @ to set K(t,0) and
Ke(t,8) equal to zero. One advantage of the formulation in (10) is that it is formulated
directly as an optimization problem that is more likely to have a unique solution (see
Newey and McFadden (1994) for a general discussion of this issue). The key advant-
age, however, is that finding the solution to the constrained optimization problem is
computationally simpler than finding the solution to the first order conditions, i.e. the
estimating equations.



In practice we solve the constrained optimization problem by solving the following
unconstrained optimization problem for a large enough scalar A, and for an arbitrary
positive definite matrix W of dimension dim():

max K{,0)—05-A-K(,08) - W' - N (t,0). . (11)
This formulation is based on a penalty function approach. See Gill, Murray, and Wright
(1981) for a general discussion of these methods. For any positive definite W, for large
enough A the solution to (11) is numerically identical to the solution to the constrained
maximization (10). In addition, for all values of A, the solution to (10) is a solution to
the first order conditions for the unconstrained maximization problem {11). In practice
a sensible choice for W is

W, 0) = Ku(,0) + K(t,0) - K(¢,8)

evaluated at some estimates I and @ of the tilting parameter ¢ and ¢; the computations
do not appear sensitive to the choice of £ and §. For the numerical value of 0., the choice
of the weight matrix W does not matter because at the solution (i,,,é,,) the derivative
K(t,8) is zero and therefore the penalty term K{( K¢+ K, IK{) "' K vanishes. Typically in
penalty function methods the scalar A has to be increased to infinity to achieve a solution
that satisfies the restrictions. Because in this case the original problem can be written
as a saddlepoint problem (i.e., maxs min; K'(¢,8)), and the restriction /i (¢,0) = 0 is
the derivative of the objective function it suffices to choose A large enough to make the
objective function (11) locally convex for (f,,,é,,) to be a solution.

An interesting link with the standard GMM estimator can be made here. The
conventional two-step estimator can characterized in this formulation as the solution to
maximizing the penalty term in (11), ignoring the first term:

fymm = maximands —0.5- A - K,(0,8) - W(0,8)~" - K,(0,0), (12)

given a consistent estimate 8 of 6 because

1 ¥ ,
W(0,6) = Ku(0,6) + Ki(0,6) - Ki(0,0) = 5 3~ (2, 0) - (i, )"
i=1
Leaving the first term, K (¢, 6), out of the ET optimization program (11) to get the GMM
optimization program (12} does not affect the limiting distribution of the estimator for
@ for this particular choice of W but would affect this for other choices of W while the
ET estimator is not affected by the choice of W.



4. Tests for Overidentifying Moment Restrictions.

In this section we discuss a number of test statistics for evaluating the hypothesis
that there is a value of 8o € © consistent with Ef¥(Z,00)] = 0. All test statistics will
share the same chi-squared distribution under the null hypothesis that there is indeed
such a value 8, with the degrees of freedom equal to the number of overidentifying
restrictions.

We divide the tests into three groups. The first set of tests based on comparisons
of the average moments to zero. We refer to this class of tests as Average Moment
(AM) tests. The standard GMM test (e.g., Hansen, 1984, Newey and McFadden, 1994)
and recent alternatives proposed by Hansen, Heaton and Yaron (1994) fit in this cat-
egory. Alternative estimators such as the ET and EL estimators also allow for tests of
this type. The second set of tests is based on the proximity of tilting parameters or
Lagrange multipliers of the moment restrictions to zero. We refer to these as Tilting
Parameter (TP) tests. While these tests may at first sight seem specific to the class
of one-step estimators that include among others the ET and EL estimators, we show
how these can be constructed based on other estimators for @y such as the conventional
two-step GMM estimator. The third set of tests is based the difference between re-
stricted and unrestricted estimates of the distribution function through the (empirical)
likelihood function and related information-theoretic constructs. We refer to these tests
as Criterion Function (CF) tests. In each case the unrestricted estimate is the empirical
distribution function with weights 1/N for each observation. The restricted estimate
also has support on the observed datapoints, but weights the observations differently
to ensure that the restrictions are satisfied. Again these estimators are motivated by
the one-step estimators which yield restricted estimates of the distribution function as
by-products, but as in the TP tests, the CF tests can be based on any efficient estimate

Of 00.
4.1 Average Moment Tests.

The first test statistic we consider, based on the conventional two-step GMM es-
timator, was mentioned earlier in Section 2.

T;:M =N Qw(o,ﬁ)(éymm)

=1
where 8 is a consistent initial estimator, based on minimization of Qw(8) = K(0,9) -
W-'. K,(0,8) with some arbitrary positive definite weight matrix W.

The second GMM test is based on iterating the GMM estimator till the weight matrix

10



is evaluated at the same 6 as the moments. This estimator and the corresponding AM
test were recently suggested by Hansen, Heaton and Yaron (1994). Let 0gpmm(iy denote
this estimator, characterized by the equation

K150, 8ymm(i))’  W(0,0,mmei) ™"+ Ki(0,05mmeiy) = 0

The test statistic is

~

TﬁM =N - Quwos (Ogmm(iy)

The third test, also suggested by Hansen, Heaton and Yaron (1994), is based on min-
imizing the quadratic form Q(k,.(0.6)+K.(0.8)-K(0,8)y(f) over the 8 in its argument as well
as the 8 in the weight function. Hansen, Heaton and Yaron call this the “continously

updated” GMM estimator:

gmm(s}) )

B gmm(ew) = minimands K,(0,0) - W(0,8)™" - K,(0,6)

and the test statistic is

TﬁM =N Qwps )(éamm(cu))

gmm{cu)

The fourth test based on direct comparison of the average moments at the estimated
parameter values to zero, uses the ET estimator:

TAM _ N . Qw(t.méﬂ)(é,,).

