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ABSTRACT

This paper develops an alternative approach to the widely used Difference-In-Difference (DID)

method for evaluating the effects of policy changes. In contrast to the standard approach, we introduce

a nonlinear model that permits changes over time in the effect of unobservables (e.g., there may be a

time trend in the level of wages as well as the returns to skill in the labor market). Further, our

assumptions are independent of the scaling of the outcome. Our approach provides an estimate of the

entire counterfactual distribution of outcomes that would have been experienced by the treatment group

in the absence of the treatment, and likewise for the untreated group in the presence of the treatment.

Thus, it enables the evaluation of policy interventions according to criteria such as a mean-variance

tradeoff.

We provide conditions under which the model is nonparametrically identified and propose an

estimator. We consider extensions to allow for covariates and discrete dependent variables. We also

analyze inference, showing that our estimator is root-N consistent and asymptotically normal. Finally,

we consider an application.

Susan Athey Guido W. Imbens
Department of Economics Department of Economics
Stanford University UC Berkeley
Stanford, CA 94305 Berkeley, CA 94720-3880
and NBER and NBER
athey@stanford.edu imbens@econ.berkeley.edu 

 



1 Introduction

Difference-In-Differences (DID) methods for estimating the effect of policy interventions have

become very popular in economics.1 These methods are used in problems with multiple sub-

populations — some subject to a policy intervention or treatment and others not — and outcomes

that are measured in each group before and after the policy intervention. To account for changes

over time unrelated to the intervention, the change experienced by the group subject to the

intervention (referred to as the treatment group) is adjusted by the change experienced by the

group not subject to treatment (the control group). The underlying assumption is that the time

trend in the control group is an adequate proxy for the time trend that would have occured in

the treatment group in the absence of the policy intervention.

This method is useful in evaluating policy changes in environments where important un-

derlying time trends may be present. It has been popular for evaluating government policy

changes that take place in some administrative units, such as school districts or states, but not

in neighboring units. Applications include analyses of a diverse set of policies, such as labor

market programs (Ashenfelter and Card, 1985; Blundell, Dias, Meghir and Van Reenen, 2001),

civil rights legislation (Heckman and Payner, 1989; Donohue, Heckman, and Todd, 2002), the

inflow of immigrants into a labor market (Card, 1990), the minimum wage (Card and Krueger,

1993), the effect of health insurance on job mobility (Gruber and Madrian, 1994), the avail-

abaility of 401(k) retirement plans (Poterba, Venti, and Wise, 1995), worker’s compensation

(Meyer, Viscusi, and Durbin, 1995), tax reform (Eissa and Liebman, 1996; Blundell, Duncan

and Meghir, 1998), information technology in 911 systems (Athey and Stern, 2002), school con-

struction (Duflo, 2001), regulation of information disclosure (Jin and Leslie, 2001), the effect

of World War II internment camps on earnings (Chin, 2002), and speed limits (Ashenfelter

and Greenstone, 2001). In other applications, time variation is replaced by another type of

variation, as in Borenstein (1991)’s study of airline pricing. Several recent surveys describe

other applications and give an overview of the methodology, including Meyer (1995), Angrist

and Krueger (2000), and Blundell and MaCurdy (2000).

Our first contribution is to develop a new model that relates outcomes to an individual’s

group, time, and unobservable characteristics. Our model, which for reference we call the

“changes-in-changes” model, nests the standard DID model as a special case.2 It does not

impose additivity assumptions which depend on the scaling of the outcome and which have

been criticized as unduly restrictive from an economic perspective (e.g. Heckman, 1996). To

see an application, let the outcome be a person’s wage, where ability is unobservable. Our

model allows for a time trend not only in the level of real wages but also in the return to ability

1In other social sciences such methods are also widely used, often under other labels such as the “untreated
control group design with dependent pretest and posttest samples” (Shadish, Cook, and Campbell, 2002).

2The standard model assumes that outcomes are additive in a time effect, a group effect, and an unobservable
that is independent of the time and group (see, e.g., Meyer (1995), Angrist and Krueger (2000), and Blundell
and MaCurdy (2000)).
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in the labor market, and the distribution of abilities can vary across groups in arbitrary ways.

Our second contribution is to provide conditions under which the model is identified non-

parametrically, and to propose a new estimation strategy based on the identification result. The

typical estimation strategy in DID studies is to subtract the average change in the control group

from the average change in the treatment group, possibly after some initial transformation of

the outcome and in combination with adjustment for exogenous covariates. Rather than focus

on the differences in average outcomes over time for the two groups, we use all quantiles in the

full “before” and “after” distributions in the control group to estimate the change over time

that occurred in the control group.3 Assuming that the treatment group would experience the

same change in the absence of the intervention, we obtain an estimate of the counterfactual

distribution for the treatment group in the second period in the absence of the intervention.

We compare this counterfactual distribution to the actual second-period distribution for the

treatment group, yielding an estimate of the effect of the intervention for this group. Thus, our

approach can be thought of as “changes-in-changes” rather than “differences-in-differences.”

Because our approach estimates the entire counterfactual distribution of the second period

outcome for the treatment group in the absence of the intervention, we can estimate—without

changing the assumptions underlying the estimators— the effect of the intervention on any fea-

ture of the distribution, including averages, quantiles, or averages of a nonlinear transformation

of the outcome. For example, we could evaluate a mean-variance tradeoff in the effect of a

policy intervention, such as a change in the minimum wage or a tax cut.

A third contribution is to develop the asymptotic properties of our estimator. Estimating

the average treatment effect involves estimating the inverse of an empirical distribution function

with observations from one group/period and averaging that function applied to observations

from a second group/period. We establish consistency and asymptotic normality of the esti-

mator, and we analyze efficiency. Specifically, we identify scenarios where both the standard

DID estimator and our estimator are consistent and show that in these scenarios, our esti-

mator is sometimes more, and sometimes less efficient than the standard DID estimator. We

then extend the analysis to incorporate covariates. We also propose an estimator for quantile

treatment effects under the changes-in-changes model and establish its asymptotic properties.

Fourth, we consider estimation of the average effect the intervention would have had in

the control group. Typically DID strategies focus on the average effect of a treatment on the

treatment group. However, the average effect of a treatment differs across the two groups when

the effect of the policy varies with an individual’s unobservable characteristics and when groups

have different distributions of individuals.4 In addition, if economic forces affect the choice to

3In different settings, transformations of distributions through inverse-quantile functions have been used by
Juhn, Murphy, and Pierce (1993), Altonji and Matzkin (2001), and Chernozhukov and Hansen (2001).

4Treatment effect heterogeneity has been a focus of the general evaluation literature, e.g., Heckman and
Robb (1984), Manski (1990), Imbens and Rubin (1997), Lalonde (1995), Dehejia (1997), Heckman, Smith and
Clements (1997), Lechner (1998), Abadie, Angrist and Imbens (2002), although it has received less attention in
difference-in-differences settings.
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implement a new policy, there may be a systematic relationship between adoption of the policy

and the average effect of the policy. One disadvantage of standard DID methods is that, while

they require relatively few assumptions to calculate the effect of a treatment on the treated

group, they give little guidance about what the effect of a policy intervention would be in the

(counterfactual) event that it was applied to the control group (except in the extreme case

where the effect of the policy is constant across individuals). As a result, there has been debate

in the literature about the policy conclusions that can be drawn using DID methods (see, e.g.,

Besley and Case (2000)). In contrast, we identify in this paper natural assumptions under which

it is possible to estimate the counterfactual effect of the treatment on the control group. In

particular, we assume that the effect of the treatment depends on an individual’s unobservable

characteristics but not directly on the group. Since the distribution of characteristics varies

across groups, the distribution of the effects of the treatment will vary across groups as well.

In a fifth contribution, we extend the model to allow for discrete outcomes. An inherent

tension arises in applications of the standard DID model to discrete data since the functional

form must provide predictions that lie in the allowable range. For example, a linear probability

model might predict a probability outside of [0,1]. These concerns typically lead researchers to

consider nonlinear transformations of an additive single index. However, the economic justifi-

cation for the additivity assumptions required for DID may be tenuous in such cases. Because

our assumptions do not rely on functional form assumptions, no such tension arises using our

approach. We propose a qualitatively different way to analyze discrete dependent variable mod-

els, leading to an estimator that differs from the standard DID estimator even for the simple

binary choice model, where in the absence of covariates the data consist of just four numbers,

the proportion of “successes” in each subpopulation. Since our approach requires a fairly strong

assumption, we also provide bounds on the effect of the treatment when the assumption is re-

laxed, and further show how the presence of covariates that are exogenous (that is, independent

of the unobservable) can tighten the bounds or even restore point identification.

Sixth, we consider other approaches to constructing the counterfactual distribution of out-

comes in the absence of treatment, focusing on a particular alternative, which we refer to as

the “quantile DID” approach. In this approach, the counterfactual distribution is computed by

taking the change that occured over time at the qth quantile of the control group and adding

it to the qth quantile of the first-period treatment group. Meyer, Viscusi, and Durbin (1995)

and Poterba, Venti, and Wise (1995) apply this approach to specific quantiles. We propose a

new model of how outcomes are generated that (i) justifies the quantile DID approach for every

quantile, so as to validate construction of the entire counterfactual distribution, (ii) allows the

time and group effects to vary by quantile,5 and (iii) nests the standard DID model as a special

case. The model is nonlinear, so that the effect of an individual’s unobservable characteristics

5The assumptions of the standard DID model, where outcomes are additive in a time effect, a group effect,
and an independent error term, justify using a DID approach to quantile regression. However, the standard DID
model implies that the time and group effects are constant across quantiles.