The difference between T;‘mﬂfn(e,) and the otherﬂ AM tests TH\M, THM ?,nd TAM is twofold.
First, the average moment is evaluated at 8., rather than f,mm, Gymm(i), OF Ggmm(cu)-
Second, the weight function is estimated efficiently by evaluating (K (t,8) + K(t,0) -
K.(t,6)")"" at t = i, rather than inefficiently by evaluating it at ¢ = 0. For a discussion
of the issue why a simple average does not efficiently estimate an expectation in the
context of overidentified GMM models see Back and Brown (1993) and Brown and
Newey (1992b). Although using an efficient rather than an inefficient estimate of the
optimal weight matrix E[{(Z,8)¥(Z,8)']"" in these tests does not affect the first order
asymptotic properties, it may well lead to the test statistic having a distribution closer
to its limit distribution as the standard limit distribution ignores sampling variation in
the weight matrix.

4.2. Tilting Parameter Tests.

The tests presented in this section are based on the proximity of a tilting parameter
or Lagrange multiplier { to zero. All tests are of the form f'-V-1.{ where V is an
estimate of the variance of f. First we consider two tests based on the exponential

11



tilting estimator é,g. Subsequently we show how such tests can be constructed given an
arbitrary efficient estimator 6.

The large sample distribution of i is given by the limit
b—0Y\ 4 [ DT'A°'T 0
VN ( et ) - ( 0 ANZ-T('AT'T)'MATY) ) ‘
where as before A and T equal E[(Z,0)¢(Z,9)) and E[0¢(Z, 8)/00] respectively.

The first test is based on an efficient estimate of the variance of i,
Vi = A~YZ - DAYV A

where [} = v, %(zi,éet)-m and A = v, d)(z;,é,t)d)(z.-, é,g)'-fr.-, with the probabilities
i = exp(tt,9{zi, 0er))/ P3N exp{f’,¥(2,0.1)). Because the variance estimate A~1(Z ~
C(fA-11)~1{"A-1), like the limiting variance A=Y(Z — D(I"A~'T)"'[’A"Y) itself, is
singular, the test statistic is based on a generalized inverse:

-~

TZ{:") =Nt -Vl

The second test is based on an estimate of the variance of vV N(i,, —t) under general
misspecification. Using the fact that under the null hypothesis in large samples §,; and
{.: are independent we estimate the variance of #., conditional on (Lg. Conditional on
é,,, the variance of VN - (£e¢ — t) can be estimated as

N 1 X N s 1-1 gl N A A,
Vy = ["N"Z:¢(Zi,8ez)¢(zi,9ez) ml - [N > ¥(2i, 0e)(2i, 0er) mimi|

=1

1 X iyl
35 3 (i Bz Bu)mi]

=1

where 7 is estimated as before. The associated test statistic is
TeTl.(iz) =N- t‘:t ) Vz—l e

Note that conditional on é,t the variance of {,; does have full rank and therefore Vz is
in general invertible.

Finally we consider TP tests based on other efficient estimators for fy. Define the
tilting parameter as a function of # as

t(#) = minimand, K (¢, 9). (13)

To evaluate t(0) for a specific value of 8 one has to solve an optimization problem.
Because Ky (t,8) > 0 there will typically be a unique solution that will be relatively
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easy to find using Newton-Raphson metheds. From the definition of f.. it follows that
fe = t(()c,) Now consider for any efficient estimator &, including, but not limited to
09,,",,, the corresponding tilting parameter { = t(9) In large samples the distribution of
{ satisfies
VN {45 N(0,A™Y(Z - T(I'A™'T) ' A7),

Using the same TP tests defined above for the ET estimator we can construct equivalent
tests for any other estimator . We consider here the equivalent of the conditional test
using the GMM estimator:

TT

gmm(c) —

= N - fbgmm) - Vot - tBgmm)

gmm

where the variance Vi, is estimated as
: LA VT LA
V-”""" = [-[V Z"/’(%’. 3gmm)'¢'(zi: egmm) 7’1’] : [ﬁ Z d)(Z.', agmm)'/)(zi: ggmm) 7’(“:’]
=1 i=1

-[—l—iso(z-é Y (zir By 7]
N(:] nV¥gmm 1yYgmm ' ’

with the estimated probabilities #; calculated as
N
iy = exp(t(ggmm)'¢(z;, egmm))/z exp(t(ﬁgm,,,)':,b(z_,-, Bgmm))-
1=1

A final remark concerns the definition of the tilting function ¢(#). QOur definition
is based on the exponential tilting approach. Again, as in the discussion of alternative
one-step estimators, it is possible to use different tilting functions. For example, the
empirical likelihood approach suggests using

£(#) = maximand, iln(l + t'P(z;, 9)).

=1
The implied probabilities m; = 1/(1 + ¢(0)¥(z2:,8)), for the standard GMM estimator
égmm are the basis of the distribution function estimates in Back and Brown {1993} and
Brown and Newey (1992b). Based on the arguments discussed at the end of Section 2
we prefer the exponential tilting function to the empirical likelihood tilting function.

4.3. Criterion Function Tests.

The final pair of tests are based on the empirical likelihood function and the Kullback-
Leibler information criterion. These tests are based on the proximity of the estimated
probabilities that satisfy the moment restrictions ¥ m;(z;,8) = 0,

“ ~ - N - -
s = exp {t(0) - $(208)) / 3 exp(t(d) - (3, )
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to the unrestricted estimates 7, with #; = 1/N.