[3]



on outcomes can vary by group and over time. However, outcomes must be additively separa-

ble in the time trend and the group effects. Thus, a disadvantage of the quantile DID model

relative to the changes-in-changes model is that its assumptions are sensitive to the scaling of

the outcome. The model also imposes some inequality restrictions on the data.

A few recent papers have analyzed weaknesses and extensions of the standard DID model

but focus on different issues than the ones considered here. Abadie (2001) and Blundell, Dias,

Meghir and Van Reenen (2001) discuss adjusting for exogenous covariates using propensity

score methods. A number of authors have considered issues associated with the calculation

of standard errors in DID models under scenarios that do not invalidate the estimand itself.

Donald and Lang (2001) argue that conventional standard errors may underestimate uncertainty

in DID models when the number of groups is small if there is a group-specific stochastic “shock”

to the time trend. Bertrand, Duflo and Mullainathan (2001) consider DID models with more

than two periods and also allow for “shocks” that are common to a group at a point in time.

They show that if these shocks are correlated over time within a group, conventional standard

errors may again be biased downward, and they suggest standard errors based on randomization

inference. The solutions proposed in these two papers rely on either multiple groups or multiple

time periods. In contrast, our paper focuses on identification and estimation and proposes new

estimands for the case with many individuals in each of two groups and two time periods.

We proceed by first introducing the model. We then provide conditions under which the

baseline changes-in-changes model is identified and propose an estimator. Next, we explore

identification and propose estimators for alternative models, including the quantile DID model.

We then describe extensions to allow for covariates and discrete dependent variables. We also

analyze inference for our proposed estimators, showing that they are root-N consistent and

asymptotically linear. Finally, we provide several applications of the technique, comparing the

results from different DID approaches.

2 Generalizing the Standard DID Model

The standard model for the DID design is as follows (see, e.g., Meyer (1995), Angrist and

Krueger (2000), or Blundell and MaCurdy (2000)). Individual i belongs to a group, Gi ∈ {0, 1}
(where group 1 is the treatment group), and is observed in time period Ti ∈ {0, 1}. Formally,
for i = 1, . . . , N , a random sample from the population, individual i’s group identity and time

period can be treated as random variables.6 Letting the outcome be Yi, the data are the triple

(Yi, Gi, Ti).

Let Y Ni denote the outcome for an individual who does not receive the treatment, and let

Y Ii be the outcome for an individual who receives the treatment. Thus, if Ii is an indicator for

6Although it may seem unnatural to think of an individual’s group and time as random variables, another
way to think about it is that samples are drawn from each subpopulation and combined, and then individual i
is a random choice from the overall sample.
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the treatment,

Yi = Y
N
i · (1− Ii) + Ii · Y Ii .

In the DID setting we consider, Ii = Gi · Ti.
In the standard model, the outcome for individual i in the absence of the intervention

satisfies

Y Ni = α+ β · Ti + η ·Gi + εi. (2.1)

The second coefficient, β represents the time component, common to all individuals. The third

coefficient, η, represents a group-specific, time-invariant component.7 The third term, εi rep-

resents unobservable characteristics of the individual. This term is assumed to be independent

of the group indicator and have the same distribution over time, that is, εi ⊥ (Ti, Gi), and is
normalized to have mean zero.

The standard DID estimand is

τDID = E[Yi|Gi = 1, Ti = 1]− E[Yi|Gi = 1, Ti = 0] (2.2)

− [E[Yi|Gi = 0, Ti = 1]− E[Yi|Gi = 0, Ti = 0] ] .

In other words, the population average difference over time in the control group (Gi = 0) is

subtracted from the population average difference over time in the treatment group (Gi = 1)

to remove biases associated with a common time trend unrelated to the intervention.

The interpretation of the standard DID estimand depends on assumptions about how out-

comes are generated in the presence of the intervention. It is often assumed that the treatment

effect is constant across individuals, so that Y Ii − Y Ni = τ . Combined with the standard DID

model for the outcome without intervention, Y Ni , this leads to a model for the realized outcome

Yi = α+ β · Ti + η ·Gi + τ · Ii + εi.

More generally, the effect of the intervention might differ across individuals. Then, the standard

DID estimand gives the average effect of the intervention on the treatment group.

We propose to generalize the standard model in several ways. First, we assume that in the

absence of the intervention, the outcomes satisfy

Y Ni = h(Ui, Ti), (2.3)

with h(u, t) increasing in u. The random variable Ui represents the unobservable characteristics

of individual i, and (2.3) incorporates the idea that the outcome of an individual with Ui = u
7In some settings, it is more appropriate to think of generalizations allowing for an individual-specific fixed

effect ηi, potentially correlated with Gi. For example, we might have a panel dataset where we observe the same
individuals over time with ηi capturing a time-invariant component correlated with the group Gi. This variation
of the standard model does not affect the standard DID estimand, and it will be subsumed as a special case of
the model we propose. For more discussion of panel data, see Section 3.4.
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will be the same in a given time period, irrespective of the group membership. The distribution

of Ui is allowed to vary across groups, but not over time within groups, so that Ui ⊥ Ti | Gi.
The standard model DID model in (2.1) embodies three additional assumptions, namely

Ui = α+ η ·Gi + εi, (2.4)

h(u, t) = φ(u+ δ · t), (2.5)

for an increasing function φ(·), and

φ(·) is the identity function. (2.6)

Under the standard assumptions, the distribution of εi is independent of the group and time

indicators, so that under (2.4) distribution of Ui is independent of Ti conditional on Gi. Hence

the proposed model nests the standard one as a special case.8 Furthermore, unlike the standard

model, our assumptions do not depend on the scaling of the outcome, for example whether

outcomes are measured in levels or logarithms.

A natural extension of the standard DID model might have been to maintain assumptions

(2.4) and (2.5) but relax (2.6), to allow φ(·) to be an unknown function. This would maintain
a linear structure within an unknown transformation, so that

Y Ni = φ(α+ η ·Gi + δ · Ti + εi)

However, this specification still imposes substantive restrictions, for example ruling out models

with mean and variance shifts both accross groups and over time.9

In the proposed model, the treatment group’s distribution of unobservables may be different

from that of the control group in arbitrary ways. In the absence of treatment, all differences

between the two groups arise through differences in the conditional distribution of U given

G. The model further requires that the changes over time in the distribution of each group’s

outcome (in the absence of treatment) arise from the fact that h(u, 0) differs from h(u, 1), that

is, the effect of the unobservable on outcomes changes over time. In summary, the treated group

8It should be noted that, in general, the weakest assumption required for the standard DID estimator to be
valid is that (2.2) represents the true treatment effect. That is, one could state the assumption directly in terms
of the estimator, which involves only the four conditional means rather than other moments of the distribution,
thus allowing for unrestricted heteroskedasticity. However, such an assumption might be harder to justify, since,
for example, it treats differences between groups in moments other than the mean as uninformative about the
underlying structural model.

9To see this consider the following example: Ui = εi +Gi · (1 + εi), and h(u, t) = u+ t · (1 + 2u). In this case
there is no ν ⊥ G,T , α, β, and increasing φ(·) such that Y N

i = φ(α+ η ·Gi+ δ · Ti+ νi). To show this note that
the observational equivalence of the two models for the G = T = 0 case would imply that Fν(Fε(y)) = φ−1(y).
Observational equivalence for the G = 1, T = 0 case implies that φ−1(y)−β = φ−1((y−1)/3), and observational
equivalence for the G = 0, T = 1 case implies that φ−1(y) − α = φ−1((y − 1)/2). The latter two restrictions
are incompatible with a linear φ(·), but the combination implies that α− β = φ−1((y − 1)/2)− φ−1((y − 1)/3),
which in turn implies a linear φ(·).
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can have a different population of unobservable characteristics than the control group, but the

effect of the unobservable on outcomes is the same across groups in a given period.

Like the standard model, our approach does not rely on tracking individuals over time; each

individual has a new draw of Ui, and though the distribution of that draw does not change over

time within groups, we do not make any assumptions about whether a particular individual

has the same realization u in each period. Thus, the estimators we derive for our model will be

the same whether we observe a panel of individuals over time or a repeated cross-section. We

return to discuss panel data in more detail in Section 3.4.

Consider an economic example that fits into the proposed model but not the standard one.

Suppose that Yi represents an agent’s wage, and Ui is the agent’s ability. Wages in the absence

of the intervention are given by

Y Ni = α+ β · Ti + (1 + γ · Ti) · Ui, (2.7)

with γ > −1, so that there is a time trend in the level of wages and the returns to ability.10
Note that the model is not additively separable in Ui, nor is it if we transform the model by

taking logarithms. Thus, the standard estimator (2.2) would provide an inconsistent estimate

of the mean effect of the policy change. Even if the policy had no effect (Y Ii = Y Ni for

all i), the standard DID estimator would incorrectly deduce an effect of magnitude τDID =

γ (E[Ui|Gi = 1]− E[Ui|Gi = 0]).
So far, we have focussed largely on the model of outcomes in the absence of the intervention.

Just as in the standard DID approach, if we only wish to estimate the effect of the intervention on

the treatment group, no assumptions are required about how the intervention affects outcomes.