The empirical log likelihood function is

N
L(r) = 3 log(m:)
=1
and the KLIC function is

[\"LIC(W, 7-1’) = i TI','(IOg(?I',') - ﬁ’,‘).

=1

The two tests based on these functions for the ET estimator are
TSy = 2- [L(#) — L(7)),
where ¢ denotes the N-dimensional vector with all elements equal to unity, and

TS =2- N - KLIC(#,7).

<

As with the AM and TP tests, cne can also construct the CF tests based on other
efficient estimators @ without changing the limiting distribution of the test statistic, or
on alternative tilting function (6).

5. A Monte Carlo Investigation.

In this section we compare the finite sample properties of the tests presented in the
previous sections in a number of models. We report for each model, for two different
sample sizes, the actual and nominal size of each test at different levels of significance. In
the tables we underline the actual size for the test with actual size closest to nominal size.
The initial weight matrix for the first step in the two-step GMM estimator is estimated
as the average of the outer product of the moments evaluated at the true parameter
values. This is not feasible in practice but if anything should lead us to overestimate
the performance of GMM based test statistics relative to the other, feasible, tests.

5.1 Model 1: Chisquared Moments

The first Monte Carlo experiment focuses on a two moment, one parameter problem.

The moment vector is
¥(2,0) = z -9
YUTN 2P —-02—-2.0 ]

The distribution of Z is chisquare with one degree of freedom, and 6o = 1.

Table 1 reports some of the Monte Carlo results. The two conditional TP tests
outperform all other tests at all levels and both sample sizes. The standard GMM test

Tg‘m"‘fn is inferior not only to all TP tests but also to the other AM and CF tests.
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Figure 1 presents a QQplot® of the GMM (the ‘continuously updated' version,
though all three are virtually identical) overidentifying statistic and T, c,(c) for the N = 500
simulation. The plot clearly shows the radical departure of the GMM statistics from
their nominal distribution, particularly in the upper tail; for example, a value exceed--
ing 16.5, which should only occur with a probability of about .00005, actually occurs

roughly 1% of the time (i.e. in 129 of 10,000 simulations versus 4 such events for T,(c) )

5.2 Model 2: Hall-Horowitz

The second Monte Carlo experiment is based on a design investigated by Hall and
Horowitz (1994). The moment vector ¥ has the form

w(Z,6) = ( exp(0.72 - 60-(Z,+ Z;) - 3- Z3) — 1 )

Zg . [exp(0.72 —-8. (Z[ + Zg) -3 Zz) - 1]

The (Z,, Z,) have a bivariate normal distribution with correlation coefficient zero, both
means equal to zero and both variances equal to 0.16. The true value of @ is §, = 3.

Table 2 reports some of the Monte Carlo results. The two conditional TP tests, TTF et{e)
and T'F ) are again superior to most of the other forms of the test, either based on the
ET estimator or on the GMM estimators, with only the continuously updated GMM test
having similar size. It should be noted however that the estimator on which this test is
based, égmm(cu), has very poor finite sample properties. The 0.025 and 0.975 quantiles
of the sampling distribution of égmm(cu) are 2.56 and 4.62, compared to 2.55 and 3.73
for 6., and 2.52 and 3.65 for égmm. More than one percent of the 5,000 simulations led
to estimates based on the continuously updated estimator larger than 30. There were in
fact some problems in getting the continuously updated estimator to converge in cases
where the estimated parameters were far away from the population values. Inspection
revealed that typically the objective function for this estimator has multiple modes, with
occasionally the mode far away from the population value of @ higher than the mode
close to the population value.

Figure 2 shows the QQplot of the overidentification test statistic for the best con-
ventional variant, namely Tg’gM (GMM continuously updated), and T1F ei(e)» Tor N = 100.
As one might expect from Table 1, there is not much difference in the plots. However,
at N = 200, T,(c, has a decided adva.ntage, as shown in Figure 3. Moreover, in ac-
cord with the samplmg distribution of H,mm(w), tests of the hypothesis 8 = §; are very
badly oversized when Bymm(cu) and its corresponding estimated standard error are used

8 “Quantile-quantile plot”; that is, a plot of the quantiles of the Monte—Carlo values against the
corresponding quantiles of the reference x? distribution. The vertical bars are at the nominal .95 and
.99 levels, and the 45° line that would represent perfect agreement is shown.
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in Wald test. This is shown in Figure 4, where the corresponding ‘exponential tilt-
ing/conditioning’ statistic® based on f,: is also shown; this statistic shows very close
agreement with the reference distribution. Also shown in Figure 4 is the QQplot of the
best conventional GMM test, that based on G,mm(.) This is better than the apparentlv
disastrous test based on Ggmm(c,,), but it is still much worse than the test based on .

and, of course, as Table 2 shows, tests of overidentification based on Ggmm( y are clearly
inferior to ;’,'{z) for both N = 100 and N = 200.

A tentative conclusion we draw, consistent with both cases considered to this point
and an analysis (not presented here) of the example to follow, is that it is possible to
construct hypotheses for which conventional GMM methods do about as well as the
methods we propose; but there are always hypotheses in the same model for which the
conventional GMM methods compare poorly with our proposal.