To analyze the counterfactual effect of the intervention on the control group, we assume that

in the presence of the intervention,

Y Ii = h
I(Ui, Ti)

for some function hI(u, t) that is increasing in u. That is, the effect of the treatment at a point

in time is the same for individuals with the same Ui = u, irrespective of the group. Thus, the

model of outcomes in the presence of the intervention is analogous to the model in the absence

of the intervention. No further assumptions are required on the functional form of hI , so that

the treatment effect, equal to hI(u, 1)−hN (u, 1) for individuals with unobserved component u,
can differ across individuals. Because the distribution of individuals varies across groups, the

average return to the policy intervention can vary across groups as well.

10A model with this structure is considered in Chay and Lee (2000), who recognize the biases we discuss here.
They provide assumptions under which these parameters are identified, and then give bounds on changes in the
returns to education over time based on bounds on the differences in unobserved abilities across groups.
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3 Identification in Models with Continuous Outcomes

3.1 The Changes-In-Changes Model

This section considers identification of the CIC model. To formalize our analysis of identifica-

tion, we modify the notation by dropping the subscript i, and treating (Y,G, T, U) as a vector

of random variables. To ease the notational burden, we define the following random variables:

Y Ngt = Y N
¯̄
G = g, T = t, Y Igt = Y I

¯̄
G = g, T = t,

Ygt = Y |G = g, T = t, Ug = U |G = g,

recalling that Y = Y N · (1 − I) + I · Y I , where I = G · T is an indicator for the treatment.
The corresponding distribution functions are FY N ,tg, FY I ,tg, FY,tg, and FU,g. To further simplify

notation, we will simply write Ygt rather than Y
N
gt for the untreated subpopulations, that is,

those other than (g, t) = (1, 1).

We analyze sets of assumptions that allow for identification of the distribution of the coun-

terfactual second period outcome for the treatment group, that is, sets of assumptions that

allow us to express the distribution FY N ,11 in terms of the joint distribution of the observables

(Y,G, T ). In practice, these results allow us to express FY N ,11 in terms of the three observable

conditional outcome distributions in the other three subpopulations FY,00, FY,01, and FY,10.

Our first assumption specifies a model of how outcomes are generated in the absence of the

intervention.

Assumption 3.1 (Model)

The outcome of an individual in the absence of intervention satisfies the relationship

Y N = h(U, T ).

Given this model, the following assumptions will be sufficient for identification of FY N ,11.

Assumption 3.2 (Strict Monotonicity)

h(u, t) is strictly increasing in u for t = 0, 1.

Assumption 3.3 (Time Invariance)

U ⊥ T | G.

Assumption 3.4 (Support)

supp[U |G = 1] ⊆ supp[U |G = 0].

[8]



Assumptions 3.1-3.3 will be jointly referred to as the changes-in-changes (CIC) model; we

will invoke Assumption 3.4 selectively for some of the identification results as needed. Consider

the role of these assumptions. Assumption 3.2 requires that higher unobservables correspond

to strictly higher outcomes. In a particular subpopulation, weak monotonicity is simply a

normalization; it is only restrictive because we assume that higher values of the unobservable

lead to higher outcomes in both periods. This type of structure arises naturally in settings

where the unobservable is interpreted as an individual characteristic such as health or ability.

Strict monotonicity is automatically satisfied in additive models, but it allows for a rich set of

non-additive structures.

This distinction between strict and weak monotonicity is innocuous in models where the

outcomes Ygt are continuous.
11 However, in models where there are mass points in the dis-

tribution of Y Ngt , the assumption is unnecessarily restrictive.
12 In Section 4, we weaken the

assumptions to allow for discrete outcomes; the results in this section are intended primarily

for models with continuous outcomes.

Assumption 3.3 requires that the population of agents within a given group does not change

over time.13 This strong assumption is at the heart of the DID and CIC approaches. It requires

that any differences between the groups are stable in a way that ensures that estimating the

trend on one group can assist in eliminating the trend in the other group. Assumption 3.4

implies that supp[Y10] ⊆supp[Y00] and supp[Y N11 ] ⊆supp[Y01]; below, we relax this assumption
in a corollary of the identification theorem.14

In applications where the outcomes are continuous, the assumptions of the CIC model do

not place any further restrictions on the data, and thus the model is not testable. The additional

assumption, Assumption 3.4, will be satisfied if all outcomes have the same support.

Throughout the paper, we will need to invert distribution functions, which are right-

continuous but not neccessarily strictly increasing. Assuming compact support,15 we will use

the convention that, for q ∈ [0, 1],

F−1X (q) = min{x ∈ supp[X ] : FX(x) ≥ q}. (3.8)

Note that the definition implies that in general, FX(F
−1
X (q)) ≥ q, and F−1X (FX(x)) ≤ x. For

continuous X we have equality for both relations, and for discrete X we have equality in the

second equation at mass points, while FX(F
−1
X (q)) = q at discontinuity points of F−1X (q).

Identification for the CIC model is established in the following theorem.

11To see this, observe that if Ygt is continuous and h is nondecreasing in u, Ygt and Ug must be one-to-one,
and so Ug is continuous as well. But then, h must be strictly increasing in u.
12Since Ygt = h(Ug, t), strict monotonicity of h implies that each mass point of Yg0 corresponds to a mass

point of equal size in the distribution of Yg1.
13In Section 3.2, we will discuss reversing the roles of the group and the time period.
14Note that this assumption is always satisfied in the standard DID model if ε has full support, but not

necessarily if ε has bounded support.
15This is stronger than necessary for identification. However, since we will use the assumption in the inference

section, and since it simplifies the argument here, we make the assumption here as well.
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Theorem 3.1 (Identification of the CIC Model) Suppose that Assumptions 3.1-3.4

hold. Then we can identify the distribution of Y N11 from the distributions of Y00, Y01, and

Y10 according to the formula

FY N ,11(y) = FY,10(F
−1
Y,00(FY,01(y))). (3.9)

Proof: By Assumption 3.2, h(u, t) is invertible in u; denote the inverse by h−1(y; t). Consider
the distribution FY N ,gt in terms of the model:

FY N ,gt(y) = Pr(h(U, t) ≤ y|G = g) = Pr(U ≤ h−1(y; t)|G = g)

= Pr(Ug ≤ h−1(y; t)) = FU,g(h−1(y; t)). (3.10)

This is the key equation. We now apply this with (g, t) = (0, 0), (0, 1), (1, 0) and (1, 1). First,

taking (g, t) = (0, 0) and substituting in y = h(u, 0), we get

FY,00(h(u, 0)) = FU,0(h
−1(h(u, 0); 0)) = FU,0(u).

Then applying F−1Y,00 to each quantity, we have for all u ∈ supp[U0],16

h(u, 0) = F−1Y,00(FU,0(u)). (3.11)

Second, applying (3.10) with (g, t) = (0, 1), and using the fact that h−1(y; 1) ∈ supp[U0] for all
y ∈ supp[Y01],

h−1(y; 1) = F−1U,0(FY,01(y)). (3.12)

Combining (3.11) and (3.12) yields, for all y ∈ supp[Y01],

h(h−1(y; 1), 0) = F−1Y,00(FY,01(y)). (3.13)

Note that h(h−1(y; 1), 0) is the outcome we would expect if we take the individual (that is,
the realization U = u) corresponding to outcome y in group 0 and period 1, and move the

individual to period 0. Equation (3.13) shows that this outcome can be determined from the

observable distributions, simply by applying F−1Y,00 to the quantile associated with y.
Third, apply (3.10) with (g, t) = (1, 0), and substitute y = h(u, 0) to get

FU,1(u) = FY,10(h(u, 0)). (3.14)

Combining (3.13) and (3.14), and substituting into (3.10) with (g, t) = (1, 1), we obtain that

for all y ∈ supp[Y01],

FY N ,11(y) = FU,1(h
−1(y; 1)) = FY,10(h(h−1(y; 1), 0)) = FY,10(F−1Y,00(FY,01(y))).

16Note that the support restriction is important here, because for u /∈ supp[U0], it is not true that
F−1Y,00(FY,00(h(u, 0))) = h(u, 0).
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By Assumption 3.4, supp[U1] ⊆supp[U0], it follows that supp[Y N11 ] ⊆supp[Y01]. Thus, the directly
estimable distributions FY,10, FY,00, and FY,01 determine FY N ,11 for all y ∈ supp[Y N11 ]. ¤

We can think of the CIC model as defining a transformation,

kCIC(y) = F−1Y,01(FY,00(y)). (3.15)

This transformation, which represents the change over time in the distribution of outcomes for

the control group, can be applied to units in the first period treated group to find a counter-

factual value of y for G = 1, T = 1. Then, the distribution of Y N11 is equal to the distribution

of k(Y10). Formally,

Pr(Y N11 ≤ y) = Pr(kCIC(Y10) ≤ y) = Pr(Y10 ≤ F−1Y,00(FY,01(y))) = FY,10(F−1Y,00(FY,01(y))).

The transformation kCIC is illustrated in Figure I. Start with a value of y, with associated

quantile q in the distribution of Y10, as illustrated in the bottom panel of Figure I. Then find

the quantile for the same value of y in the distribution of Y00, FY,00(y) = q
0. Next, compute the

change in y according to kCIC , by finding the value for y at that quantile q0 in the distribution
of Y01 to get

∆CIC = F−1Y,01(q
0)− y = F−1Y,01(FY,00(y))− y = kCIC(y)− y,

as illustrated in the top panel of Figure I. Finally, compute a counterfactual value of Y N11 equal

to y +∆CIC , so that

F−1
Y N ,11

(q) = F−1
Y N ,11

(FY,10(y)) = y +∆
CIC = kCIC(y).

The kCIC(y) transformation in (3.15) suggests writing the average treatment effect as:

τCIC ≡ E[Y I11]− E[Y N11 ] = E[Y I11]− E[kCIC(Y10)] = E[Y I11]− E[F−1Y,01(FY,00(Y10))], (3.16)

and an estimator for this effect can be constructed using empirical distributions and sample

averages. Similarly, the effect of the treatment on a particular quantile of the distribution of

the treatment group is given by

τCICq ≡ F−1
Y I ,11

(q)− F−1
Y N ,11

(q) = F−1
Y I ,11

(q)− F−1Y,01(FY,00(F−1Y,10(q))).

In Section 5.1, we discuss inference for these parameters.

Under some conditions the DID and CIC approaches estimate the same parameter: τCIC =

τDID. The following lemma describes two of these cases:

[11]



Lemma 3.1 (Equality of CIC and DID Estimands) Under either of the following two

conditions the DID and CIC estimands τDID and τCIC are equal.

(i) (identical initial period distributions) FY,00(y) = FY,10(y) for all y.

(ii) (additive shift for control group over time) For some c, FY,00(y) = FY,01(y + c) for all y,

and supp[Y10]⊆supp[Y00].

Proof: (i) If FY,00(y) = FY,10(y), then by (3.9), FY N ,11(y) = FY,10(F
−1
Y,00(FY,01(y))) = FY,01(y).

Hence τCIC = E[Y I11] − E[Y N11 ] = E[Y I11] − E[Y01]. Also, E[Y00] = E[Y10] so that τDID =

E[Y I11]− E[Y10]− (E[Y01]− E[Y00]) = E[Y I11]− E[Y01] = τCIC .

(ii) If FY,00(y) = FY,01(y + c), then c = E[Y01] − E[Y00]. Also, for y ∈ supp[Y10]⊆supp[Y00],
kCIC(y) = F−1Y,01(FY,00(y)) = y + c = y + E[Y01] − E[Y00]. Thus, τCIC = E[Y I11] − E[k(Y10)] =
E[Y I11]− E[Y10]− (E[Y01]− E[Y00]) = τDID. ¤

Note that these conditions for equality of τCIC and τDID are assymetric in the way they

treat the group and period indicators. It is sufficient that the control group distributions over

time differ by an additive shift, but it is not sufficient that the control and treatment group

distribution in the first period differ only by an additive shift.

Consider now the role of the support restriction, Assumption 3.4. It was used only in

the last step of the proof of Theorem 3.1, where it ensured that for all y in the interior of

supp[Y N11 ], FY,01(y) ∈ (0, 1); this important for constructing the CIC estimator using (3.9). If
we relax Assumption 3.4, then, for y ∈ supp[Y N11 ]∩supp[Y01], (3.9) can be used to compute the
distribution of Y N11 . Outside that range, we have no information about the distribution of Y

N
11 .

Corollary 3.1 (Identification of the CIC Model Without Support Restrictions)

Suppose that Assumptions 3.1-3.3 hold. Then we can identify the distribution of Y N11 on

supp[Y01], from the distributions of Y00, Y01, and Y10. For y ∈ supp[Y01], FY N ,11 is given
by (3.9). Outside of supp[Y01], the distribution of Y

N
11 is not identified.

To see how this result could be used, define

q = min
y∈supp[Y00]

FY,10(y), q̄ = max
y∈supp[Y00]

FY,10(y). (3.17)

Then, for any q ∈ [q, q̄], we can calculate the effect of the treatment on quantile q of the
distribution of FY,10, according to τ

CIC
q . Thus, even without the support Assumption 3.4, for

all quantiles of Y10 that lie in this range, it is possible to deduce the effect of the treatment.

Furthermore, for any bounded function g(y), it will be possible to put bounds on E[g(Y I11) −
g(Y N11 )], following the approach of Manski (1990, 1995). The greater the overlap in the supports

of Y00 and Y10, the tighter these bounds will be for a given g(·). When g is the identity function
and the supports are bounded, this approach yields bounds on the average treatment effect.

Before proceeding, we pause to relate Corollary 3.1 to identification results in the standard

DID model. The standard DID approach requires no support assumption to identify the average
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treatment effect, while under the CIC model, we can only identify bounds on the average

treatment effect unless Assumption 3.4 holds. Our analysis highlights the fact that the standard

DID model permits identification of the average treatment effect through extrapolation: because

the time trend is constant across individuals, we can estimate the time trend based on the

individuals in the control group, and apply that time trend to individuals in the treatment

group, even for individuals in the initial period treatment group who experience outcomes

outside the support of the initial period control group. Corollary 3.1 states that when we allow

each individual to experience a separate time trend, it is impossible to infer the counterfactual

distribution of outcomes for individuals whose outcomes (and thus unobservable characteristics)

are not present in the control group. The only way to accomplish that goal is to make additional

assumptions about how to extrapolote the time trend within the support of the control group

to the time trend outside the support.

Finally, observe that our analysis extends naturally to the case with covariates X ; we simply

require all assumptions to hold conditional on X . Then, Theorem 3.1 extends to establish

identification of Y N11 |X.

3.2 Interpretations and Alternative Models

In this section, we provide additional interpretations of the CIC model and the associated iden-

tification approach. We further specify some alternative models that also lead to identification

of the entire counterfactual distribution for the second-period treatment group in the absence

of the treatment, and we describe the conceptual differences between them. Different models

may be more appropriate in different applications, although we argue that our CIC model and

its close cousins have some desirable properties that the alternatives lack, most importantly,

invariance of assumptions to the scaling of the outcome variable.17

The CIC model applies when the population of agents is fixed within a group over time, but

that group of agents experiences a different “production technology” in different time periods.

Thus, groups and time periods are treated asymmetrically. Of course, there is nothing intrinsic

about what we have labelled as a time period or a group. In some applications, it might make

more sense to reverse the roles of the two. For example, suppose that there is a population

observed in two periods. In each period, each member of the population is randomly assigned to

one of two groups, and these groups have different “production technologies,” in that identical

agents will have different outcomes in the different groups (e.g., the groups correspond to

hospitals with patients assigned to different hospitals). The underlying production technologies

are fixed over time, but in the second period, one of the groups experiences an additional policy

17To be precise, we say that a model is invariant to the scaling of the outcome if, given the validity of the model
for Ygt, the same assumptions validate the same model (with different parameters) for any strictly monotone
transformation of the outcome. The CIC model is invariant, because if Y = h(U, T ), then for any strictly
monotone transformation Y̆ = s(Y ) = s(h(U, T )) = h̆(U, T ), with the same assumptions as in the original model.
The standard DID model is not invariant because if Y = α+ βT + ηG+ ε, with ε independent of T and G, it is
generally not true that Y̆ = s(Y ) = ᾰ+ β̆T + η̆G+ ε̆, with ε̆ independent of (T,G), unless s(·) is linear.
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change (e.g., the hospital adopts a new medical technology). However, the composition of the

population changes over time (e.g., the underlying health of 60-year-old males participating in

a medical study changes year by year). Then, we would allow the distribution of U to vary

with time but not across groups.

Formally, the reverse CIC model (CIC-r) has Y = h(U,G), with Assumption 3.3 replaced

by U⊥G|T . When needed, Assumption 3.4 is replaced by supp[U |T = 1] ⊆supp[U |T = 0].

That is, it is the same as the CIC model but with the roles of G and T reversed. Then, the

counterfactual distribution for the CIC-r model is identified on supp[Y10], where it is given by

FY N ,11(y) = FY,01(F
−1
Y,00(FY,10(y))).

When the distribution of outcomes is continuous, neither the CIC nor the CIC-r model has

testable restrictions, and so the two models cannot be distinguished. Yet, these approaches

yield different estimates. Thus, in a particular application, it will be important to justify the

choice of which dimension is called the group and which is called time.

This discussion highlights that there may be many ways to construct a counterfactual dis-

tribution; each method should correspond to a different model of how the observations are

generated as a function of group, time, and individual unobservable characteristics. Further,

each model will suggest a way to compare outcomes across groups and over time. Such models

may be usefully compared in terms of the implicit transformation k(·) that will be applied to
Y10. The standard DID approach corresponds to the transformation

kDID(y) = y + E[Y01]− E[Y00],

applied to the observations from the first period treatment group so that

FY N ,11(y) = Pr(k
DID(Y10) ≤ y) = Pr(Y10 ≤ y − E[Y01] + E[Y00]) = FY,10(y − E[Y01] + E[Y00]).

(3.18)

As shown in Section 3.1, the CICmodel corresponds to the transformation kCIC(y) = F−1Y,01(FY,00(y))
applied to the first period treatment group. The reverse CIC model defines the transformation

kCIC−r(y) = F−110 (FY,00(y));

when this is applied to the observations in the second period control group,

FY N ,11(y) = Pr(k
CIC−r(Y01) ≤ y) = FY,01(F−1Y,00(FY,10(y))).