An interesting comparison can be made with the results reported by Hall and Horow-
itz (1994) on the bootstrap corrected version of the test based on the objective function
for GMM1. Their theoretical results imply that in large samples the bootstrap correc-
tion should make the empirical size closer to the nominal size by taking into account
the next term in the Edgeworth expansion. For the current sample size and the boot-
strapped version of the GMM1-based test T}, reported in Hall and Horowitz (1994,
Table 2), is a clear improvement on TAM . However, it still is much further away from

gmrn

the limiting distribution than either T/ etfe) O T,

mm(c) :

5.3 Model 3: Burnside—Eichenbaum

The design of the third Monte Carlo experiment is identical to one of the models
considered by Burnside and Eichenbaum (1994). Altonji and Segal (1994) consider
similar models. The moment vector 3 has the form

Z: -1
Z3 -1

wz)=| .
Z — 1

The M elements of the vector Z are independent normally distributed random variables
with known mean zero and known variance one. Burnside and Eichenbaum motivate
this model with reference to real business cycle models where tests are often carried out
to investigate whether a specific model estimated on first moments can explain second

¢ Briefly, compute Tf;(c] at 6 = fg, i.e. with no unknown parametcrs, this is distributed as x?(m)

under the null. Subtract from this the x3(m — k) distributed T2 l(c) (calculated at 8 = §). The result is
a x*(k) test of & = 8.
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moments of the variables. The tests they consider are based on the GMM objective
function with the weight matrix estimated using estimates of Y_(¥ — ¢)(¥ — ¥Y/N,
rather than 3 ¢'/N. Because there are no unknown parameters, some of the tests are
identical in this case: TAM = TAM = TAM and Te,(c) = TTP

gmm{c)
Table 3 reports some of the Monte Carlo results. Again the conditional tilting
parameter tests Tc‘(c) and T'TF ) outperform all other test statistics in the agreement
of nominal and actual size.

gmm{c

Figures 5 and 6 present the QQplots for TAM and T}, at N =100 and N = 200
respectively. In both cases the superiority of the latter is evident throughout the whole
range of the distribution. Rather peculiarly, the N = 200 case shows a greater deviation
of T3E, from the reference distribution than does N = 100. At N = 400, (not shown),
the agreement is again as close as in N = 100 and still markedly superior to that of
TAM,

In all three experiments the same pattern is observed. The conditional tilting
tests are superior to the other forms of the test. Given the ease of calculation for the
GMM-based test TXF gmm(c) that given an efficient estimator fymm only requires solving

max; ¥ exp(t'y(z;, gmm) this test appears a simple and powerful alternative to standard
tests.

6. Conditioning and Ancillarity

In this section we provide some intuition for the difference in small sample properties
of some of the tests as displayed in Tables 1 to 3. In particular we focus on superior
performance of the tilting parameter tests that use the conditional rather than the mar-
ginal variance of the tilting parameter. The magnitude of this difference is perhaps not
surprising given the sensitivity of information matrix tests to estimators of the variance
often noted in the literature (Chesher, 1984, Orme, 1990; Chesher and Spady, 1991).
Our basic argument consists of three steps. First we construct a model with an aug-
mented parameter vector. Efficient estimators for fp in the original moment condition
model will still be efficient for 6, in the augmented model. The tilting parameter can, in
the context of the augmented model, be interpreted as an efficient estimator for the new
part of the moment vector. Tests based on the proximity of the tilting parameter to zero
can therefore be interpreted as Wald tests on this artificial parameter. Second, we show
that in large samples the efficient estimator for 8y is a local ancillary (McCullagh, 1988)
for this artificial parameter. Third, the ancillarity suggests that inference concerning
the artificial parameter, e.g, tests on the proximity to zero, should be conditional on the
{local) ancillary statistic. This finally suggests that the conditional tilting parameter
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tests may have better small sample properties than the marginal tilting parameter tests,
as we in fact see in the simulations.

This argument is not a formal proof of better small sample properties. It is however
an argument that can lead additional credence to our simulation results and one that
suggests why certain types of tests may be better for these models. Similar arguments
using local ancillarity have been advanced by Efron and Hinkley {(1978) in the context
of parametric models. They suggest that using the observed rather than expected Fisher
information may lead to superior inference because it leads to inference conditional on
an approximately ancillary statistic.

Consider a model characterized by the following moment conditions:

P(Z, 90) ~ 1o
t;) ) Al) 351(2 90)
Ao — (¥(Z,60) — to) - (¥(2Z,8) — to)’
Lo — 3%(Z,60)

The model we have been studying so far corresponds to the case where ty = 0. Here we
allow t4 to differ from zero and investigate the properties of estimators for @, and ¢4 in
a neighbourhood of ¢ around zero.

E =0. (14)

The number of moment conditions is equal to the number of unknown parameters,
implying we can, under regularity conditions, estimate 8y, to, Ao and [g efficiently by
setting the sample averages of the moments equal to zero. By solving the first of these
equations, it follows that the estimate of ¢, is:

t = .N .Zl: ‘l)(z”a)
Substituting this into the second moment equation we get the estimating equation for é:
[EE %) an 3 dland) =

=1
We can expand this as

(3 5 Sbedl] -4 [ #tee) + (3 3 St 8) - 0 a0)] =0

Because TpAg 't = 0, it follows that ThAG! ¥ (2, 80)/v'N has the same limiting nor-
mal distribution as I'A;! 3(1(2i, 80)+20)/V'N. Therefore in large samples, vN(8—6q)
has a normal distribution with mean zero and variance (TA;'Io)~*. This limiting dis-

tribution does not depend on o and therefore # is approximately ancillary with respect
to to.
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This argument is not directly applicable to our case because we use the estimating
equations (5) rather than (14). However, they differ only by a term of order o,(ty),
implying that 6. is locally ancillary” rather than globally. Therefore one might expect
inference for tg to be better if conditioned on 8. This is indeed the pattern observed in
Tables 1 to 3.