Note that applying the DID method in reverse, using

kDID−r(y) = y + E[Y10]− E[Y00],

yields

FY N ,11(y) = Pr(k
DID−r(Y01) ≤ y) = Pr(Y01 ≤ y − E[Y10] + E[Y00])

[14]



= FY,01(y − E[Y10] + E[Y00]). (3.19)

Under the assumptions of the DID model, the counterfactual distributions (3.18) and (3.19) are

equivalent; more generally, however, the two distributions are different. Nonetheless, the implied

average treatment effects are always identical because E[kDID(Y10)] = E[Y10] +E[Y01]− E[Y00]
is the same as E[kDID−r(Y01)] = E[Y01] + E[Y10]− E[Y00].

In the next subsection, we focus on another alternative in more detail.

3.2.1 The Quantile DID Model

A third possible approach, after the DID and CIC models, arises from applying the DID ap-

proach to each quantile rather to the mean. Some of the DID literature has followed this

approach for specific quantiles.18 For example, suppose that Y represents an agent’s wealth,

and U is potential savings. The treatment is the availability of 401(k) retirement savings plans,

as in Poterba, Venti, and Wise (1995). In this case, the treatment may have different effects

on different parts of the distribution of potential savings. Which parts of the distribution are

affected is important for tax policy. Poterba, Venti, and Wise (1995) start from equation (2.1)

and assume that the median of Y N conditional on T and G is equal to α + βT + ηG. This

would of course be true if Y N = α+ βT + ηG+ ε, and ε is independent of the pair (T,G), but

it would also allow for some dependence of the distribution of ε on T and G.

More generally, consider applying such an approach to each quantile. To construct the

counterfactual distribution of Y N11 , we add to the q quantile of the Y10 distribution the difference

at the q quantile of the distributions of Y01 and Y00. In terms of the transformation k, this

implies the following mapping of the observations in the first period treated group:

kQDID(y) = y + F−1Y,01(FY,10(y))− F−1Y,00(FY,10(y)).

As illustrated in Figure I, for a fixed y, we determine the quantile q for y in the distribution

of Y10, q = FY,10(y). We then consider the difference over time in the control group at that

quantile,

∆QDID = F−1Y,01(q)− F−1Y,00(q),

and add that to y to get the counterfactual value, so that

F−1
Y N ,11

(q) = F−1Y,10(q) +∆
QDID = F−1Y,10(q) + F

−1
Y,01(q)− F−1Y,00(q).

We refer to this approach as the “Quantile DID” approach, or QDID. In this method, instead

of comparing individuals across groups according to their outcomes, as in the CIC model, we

18See for example, Meyer, Viscusi and Dubin (1995) and Poterba, Venti and Wise (1995).
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compare individuals across groups according to their quantile.19 By defining a transformation

that is valid for all y in the support of Y10, we generate again the entire counterfactual distri-

bution of Y N11 . Using the QDID approach therefore does not restrict us to look at the effect of

the treatment on quantiles of the distribution — we can use this model to estimate the effect of

the treatment on the average outcome or any other function of the outcome.

Now consider a model under which the QDID approach is valid. It is valid under the

standard DID assumptions, as in (2.1). In that case, however, the transformation kQDID(y) is

not very interesting, because the model requires that the effect of moving from the initial to the

second period be the same at all quantiles. Consider now a more general model that generates

the same counterfactual distribution of Y N11 and therefore justifies this approach. Let

Y N = h̃(U,G, T ) = h̃G(U,G) + h̃T (U, T ). (3.20)

Suppose that h̃(u, g, t) is strictly increasing in u. Suppose further that U⊥(G,T ).We refer to this
model as the “QDID model.” This nests the standard model (2.1), by setting h̃G(u, g) = ηg+u,

h̃T (u, t) = α+ βt, and letting U = ε, where ε is independent of the time period and the group.

As with the CIC model, we note that the assumptions of this model are unduly restrictive

if outcomes are discrete, and so the results in this section should be applied to cases with

continuous outcomes. Section 4.4 analyzes the discrete version of the QDID model.

To interpret this model, note that the distribution of outcomes differs between periods within

groups because the individual component interacts with the time trend through h̃T (U, T ), and

the distribution differs between groups within time periods because the individual component

interacts with the group effect through h̃G(U,G). Because the distribution of U is the same in all

subpopulations, in the QDID model, what is comparable across groups is the rank, or quantile,

of an individual’s outcome, as summarized by the realization of U. Two individuals with the

same realization U = u, and thus the same rank, will have different outcomes in the same

period in different groups under the QDID model. This contrasts with the CIC model, where

two individuals with the same realization U = u in different groups will have the same outcome,

although they will typically be in a different quantile of their group/period distribution. Thus, in

the CIC model what is comparable across groups is an individual’s outcome, not the individual’s

rank. The QDID model is therefore appropriate with identical populations of agents, subjected

to different conditions in different groups and time periods. However, the effect of being in a

group does not change over time, and vice versa. A disadvantage of the QDID model relative to

the CIC model is that the assumptions depend on the scaling of y. If h̃ is additively separable

for levels of y, ln(y) = ln(h̃) will not be.
19Several other authors have used related ideas outside of the DID setting. Juhn, Murphy and Pierce (1993)

propose matching up quantiles in different periods to decompose changes in the wage distribution. Hahn (1996)
develops some distribution theory for such decompositions. Heckman, Smith and Clements (1997) match up
quantiles in the within-period treatment and control group using monotonicity as well as alternative assumptions
on the rank correlation with a focus on the distribution of treatment effects. See also Krueger (1999), who studies
test scores, and transforms the scores of the treatment group in each period using the cumulative distribution
function of the control group’s scores, and then compares the within-period treatment and control group.
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The following theorem establishes that the QDID approach identifies the counterfactual

distribution of Y N11 under the assumptions of the QDID model.

Theorem 3.2 (Identification of the QDID Model) Suppose that in the absence of the

treatment, Y N = h̃(U,G, T ), where h̃(u, g, t) is additively separable in g and t and is strictly

increasing in u. Assume further that U is independent of (G,T ) and that Y is continuously

distributed. Then we can identify the distribution of Y N11 from the distributions of Y00, Y01, and

Y10, according to the formula

F−1
Y N ,11

(q) = F−1Y,10(q) + F
−1
Y,01(q)− F−1Y,00(q) for q ∈ (0, 1). (3.21)

Proof: Observe that (normalizing the distribution of U to be uniform on [0, 1] without loss of

generality), for (g, t) = (0, 0), (0, 1), (1, 0), by independence of U and (G, T ),

FY,gt(y) = Pr(h̃(U, g, t) ≤ y) = FU (h̃−1(y; g, t)) = h̃−1(y; g, t).

Inverting this implies that for these combinations of g, t, F−1Y,gt(u) = h̃(u, g, t). Then, by addi-
tivity,

h̃(u, 1, 1) = h̃(u, 1, 0) + h̃(u, 0, 1)− h̃(u, 0, 0).

Combining this gives

F−1
Y N ,11

(u) = h̃(u, 1, 1) = F−1Y,10(u) + F
−1
Y,01(u)− F−1Y,00(u).

That is, when U is independent across groups and time, QDID is valid for each quantile if and

only if h̃ is additively separable in g and t. ¤

In general, the QDID approach will give a different answer than either the CIC or the stan-

dard DID model for the counterfactual Y N11 distribution. It is interesting to note, however, that

when outcomes are continuous and we focus only on the mean of the counterfactual distribution

of Y N11 , the QDID approach yields the same answer as the standard DID approach. To see this,

note that under the assumptions of the QDID model,

E[Y N11 ] = E[h̃(U, 1, 1)] = E[h̃(U, 1, 0)] + E[h̃(U, 0, 1)]− E[h̃(U, 0, 0)]
= E[Y10] + E[Y01]− E[Y00].

Thus,

τQDID ≡ E[Y I11]− E[Y N11 ] = τDID.

Of course, the standard DID approach would yield different answers for other moments of the

distribution, or for quantiles, unless the change over time in each quantile of the control group

[17]



is constant. The QDID approach suggests the following estimator for the effect of the treatment

on quantile q:

τQDIDq = F−1
Y I ,11

(q)− F−1
Y N ,11

(q) = F−1
Y I ,11

(q)− F−1Y,10(q)−
h
F−1Y,01(q)− F−1Y,00(q)

i
, (3.22)

which is generally different from

τDIDq = F−1
Y I ,11

(q)− F−1
Y N ,11

(q) = F−1
Y I ,11

(q)− F−1Y,10(q)− [E[Y01]− E[Y00]] .

Because the assumptions of the QDID model are not invariant to monotone transformations of

the outcomes, we cannot simply compute τDID = τQDID for monotone transformations of Y in

order to compute the effect of the treatment of different moments of the distribution; in general,

it will be necessary to construct the counterfactual distribution according to (3.21). However,

for a specific quantile q, the treatment effect (τQDIDq , given in (3.22)) can be estimated using

standard quantile regression, with the specification

F−1Y (q) = αq + βq · T + ηq ·G+ τqGT.

To further relate the QDID model to the standard DID model, observe that under the QDID

model we can rewrite (3.20) as

Y N = α+ β · T + η ·G+ ν, (3.23)

where α = E[h̃G(U, 0) + h̃T (U, 0)], β = E[h̃T (U, 1)− h̃T (U, 0)], η = E[h̃G(U, 1)− h̃G(U, 0)], and
the residual ν is

ν = h̃G(U,G) + h̃T (U, T )− α · T − η ·G.