The implementation of conditioning we have chosen is very simple, following the
‘conditionality principle’ as found in Cox and Hinkley (1974), p.38. They write: “Sup-
pose that C is an ancillary statistic...[t|hen the conditionality principle is that the con-
clusion about the parameter of interest is to be drawn as if C were fixed at its observed
value ¢.” What is perhaps unusual about the current context is that we are accustomed
to thinking of 8 as the primary focus of statistical analysis rather than as a conditioning
statistic that is analogous to the index of the experiment ‘actually performed.” Our
analysis in terms of the information-theoretic quantity { demonstrates the appropriate
transformation of hypotheses about  (and the overidentifying conditions) into hypo-
theses about ¢ and thus indicates the route to appropriate conditional inference.

7. Conclusion

" In this paper we discuss aspects of inference in moment condition models, focusing
on tests for overidentifying restrictions. We introduce a number of alternatives to the
standard tests based on the value of the objective function. Our proposed tests are mo-
tivated by information-theoretic alternatives to the standard GMM estimators that as
a by-product calculate Lagrange multipliers for the overidentifying restrictions. Tests
based directly on these Lagrange multipliers perform much better than the standard
tests, especially when the local ancillarity of the estimators for the primary parameters
is taken into account. Since these Lagrange multpliers are easily calculated given any
efficient estimator for the primary parameters (this only requires solving a maximiza-
tion problem with a globally concave objective function), these tests should be easy to
implement in many cases where the standard test performs poorly.

Other research (Newey and Brown, 1992; Hall and Horowitz, 1994) has focused on
bootstrapping techniques to improve small sample properties of tests for overidentifying
restrictions. While we have not addressed these methods, we view our research as com-
plementary to theirs. In practice one might be able to further improve on our proposed
tests by bootstrapping using pivotal statistics. By using such resampling methods for

7 Local ancillarity was first defined in Cox (1980). In our notation, 0., is a local ancillary for ¢
provided it is approximately ancillary at ¢ = tg, i.e. a particular value of t. In our context, the local
value of #; that is of interest is g = 0.
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tests that have sampling distributions much closer to the reference distribution than the
standard tests one might expect better small sample properties than from bootstrapped
versions of the standard tests.

We are less sanguine about the fruitfulness of conventional higher-order asymptotic
analysis for this method. In the simple case of a single tilt parameter in the presence
of a known scalar 8, Corcoran, Davison, and Spady (1995) have obtained the next two
terms of the asymptotic expansion of a tilt parameter test. Despite the agreement of
these expansions with the work of DiCiccio, Hall, and Romano (1991) on EL tests,
the improvement in test characteristics observed there cannot be explained by these
expansions.

A further topic not discussed in the current paper is the construction of confidence
intervals. Tests for @ can be interpreted as tests of overidentifying restrictions, and such
tests can be inverted to construct confidence interval. The evidence presented in this
paper on the performance of various tests suggests that improvements over standard
methods might also be possible for the construction of confidence intervals,
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APPENDIX

In this appendix we give formal proofs for the limiting distributions of the test
statistics. For proofs of the consistency and asymptotic normality of the conventional
two-step GMM estimator and the one-step ET and EL estimators the reader is referred
to Hansen (1984) and Newey and McFadden (1994), and Qin and Lawless (1994) and
Imbens (1993) respectively.

Throughout this section, we assume the following regularity conditions: (1) Ay and
Ty are finite and of full rank; (2) ¥(Z, ) is continuously differentiable; and (3) @, is the
unique solution of E ¥(Z,0) = 0.

First, we establish the properties of the function ¢(6) defined in {13) when evaluated
at efficient estimators for 6q.

Theorem 1 Let & be an efficient estimator of 8y, satisfying
VN(§ -~ 65) = —(I"A™'T)'T'A" ‘\/—Z«b(zueo) +0,(1).
Then t(8), the minimand of K(t,6), evaluated at 8 satisfies

VN - t(8) = A~(—T + T(I'A™ID)'A ')\[_):w(z.,eo)wp(l)

Proof: The consistency of 6 and global concavity of M(t,8) in t imply that the prob-
ability limit of ¢(@) is zero. Therefore we can expand the first order condition M,(t,é)
around ¢t = 0:

N
0= Z t/)(z.', é) CXP(t'¢'(Zi: é))

i=1
= th)(z.,ﬂ)(l + (2, 0)) + 0p(2).
Hence,
-1
\/_ = 2,0 hé ! z,,ﬂ
: [NE"’( W BY] f§¢( )

Consistency of 6 implies that Zt,b(z.-,é) : a,b(z.-,é)’/N is consistent for A. The second
factor can be approximated around 8, as

N
75 Lo d) \/—Z’/)(Zuf’o)+[‘ (6 = 8) + 0,(1).

=1
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Combined with the asymptotic linear approximation of \/W(B — @g) this gives us
VN -t = AT(-T+I('A™'D)"' A \/_Ezf) Zi,00) + op(1).

QED

The last theorem gives the asymptotic distributions for the proposed test statistics.

Theorem 2 Let § be an efficient estimator for 8 that satisfies
VN(§ - 8o) = —(I'A7'T) A \/—Zw(z”oo + 0(1). (15)
Let i be a random variable satisfying
VNi=AY(-T + [‘(["A“I‘)“‘I"A")-\/l—ﬁﬁ;:p(z,-, 0o) + 0,(1). (16)

Furthermore let E[supy ||[¢(Z,0)|]] and E[sup, |||0y/06'(Z,0)||] be finite, and assume
that

['=T+0,(1), A=A+ 0,(1).
Define
[= AN -Z+D("A'T) A l) Z¢(Z.,90) (17)

Then:
(1)

To=N-7-A-i -2 XYM - K).
(%)

TIP = N . A-i=Ty+0,(1).
(iii)

TIP = N (AT - DA D) A9 = Ty + 0,(1),

where the superscript —g denotes the generalized (Moore—-Penrose) inverse.