Note that although ν is not necessarily independent of G and T , it is by construction uncor-

related with them. Thus, this model nests the standard DID model, but with the assumption

that ν is uncorrelated rather than independent of G and T .20

An important feature of the QDID model is that it places some restrictions on the data. In

particular, without any restrictions on the distributions of Y00, Y01, and Y10, the transformation

kQDID is not necessarily monotone. Thus, if y is at quantile q in the distribution of Y10,

kQDID(y) does not necessarily have the same quantile in the distribution of Y N11 . Under the

assumptions of the QDID model, however, kQDID is guaranteed to be monotone. To see this,

observe that under the assumptions of the QDID model, when U is normalized to be uniform

on [0, 1],

∂

∂y
kQDID(y) = 1 +

h̃u(h̃
−1(y; 1, 0), 0, 1)

h̃u(h̃−1(y; 1, 0), 1, 0)
− h̃u(h̃

−1(y; 1, 0), 0, 0)
h̃u(h̃−1(y; 1, 0), 1, 0)

,

20Of course, as we noted above, independence is not necessary for the standard DID estimator to be valid.
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so that

∂

∂y
kQDID(y)

¯̄̄̄
y=h̃(u,1,0)

=
h̃u(u, 1, 1)

h̃u(u, 1, 0)
.

This is positive by monotonicity of h̃ in u. However, if the assumptions of the QDID model are

violated, kQDID(y) is not necessarily monotone. To see a simple example, suppose that Y00 is

uniform on [0, 12 ], Y01 is uniform on [0, 2], and Y10 is uniform on [0, 1]. Then, for y ∈ (0, 12),

kQDID(y) = y + F−1Y,01(y)− F−1Y,00(y) = −
1

2
y.

In this case, we could reject the hypothesis that the data is generated by the QDID model. Such

a test may not have much power, as the restrictions are only inequality restrictions, but this

discussion highlights the fact that the QDID model is restrictive. In contrast, the CIC model

does not place any restrictions on the joint distribution of the observables when outcomes are

continuous, although by Corollary 3.1, it does not permit identification outside of supp[Y01].

3.3 The Counterfactual Effect of the Policy for the Untreated Group

Until now, we have only specified a model for an individual’s outcome in the absence of the

intervention. No model for the outcome in the presence of the intervention is required to draw

inferences about the effect of the policy change on the treatment group, that is, the effect of

“the treatment on the treated” (e.g., Heckman and Robb, 1985); we simply need to compare

the actual outcomes in the treated group with the counterfactual. However, more structure is

required to analyze the effect of the treatment on the control group.

Consider augmenting the CIC model with an assumption about the treated outcomes. It

seems natural to specify that these outcomes are analogous to untreated outcomes, so that

Y I = hI(U, T ). In words, at a given point in time, the effect of the treatment is the same across

groups for individuals with the same value of the unobservable. However, outcomes can differ

across individuals with different unobservables, and no further functional form assumptions are

imposed about the incremental returns to treatment, hI(u, t)− h(u, t).21
At first, it might appear that finding the counterfactual distribution of Y I01 should be qual-

itatively different than finding the counterfactual distribution of Y N11 . After all, there are three

subpopulations available that did not experience the treatment, and all can be used to help

identify the distribution of untreated outcomes for the fourth subpopulation. In contrast, only

one subpopulation received the treatment, yet still we wish to know the distribution of Y I01.

However, it turns out that the two problems are symmetric. To see this, observe that within a

21Although we require monotonicity in of h and hI in u, it is not required that the value of the unobserved
component is identical in both regimes, merely that the distribution remains the same (that is, U ⊥ G|T ). In
other words, a low-u individual in the absence of the intervention can become a high-u individual given the
intervention, as long as the distribution of u’s remains the same given the intervention as it is in the absence of
the intervention.
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group, the distribution of U is unchanged over time, so that we can construct a transformation

based on group 1 and apply it to Y00, even though group 1 is treated in one period and not in

the other. More formally, since Y I01 = h
I(U0, 1) and Y00 = h(U0, 0),

Y I01
d∼ hI(h−1(Y00; 0), 1). (3.24)

Since the distribution of U1 does not change with time, for y ∈ supp[Y10],

F−1
Y I ,11

(FY,10(y)) = h
I(h−1(y; 0), 1). (3.25)

This is just the transformation kCIC(y) with the roles of group 0 and group 1 reversed. Following

this logic, to compute the counterfactual distribution of Y I01, we simply apply the approach

outlined in Section 3.1. In other words, replace G with 1−G, and Theorem 3.1 and Corollary

3.1 give the counterfactual distribution of Y I01. Summarizing:

Theorem 3.3 (Identification of the Counterfactual Effect of the Policy in the

CIC Model) Suppose that Assumptions 3.1-3.3 hold. In addition, suppose that Y I = hI(U, T ),

where hI(u, t) is strictly increasing in u. Then we can identify the distribution of Y I01 from the

distributions of Y00, Y10, and Y
I
11, on the restricted support supp[Y

I
11], according to

FY I ,01(y) = FY,00(F
−1
Y,10(FY I ,11(y))). (3.26)

If supp[U0]⊆supp[U1], then supp[Y I01]⊆supp[Y I11], and FY I ,01 is identified everywhere.

Proof: The proof is analogous to Theorem 3.1 and Corollary 3.1. Using (3.25), for y ∈ supp[Y I11],

F−1Y,10(FY I ,11(y)) = h(h
I,−1(y; 1), 0).

Using this and (3.24), for y ∈ supp[Y I11],

Pr(hI(h−1(Y00; 0), 1) ≤ y) = Pr(Y00 ≤ F−1Y,10(FY I ,11(y))) = FY,00(F−1Y,10(FY I ,11(y))).

The statement about supports follows from the definition of the model. ¤
To interpret this result, recall our discussion in Section 2, where we argued that in standard

DID approach, the effect of the treatment on the control group is equal to τDID when there

are constant treatment effects, or more generally when the distribution of Y I − Y N does not

vary across groups. This suggests an intuition that DID methods can be used to identify the

effect of the treatment on the control group when groups are similar. In contrast, our approach

does not require that the nontreated group be similar to the treatment group in terms of the

time 0 distribution of U or of outcomes. What is important is that the support of initial period

outcomes are similar, and that the underlying “production function” mapping unobservables

to treated and untreated outcomes is identical across groups.

Notice that in this model, not only can the policy change take place in a group with dif-

ferent distributional characteristics (e.g. “good” or “bad” groups tend to adopt the policy),
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but further, the expected incremental benefit of the policy may vary across groups. Because

hI(u, t) − h(u, t) varies with u, if FU,0 is different from FU,1, then the expected incremental

benefit to the policy differs.22 For example, suppose that

E[hI(U, 1)− h(U, 1)|G = 1] > E[hI(U, 1)− h(U, 1)|G = 0].
Then, if the costs of adopting the policy are the same for each group, we would expect that if

policies are chosen optimally, the policy would be more likely to be adopted in group 1. Using

the method suggested by Theorem 3.3, it is possible to compare the average effect of the policy

in group 1 with the counterfactual estimate of the effect of the policy in group 0 and to verify

whether the group with the highest average benefits is indeed the one that adopted the policy.

It is also possible to describe the range of adoption costs and distributions over unobservables

for which the treatment would be beneficial or not.

So far, our discussion in this subsection has focused on the CIC model. Consider briefly

the CIC-r model. That model is identical to the CIC model, but with the role of group and

time reversed. So, finding the effect of the treatment on the control group in the CIC-r model

is analogous to finding Y I10, the distribution of the outcome in the first period treatment group

given the intervention, in the CIC model. Consider the latter question. In Theorem 3.3, we

assumed that Y I = hI(U, T ). That is, there is a different production function for the intervention

in each period. But, because we only observe the effects of the intervention in period 1, the

data can not provide direct information about hI(u, 0). Thus, to draw inferences about the

effect of the policy intervention in period 0, we would require a stronger assumption, such as

hI(u, 0) = hI(u, 1), that is, the production function under the intervention is the same in both

periods. Because the distribution of U is independent of time within a group, that implies

that Y I10
d∼ Y I11. Since we do not in general have Y N10 d∼ Y N11 , this still allows the return to the

intervention to vary across groups; but still, the requirement that Y I10
d∼ Y I11 is quite strong.

Taking this logic back to the CIC-r model, we conclude that to draw inferences about the

effect of the treatment on the control group, we would need an analogous assumption, namely,

Y I01
d∼ Y I11. In summary, the CIC-r model does not suggest a particularly attractive way to

calculate the effect of the treatment on the control group, unless there is some justification for

the seemingly inconsistent assumptions that the production function differs across groups in the

absence of the intervention, but is the same across groups in the presence of the intervention.

Now, consider a model of Y I that may be appropriate in conjunction with the QDID model.

Suppose that

Y I = h̃(U,G, T ) + φ(U), (3.27)

where φ is strictly increasing. Although (3.27) may appear to be a somewhat arbitrary func-

tional form, it has an element of symmetry in that the group, time, and intervention all have
22For example, suppose that the incremental returns to the intervention, hI(u, 1) − h(u, 1), are increasing in

u, so that the policy is more effective for high-u individuals. If FU,1(u) ≤ FU,0(u) for all u (i.e. First-Order
Stochastic Dominance), then expected returns to adopting the intervention are higher in group 1.
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effects that depend on the unobservable u but do not interact with one another.23 In other

words, the realized outcome can be written as

Y = h̃G(U,G) + h̃T (U, T ) + h̃I(U, I).