(iv)
=N-Qi(f) = N - Ki(0,8)- A" - K,(0,8) = Ty + 0,(1).
(v) "
F =23 [In(1/N) = In(#)] = To + 0,(1),
where =

Y N ~ »~
o = exp(P8(2:, ) [ Y expl9(2,, ).
i=1
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{vi) N
Tz =2-N- Z:fff(ln(f'r-') —In(1/N)) = To + 05(1),

using the same definition for ;.

Proof:

(i) Under the assumptions in Theorem 1 i 9(2i,80)/V'N has a limiting normal
distribution with mean zero and variance A. Use the Cholesky factorization of the
positive definite, symmetric matrix A as AY2(AY2). Then, the limiting distribution
of ¢ = A~Y25;9(Z;,00)/VN is an M-variate normal distribution with an identity
matrix as the variance-covariance matrix. We can write 7 as

To = (3 ¥(Zi,60)/VN)(A™ ~ AT'TI(MAT'T) ' T'A™ )3 #(Zi,60) [ VN)

_ E (I A-—l/?r\(r\l IP “IpYAC ”2)6
Because the matrix in this quadratic form is idempotent its distribution is in the limit
x* with degrees of freedom equal to the rank of this matrix, ie. M — K.

(ii) This follows directly from the assumptions that { = f + 0,(1/v/N) and A =
A + o,(1).

(iii) It follows from the assumptions that
TTP = (AW - T('ATIT) I A9 4+ 0,(1).

Substituting for £, and using for the shorthand A = (A~Y(Z — [(IYA™IT)'TYA™Y), the
leading term equals

N
fzw(z.,eo)' jﬁzsb(z.-,eo).

i=1 i=1

Zzﬂ(Z.,Bu)' A-A9. A ~—~§:¢(z.,00)

l_l l-l

\/—gw(zneo) (A (I F(F F)— FI ) ‘/—Zd)(zuoo) TOs

=1

which completes the proof of (iii).

(iv) First consider the following approximation to the normalized average of ¥(Z;, §):

y N TCURPLE SUEN PR S TE R RS
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ATV (0 0) 4 oy(1).
Using the fact that

VN8 — o) = ("AT'T) ' T(A™Y¥)¢ + 0,(1),
we find N
ﬁ Y 9(2i,8) = (T~ D(F'AT'T) ' I'ATHAVE + 0,(1).
1=1
Combined with A = A + o,(1), this implies that
TAM = ¢AYHT — AT'D(I'AT'T)T'D) - A7 (I - T(YATIT) ' TAT)AYE 4 0,(1)
=& (Z-ATPI'ATT)TID(ATY)) - €+ 0p(1)
= To + Op(l).
(v) Consider for fixed ¢ the function

N exp{t'{(z,9)) — Z?.’__l exp(t'¥(z;, 9))

i ,0 = cmikL V=1L =
ni(t,0) = N - mi(t,8) — 1 S, exp(t0(z,0))

Expanding 1; around t = 0 it follows that
ni(,8) = t' (¥(2:,8) — $(z,0)) + 0p(t?),
where ¥ = Y. ¢/N. Next, expand In(1/N) — lnm(t, 8):

In(1/N) = lnm(t,0) = In(1/N) —In((mi + 1)/N) = —1In N +InN — 5 + %nf + 0,(n?)

= —t'(P(z:,0 — ¥(2,0)) + %t’(a,b(z,-, b— ¢(z,0))(¢(z,-,0 — 9(z,0))'t + 0,(£?).

Summing up over all observations, we get

N
TEF = 3. [~($(21,0) — F(5 ) + (620, 0) — T )20, 0 — B0t + 0p(1%)]-

F=1

Evaluating this expression at § and { the first term sums up to zero and because { =

Op(1/V'N) we get

N

TE5 = ¢ 3. (a1,6) ~ (2 DNz, 0) — 9z, 0] -+ 0,0,

i=1

which is
N-# A i40,(1) = T+ 05(1).
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(vi) Using the same notation as above, we have:

TSE = 2. NzNj Fﬁ?f—l(ln(m(f,é) +1) = In(1/N) +1n(1/N))

N
= — ,fF+‘2-Zn.-ln(m+ 1).

=1

The last term equals

1
2+ 3 Nuilmi — 5nf) + 0p(t7) = 2- 3 Nl + 0,(t7)
=1

=1

N a ————— - — R
=20 3| 6(a0B) — D N0 d) = 9B - 4 000).

i=1

Therefore the two terms together add up to

N - - A, a EE—— -
TGE = ~T7F +2: - |0z 8) = w0, DN (20 ) - 902, 0] - 1+ a1)

N . — ,. — = -
= 30|00 8) - ¥ W0 8) ~ (= DY -+ 0,01)

i=1

=N A.t+0,(1) = To+ 0,{1).

QED

All the tests proposed in Section 4 can be fit into one of the tests described in this
theorem.

25



REFERENCES

ALToNI, J., AND L. SEGAL, (1994), “Small Sample Bias in GMM Estimation of Covari-
ance Structures,” Technical Working Paper 156, National Bureau of Economic Research,
Cambridge, MA.

Back, K., AND D. BROWN, (1990), “Estimating Distributions from Moment Restric-
tions”, working paper, Graduate School of Business, Indiana University.