Because the effect of the intervention is additive and the distribution of U is independent of the

group, the average effect of the policy must be the same in both groups. Thus, the QDID model

together with (3.27) is fairly restrictive. Nonetheless, (3.27) allows that the intervention has

heterogeneous effects across individuals, and we can calculate the counterfactual distribution

of outcomes for the untreated group in the presence of the treatment according to

F−1
Y I ,01

(q) = h̃(q, 0, 1) + φ(q)

= h̃(q, 1, 1) + φ(q) + h̃(q, 0, 0)− h̃(q, 1, 0)
= F−1

Y I ,11
(q) + F−1Y,00(q)− F−1Y,10(q) for q ∈ (0, 1).

Because the effect of the treatment on quantile q is the same for both groups, all of our above

discussion about estimation and inference for the average treatment effect, τQDID = τDID, and

the effect of the treatment on different quantiles, τQDIDq , applies. In particular, the average

effect of the treatment is the same in both groups.

In the remainder of the paper, we focus on identification and estimation of the distribution

of Y N11 . However, the results that follow extend in a natural way to Y
I
01; simply exchange the

labels of the groups 0 and 1 to calculate the negative of the treatment effect for group 0.

3.4 Panel Data versus Repeated Cross-Sections

The discussion so far has avoided making any distinctions between panel data and repeated

cross-sections. In order to discuss these issues it is convenient to introduce additional notation.

For individual i, let Yit be the outcome in period t, for t = 0, 1. We augment the model by

allowing the unobserved component to vary with time:

Y Nit = h(Uit, t).

The monotonicity assumption is the same as before: h(u, t) must be increasing in u. We do

not place any restrictions on the correlation between Ui0 and Ui1, but we modify Assumption

3.3 to require that conditional on Gi, the marginal distribution of Ui0 is equal to the marginal

distribution of Ui1. Formally, Ui0|Gi d∼ Ui1|Gi.
There are a number of issues to highlight in this set up. First, if we randomly choose a

period in which to observe an individual, say period Ti for individual i, and define Yi = YiTi and

23It might seem that the most natural model of Y I would be analogous to Y N , so that Y I = h̃I(g, t, u), where
h̃I is strictly increasing in u and additively separable in g and t. However, normalizing U to be uniform, this
would imply only that F−1

Y I ,01
(q) = h̃I(1, 1, q)+ h̃I(0, 0, q)− h̃I(1, 0, q). Unfortunately, the observable distributions

do not provide any information about h̃I(0, 0, q) and h̃I(1, 0, q).
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Ui = UiTi , we are back in the repeated cross-section case. In particular, the above assumptions

in that case imply that Ui is independent of Ti given Gi.

The second point is that this panel model focuses attention on the fact that the model does

not require that individuals maintain their rank over time. As in the standard DID model where

the expected change in an individual’s rank over time is determined by the correlation between

the realizations of ε for that individual, an individual’s rank is unchanged over time only in the

special case where Ui0 = Ui1. With a panel data set this correlation can be identified, but it is

immaterial to the model. Thus, it does not lead to testable restrictions on the original model,

nor does it change our ability to evaluate treatment effects.

The estimator proposed in this paper therefore applies to the panel setting as well as the

cross-section setting. In the panel setting it still differs from the standard DID estimator. It also

differs from the estimands assuming unconfoundedness or “selection on observables” (Barnow,

Cain, and Goldberger, 1980; Rosenbaum and Rubin, 1983; Heckman and Robb, 1984). Under

the unconfoundedness assumption individuals in the treatment group with an outcome equal

to y are matched to individuals in the control group with an identical first period outcome,

and their second period outcomes are compared. Formally, let FY01|Y00(y|z) be the conditional
distribution function of Y01 given Y00. Then, for the “selection on observables” model,

FY N ,11(y) = E[FY01|Y00(y|Y10)],

which is in general different from the counterfactual distribution for the CIC model.

4 Identification in Models with Discrete Outcomes

4.1 The Discrete CIC Model

With discrete outcomes a number of complications arise. We first show that the standard

DID estimator has unattractive properties in this case. We then propose a generalization of

the CIC model, where we weaken the requirement that outcomes are strictly monotone in

the unobservable to a pair of assumptions that are equivalent to strict monotonicity when

outcomes are continuous. Under the assumptions of the “discrete CIC model,” we provide an

identification result. We further show that the implied estimator is different than the standard

DID estimator, even in the special case of binary outcomes, where the data consists of just four

numbers, the probability of “success” in each subpopulation. Despite these advantages, the

discrete CIC model relies on an assumption that may be especially restrictive when the number

of possible outcomes is small. Thus motivated, we show that when we modify the CIC model

only by relaxing the strict monotonicity assumption (3.2) to weak monotonicity, we can derive

bounds on the counterfactual distribution of Y N11 . Finally, we show that if there are observable

covariates that are independent of individual unobservable characteristics, point identification

can be restored without the restrictive assumption.
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4.1.1 Identification in the Discrete CIC Model

In the special case where outcomes are binary (“success” or “failure”), the standard DID esti-

mand imputes the proportion of successes in the second period for the treated subpopulation

in the absence of the treatment as

E[Y N11 ] = E[Y10] + [E[Y01]− E[Y00]].

This imputed average for the second period treatment group outcome is not guaranteed to lie

in the interval [0, 1] even if all the E[Ygt] do. For example, suppose E[Y10] = .5, E[Y00] = .8 and
E[Y01] = .2. In the control group the probability of success decreases from .8 to .2, a decrease

of .6. However, it is impossible that a similar percentage point decrease could have occurred

in the treated group in the absence of the treatment, since the implied probability of success

would be less than zero. One approach researchers have taken to deal with this issue is to first

take the average value of Ygt, and then transform the average by the log-odds transformation

ln(E[Ygt]/(1− E[Ygt])). Next, impute the log-odds ratio for the second period treatment group
by assuming additivity of the log-odds ratios in time and group indicators.24 However, this

approach does not map directly into a model of how outcomes are generated, and it is not clear

how to generalize the approach to more than two outcomes.

Now consider applying the CIC model to a case with binary outcomes. Strict monotonicity

of h(u, t) in u then implies that U is binary with h(0, t) = 0 and h(1, t) = 1 and thus Pr(Y =

U |T = t) = 1, or Pr(Y = U) = 1. Independence of U and T then implies independence of Y

and T . Thus, with binary outcomes the CIC model requires that the distribution of Y in the

control group is identical in both periods, which is obviously not a very interesting case.

Thus motivated, we now outline the “discrete CIC model.” This model is the same as the

CIC model, but we replace the strict monotonicity condition by the following two assumptions:

Assumption 4.1 (Weak Monotonicity)

h(u, t) is non-decreasing in u.

Assumption 4.2 (Conditional Independence)

U ⊥ G | h(U, T ), T.

Note that this pair of assumptions is strictly weaker than the strict monotonicity assumption.

First, if h(u, t) is strictly increasing in u, then it is obviously non-decreasing in u. Second, if

h(u, t) is strictly increasing in u, then one can write U = h−1(T, Y ), so that conditional on T
and Y the random variable U is degenerate and hence independent of G.25

24See, e.g., Blundell, Dias, Meghir and Van Reenen (2001).
25If the outcomes are continuously distributed, the second assumption is automatically satisfied. In that case

flat areas of the function h(u, t) are ruled out as they would induce discreteness of Y , and hence U must be
continuous and the correspondence between Y and U must be one-to-one.

[24]



Below, we will provide further discussion of the role of Assumption 4.2 and how it can be

weakened. For the moment, let us focus on the binary outcome case and examine what the

conditional independence assumption implies for estimating the counterfactual probability of

success, E[Y N11 ].Without loss of generality we assume that in the control group U has a uniform
distribution on the interval [0, 1]. Let u0(t) = sup{u : h(u, t) = 0}. The observables relate to
the primitives of the model according to

1− E[Y Ngt ] = Pr(Ug ≤ u0(t)). (4.28)

Then we have for u ≤ u0(t),

Pr(Ug ≤ u| Ug ≤ u0(t)) = Pr(U0 ≤ u| U0 ≤ u0(t)) = u

u0(t)
(4.29)

for each g, using the conditional independence assumption.

Similarly, for each g and u > u0(t),

Pr(Ug > u| Ug > u0(t)) = 1− u
1− u0(t) .

Suppose that E[Y01] > E[Y00], which implies that u0(1) < u0(0). Then,

1− E[Y N11 ] = FU,1(u
0(1)) = Pr(U1 ≤ u0(1)| U1 ≤ u0(0)) · Pr(U1 ≤ u0(0))

=
u0(1)

u0(0)
(1− E[Y10]) = 1− E[Y01]

1− E[Y00] (1− E[Y10]) .

The first equality follows by definition of the model, the second by Bayes’ rule, the third by

(4.28) and (4.29), and the fourth by (4.28) and the assumption that U0 is uniform.

In the case where E[Y01] < E[Y00], we infer that u0(1) > u0(0). Analogous to above,

E[Y N11 ] = 1− FU,1(u0(1)) = Pr(U1 > u0(1)| U1 > u0(0)) · Pr(U1 > u0(0))
=

1− u0(1)
1− u0(0)E[Y10] =

E[Y01]
E[Y00]

E[Y10].