Back, K., AND D. BrRowN, (1993), “Implied Probabilities in GMM Estimators”, Eco-
nomelrica, Vol. 61, No 4, 971-976.

BARNDORFF-NIELSEN, O. AND D.R. Cox, (1987), “Edgeworth and Saddle-Point Ap-
proximations with Statistical Applications”, (with discussion), JRSS (B}, 46, 279-312.
BARNDORFF-NIELSEN, O. AND D.R. Cox, (1989), Asymptotic Techniques for Use in

Statistics, Chapman and Hall, London.

BRowN, B., AND W. NEWEY, (1992), “Bootstrapping for GMM” mimeo, Massachusetts
Institute of Technology.

BrownN, B., AND W. NEWEY, (1992), “Semiparametric Estimation of Expectations,”
mimeo, Massachusetts Institute of Technology.

BURNSIDE, C., AND M. EICHENBAUM, “Small Sample Properties of Generalized Method
of Moments Based Wald Tests,” Technical Working Paper 155, National Bureau of
Economic Research, Cambridge, MA.

CHAMBERLAIR, G., (1987), “Asymptotic Efficiency in Estimation with Conditional Mo-
ment Restrictions,” Journal of Economelrics, vol. 34, 305-334, 1987

CHESHER, A., (1984), “Testing for Neglected Heterogeneity”, Econometrica, Vol 52, 865~
72.

CHESHER, A., AND R. SPADY, (1991), “Asymptotic Expansions of the Information Matrix
Test Statistic”, Econometrica, Vol 59, 787-815.

CHESHER, A., AND R. SMITH, (1993), “Likelihood Ratio Specification Tests,” Discussion
Paper, Department of Economics, University of Bristol.

CoRCORAN, S.A., A.C. Davison, AND R.H. Spaby, (1995), “Reliable Inference from
Empirical Likelihoods,” Discussion Paper, Department of Statistics, Oxford University.

CossSLETT, S. R., (1981), “Maximum Likelihood Estimation for Choice-based Samples,”
Econometrica, vol 49, 1289-1316.

Cox, D. R., (1980), “Local Ancillarity”, Biometrika, 67, 279-286.

Cox, D. R., aND D. HINKLEY, (1974), Theoretical Statistics, Chapman and Hall, London.

DANIELS, H. (1954), “Saddlepoint Approximations in Statistics”, Annals of Mathematical
Statistics, 25, 631-650.

DANIELS, H., (1983), "Saddlepoint Approximations for Estimating Equations”, Biomet-
rika, 70, 83-96.

DiCiccio, T., P. HALL, AND J.P. RoMANoO, (1991), “Empirical Likelihood is Bartlett

26



Correctable,” Annals of Statistics, 19, 1053-1061.

DiCiccilo, T. AND J.P. ROMANO, (1990),“Nonparametric Confidence Limits by Res-
ampling Methods and Least Favourable Families,” International Stalistical Review, 58,
59-76.

EFroN, B., (1981), “Nonparametric Standard Errors and Confidence Intervals,” (with
discussion), Canadian Journal of Statistics, Vol. 9, 139-172.

ErroN, B., (1982), The Jackknife, the Boolstrap, and Other Resampling Plans, mono-
graph 38, Philadelphia: SIAM.

EFRON, B., AND D. HINKLEY, (1978) “Assessing the Accuracy of the Maximum Like-
lihood Estimator: Observed versus Expected Fisher Information”, (with discussion),
Biomelrika, Vol. 65, No. 3, 457-487..

GILL, P., W. MURRAY AND M WRIGHT, (1981), Practial Optimization, Academic Press,
New York. ,
HABERMAN, S. J., {1983), "Adjustment by Minimum Discriminant Information”, Annals

of Statistics, Vol. 12, no 3, 971-988.

HALL, P., AND J. HOROWITZ, (1994), “Bootstrap Critical Values for Tests Based on Gen-
eralized Method of Moment Estimators” mimeo, Department of Economics, University
of lowa.

HaNSEN, L. P., (1982), “Large Sample Properties of Generalized Method of Moment
Estimators,” Econometrica, vol. 50, 1029-1054.

Hansen, L.-P., J. HEATON, AND A. YARON, (1994), “Finite Sample Properties of
Some Alternative GMM Estimators”, Mimeo, Department of Economics, University of
Chicago, June.

HuUBER, P. J., (1980), Robust Statistics, Wiley, New York.

IMBENS, G. W. (1993), “A New Approach to Generalized Method of Moments Estima-
tion,” Harvard Institute of Economic Research Working Paper 1633.

IMBENS, G. W., AND J. HELLERSTEIN, (1994), “Imposing Moment Restrictions by
Weighting”, Department of Economics, Harvard University.

JoHNsoN, P., (1995), “A General Class of One-Step GMM Estimators,” mimeo., Dept.
of Economics, Harvard University.

LAzZAR, N., AND P. MYKLANBD, (1994), “Empirical Likelihood in the Presence of Nuisance
Parameters,” mimeo, Department of Statistics, University of Chicago.

LIrTLE, R., AND M. Wu, (1991), “Models for Contingency Tables with Known Margins
When Target and Sampled Populations Differ”, Journal of the American Statistical
Association, Vol 86, no 413, 87-95.

McCULLAGH, P., (1987), Tensor Methods in Statistics, Chapman and Hall.

NEwEY, W., (1985a), “Maximum Likelihood Specification Testing and Conditional Mo-
ment Tests”, Econometrica, vol. 53, 1047-1069.

27



NEwWEY, W., (1985b), “Generalized Method of Moments Specification Testing”, Journal
of Econometrics, vol. 29, 229-56.

NeEwey, W., AND D. McFADDEN, (1994), “Large Sample Estimation and Hypothesis
Testing,” in R.F. Engle and D.L. McFadden (eds.), The Handbook of Econometrics,
Vol. 4, pp. 2111-2245, North-Holland, Amsterdam.

ORME, C., (1990), “The small sample properties of the information matrix test”, Journal
of Econometrics, Vol 46, 309-41.

OWEN, A., (1988), “Empirical Likelihood Ratio Confidence Intervals for a Single Func-
tional,” Biometrika, Vol. 75, 237-249.

OweN, A, (1990}, “Empirical Likelihood Ratio Confidence Regions,” Annals of Statistics,
Vol. 18, No. 1, 90-120.

QIN, J., AND J. LAWLESS, (1994), “Generalized Estimating Equations”, Annals of Stat-
istics.

Sepapy, R., (1991), “Saddlepoint Approximations for Regression Models,” Biometrika, 78,
879-89.

TAUCHEN, G., {1985), “Diagnostic Testing and Evaluation of Maximum Likelihood Mod-
els”, Journal of Econometrics, Vol 30, 415-43.

28



Table 1: Size oF TESTS: MODEL 1 (CHI-SQUARED MOMENTS), M=2, K=1, 5,000
REPLICATIONS

500 Observations

Average Moment Tests | Tilting Parameter Tests | Criterion Function Tests
size 7:;‘” TyA?M T;?!M Td M Teil‘(‘?n) Teqt‘ (‘:) '1;7:"‘( <) Tg(ifr) Tg(’:h'c]
0.200 { 0.255 0.255 0.255 0.273 | 0.253 0248 0.248 | 0.271 0.265
0.100 | 0.163 0.163 0.163 0.168 | 0.166 0.137 0.138 | 0.163 0.160
0.050 | 0.117 0.117 0.117 0.107 | 0.121 0.071 0.074 | 0.103 0.105
0.025 | 0.086 0.086 0.086 0.068]0.09¢ 0.040 0.043 | 0.066 0.074
0.010 | 0.062 0.062 0.062 0.042 | 0.068 0.018 0.022 | 0.041 0.048
0.005 | 0.051 0.051 0.051 0.028 | 0.055 0.010 0.014 | 0.028 0.037
0.001 | 0.032 0.032 0.032 0.013|0.035 0.003 0.005 | 0.012 0.021
1000 Observations
Average Moment Tests Tilting Parameter Tests | Criterion Function Tests
size | TAM  TAM THM  TaM | Tatw  Toly  Tommia | Teiln Teithiic
0.200 | 0.224 0224 0.224 0.232{0.224 0.212 0.212 | 0.232 0.228
0.100 | 0.130 0.130 0.130 0.135} 0.130 0.114 0.113 | 0.131 0.128
0.050 | 0.086 0.086 0.086 0.077 | 0.087 0.057 0.058 | 0.080 0.081
0.025 | 0.062 0.062 0.062 0.049 | 0.065 0.030 0.030 | 0.047 0.052
0.010 | 0.041 0.041 0.041 0.027 | 0.044 0.014 0.014 | 0.027 0.031
0.005 | 0.031 0.031 0.031 0.018 } 0.034 0.008 0.008 | 0.018 0.022
0.001 | 0.017 0.017 0.017 0.007 { 0.020 0.001 0.002 | 0.007 0.011
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Table 2: SizE oF TEsTS: MODEL 2 (HaLL-HorowiTz MODEL), M=2, K=1, 5,000
REPLICATIONS

100 Observations

Average Moment Tests Tilting Parameter Tests | Criterion Function Tests
size T:IM Tg‘;M Tg%M Tcl: M Tc'l; {:rl) Tch‘(};) 1;11;511 {c) TS (Fi‘ r) Tg(FH ic}
0.200 § 0.273 0.265 0.247 0.311 ] 0.256 0.283 0.276 0.304 0.281
0.100 | ¢.178 0.171 0.136 0.204 | 0.168 0.152 0.147 0.190 0.178
0.050 | 0.129 0.117 0.076 0.139 ] 0.115 0.084 0.083 0.125 - 0.114
0.025 | 0.099 0.086 0.046 0.102 | 0.086 0.048 0.048 0.087 0.083
0.010 | 0.073 0.060 0.026 0.067 | 0.061 0.023 0.023 0.057 0.055
0.005 §{ 0.060 0.045 0.016 0.055; 0.045 0.014 0.013 | 0.045 0.037
0.001 { 0.041 0.022 0.004 0.036 { 0.023 0.004 0.005 ]0.023 0.618

200 Observations

Average Moment Tests Tilting Parameter Tests | Criterion Function Tests

sice | TAM TAM TAM TaM | Toln Tal Towma | Tem  Taguig
0.200 | 0.250 0.247 0.239 0.262 | 0.241 0.250 0.249 | 0.268 0.262
0.100 { 0.148 0.144 0.131 0.148 ] 0.140 0.130 0.131 0.163 0.148
0.050 1 0.095 0.091 0.672 0.090 ] 0.089 0.066 0.067 0.096 0.089
0.025 1 0.064 0.056 0.042 0.055 ) 0.060 0.035 0.038 0.060 0.054
0.010 | 0.043 0.039 0.020 0.034 | 0.639 0.016 0.018 [ 0.038 0.034
0.005 | 0.033 0.029 0.013 0.024 { 0.030 0.008 0.011 0.025 0.023
0.001 | 0.018 0.015 0.005 0.012| 0.015 0.002 0.005 0.012 0.011
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