Combining, our conclusion is that the counterfactual E[Y N11 ] is determined by:

E[Y N11 ] =

( E[Y01]
E[Y00]E[Y10] if E[Y01] ≤ E[Y00]

1− 1−E[Y01]
1−E[Y00] (1− E[Y10]) if E[Y01] > E[Y00]

Notice that this formula always yields a prediction between 0 and 1. When the time trend in

the control group is negative, the counterfactual is the probability of successes in the treatment

group initial period, adjusted by the proportional change over time in the probability of success

in the control group. When the time trend is positive, the counterfactual probability of failure is

the probability of failure in the treatment group in the initial period adjusted by the proportional

change over time in the probability of failure in the control group.
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To see a numerical example, recall the example with E[Y00] = .8, E[Y01] = .2, and E[Y10] = .5.
There was a 75% reduction in the probability of success over time in the control group; applying

that to the treatment group, we predict a counterfactual probability of success of E[Y N11 ] = .125.
If, instead, E[Y00] = .2, E[Y01] = .8, and E[Y10] = .5, the probability of failure in the control

group fell from .8 to .2, a 75% reduction. Then, the counterfactual probability of failure in the

treatment group is 1− E[Y N11 ] = .125, or E[Y N11 ] = .875.
This following theorem generalizes this discussion to more than two outcomes.

Theorem 4.1 (Identification of the Discrete CIC Model) Suppose that assumptions

3.1, 3.3, 3.4, 4.1, and 4.2 hold. Suppose that the range of h is a discrete set {λ0, . . . ,λK}. Then
we can identify the distribution of Y N11 from the distributions of Y00, Y01, and Y10, according to

FY N ,11(y) =

Z FY,01(y)

0
fU,10(u)du, (4.30)

where

fU,10(u) =

KX
k=1

1{FY,00(λk−1) < u ≤ FY,00(λk)} · fY,10(λk)

FY,00(λk)− FY,00(λk−1) , (4.31)

and where fY,gt(y) is the probability function of Y conditional on T = t and G = g.

Proof: Without loss of generality we assume that in the control group U has a uniform

distribution on the interval [0, 1]. Then, the distribution of U given Y = λk, T = 0 and

G = 1 is uniform on the interval (FY,00(λk−1), FY,00(λk)). Hence we can derive the density of
U in the treatment group as in (4.31). The counterfactual distribution of Y N11 is then obtained

by integrating the transformation h(u, 1) = F−1Y,01(u) over this distribution, as in (4.30). ¤

Thus, the average effect of the intervention on the treated group and the effect of the

intervention on quantile q are given by

τDCIC ≡ E[Y I11]− E[Y N11 ] and τDCICq ≡ F−1
Y I ,11

(q)− F−1
Y N ,11

(q),

where FY N ,11(·) is given by (4.30) and (4.31).

4.1.2 Bounds in the Discrete CIC Model

The indepedence assumption 4.2 is very strong in the discrete case. If we relax this assumption,

we no longer obtain point identification. Instead, we derive bounds on the average effect of the

treatment in the spirit of Manski (1990, 1995).

To build intuition, consider first the binary outcome example discussed above and normalize

U to be uniform on [0, 1] in the control group, so that the critical value of u, u0(t), is observable

for each t and equal to 1−E[Y0t]. Under the model, the counterfactual proportion of successes
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in period 1, group 1, is given by E[Y N11 ] = Pr(U1 > u0(1)); but this probability depends on

the unknown distribution of U1. Suppose that E[Y01] > E[Y00], or equivalently, u0(1) < u0(0).
Then, there are two extreme cases for the distribution of U1 conditional on U1 < u

0(0). First, all

of the mass might be concentrated just below u0(0). In that case, Pr(U1 > u
0(1)) = 1. Second,

there might be no mass between u0(0) and u0(1), in which case

Pr(U1 > u
0(1)) = Pr(U1 > u

0(0)) = E[Y10].

Together, these two cases define the bounds on E[Y N11 ]. Since the average treatment effect, τ, is
defined by τ = E[Y I11]− E[Y N11 ], it follows that

τ ∈ [E[Y11]− 1, E[Y11]− E[Y10]].

Depending on the configuration of the data, these bounds may be narrow or wide. The sign of

the treatment effect is determined if and only if the observed time trends in the treatment and

control groups move in opposite directions.

Now, let us consider the general discrete case, where supp[Y ] = {λ0, . . . ,λK}. To evaluate
that case, recall that using our definition of the inverse of the distribution function in (3.8),

FY (F
−1
Y (q)) ≥ q. If the distribution is discrete, with masspoints λ0, . . . ,λK we have equality

only at values q such that q = FY (λk) for some k. For all other values of q, FY (F
−1
Y (q)) > q.

It is useful to have an alternative inverse distribution function. Define

F
(−1)
Y (q) = F−1Y

µ
min

y:FY (y)≥q
FY (y)

¶
.

For q such that q = FY (λk), this agrees with the previous definition and F
(−1)
Y (q) = F−1Y (q).

For other values of q we have F (F
(−1)
Y (q)) < q, so that in general,

FY

³
F
(−1)
Y (q)

´
≤ q ≤ FY

¡
F−1Y (q)

¢
.

These definitions are used in deriving bounds on the counterfactual distribution of Y N11 .

Theorem 4.2 (Bounds in the Discrete CIC Model) Suppose that assumptions 3.1, 3.3,

3.4, and 4.1 hold. Suppose that the range of h is a discrete set {λ0, . . . ,λK}. Then we can place
bounds on the distribution of Y N11 based on the distributions of Y00, Y01, and Y10, as follows:

FLBY N ,11(λk) = FY,10(F
(−1)
Y,00 (FY,01(λk))), FUBY N ,11(λk) = FY,10(F

−1
Y,00(FY,01(λk))).

Proof: Define

K(k) = max
n
k̃ : uk̃(0) ≤ uk(1)

o
, K̄(k) = min

n
k̃ : uk̃(0) ≥ uk(1)

o
.

Then,

FY,10(λK(k)) = FU,1(uK(k)(0)) ≤ FU,1(uk(1)) = FY N ,11(λk),
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where the two equalities follow from the definition of uk(t), and the inequality follows from the

definition of K(k). Similarly,

FY,10(λK̄(k)) = FU,1(u
K̄(k)(0)) ≥ FU,1(uk(1)) = FY N ,11(λk).

Thus,

FY,10(λK(k)) ≤ FY N ,11(λk) ≤ FY,10(λK̄(k)). (4.32)

Since FY,gt(λk) = FU,g(u
k(t)),

λK(k) = max
n
k̃ : FY,00(λk̃) ≤ FY,01(λk)

o
and λK̄(k) = min

n
k̃ : FY,00(λk̃) ≥ FY,01(λk)

o
.

Now, observe that using our definitions of the inverse distributions,

λK̄(k) = F
−1
Y,00(FY,01(λk)) and λK(k) = F

(−1)
Y,00 (FY,10(λk)).

Substituting this into (4.32) yields the result. ¤

This result implies that the average treatment effect, τ, must satisfy

τ ∈
h
E[Y I11]− E[F−1Y,00(FY,01(Y10))], E[Y I11]− E[F (−1)Y,00 (FY,01(Y10))]

i
.

Note that when the data are “close” to continuous, the bounds can be tight. This finding

is reminiscent of Haile and Tamer (2001), Manski and Tamer (2001), and Blundell, Gosling,

Ichimura and Meghir (2002), where bounds can be tight depending on the structure of the data.

4.2 Identification Through Covariates

In this section, we show that the introduction of covariates (X) can provide point identification

in the discrete-choice model without Assumption 4.2, if the covariates (i) are independent of U

conditional on the group, and (ii) have sufficient variation. The idea is that covariates shift the

“cutoff” value of the unobservable, u, above which the outcome takes a higher discrete value.

This variation traces out the distribution of U in an interval of u’s. Identification will obtain if

these intervals are wide enough so that for any x and corresponding critical u at time 1, there

is another x0 so that this u is the critical u at time 0.
Let us modify the CIC model for the case of discrete outcomes with covariates.

Assumption 4.3 (Discrete Model with Covariates)

The outcome of an individual in the absence of intervention satisfies the relationship

Y N = h(U, T,X),

where the range of h is the discrete set {λ0, ..,λK}.
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Assumption 4.4 (Weak monotonicity)

h(u, t, x) is nondecreasing in u for t = 0, 1 and for all x ∈ supp[X].

Assumption 4.5 (Covariate Independence)

U ⊥ X | G.

We refer to the model defined by Assumptions 4.3-4.5, together with time invariance (As-

sumption 3.3), as the Discrete CIC Model with Covariates. A specific function h that might

arise in applications derives from a latent index model

h(U, T,X) = 1{h̆(U, T,X) > 0},

for some h̆ strictly increasing in U. Note that Assumption 4.5 allows the distribution of X to

vary by group.

Theorem 4.3 (Identification of the Discrete CIC Model with Covariates) Suppose

that Assumptions 4.3-4.5 and Assumption 3.3 hold. Suppose that supp[X|G = 0]=supp[X|G =
1]. For each x, t, and k = 1, .., K, define

uk(t, x) = sup{u0 : h(u0, t, x) ≤ λk}, (4.33)

Skt = {u : ∃x ∈ supp[X ] s.t. u = uk(t, x)}. (4.34)

Assume that for all k, Sk1 ⊆ ∪Kj=1Sj0. Then we can identify the distribution of Y N11 |X from the

distributions of Y00|X, Y01|X, and Y10|X.

Proof: For each x ∈ supp[X |G = 0] and each k ∈ {1, .., K}, let (ψk(x),χk(x)) be a selection
from the set of pairs (j, x0) ∈ {{1, .., K},supp[X]} that satisfy

FY |X,00(λj|x0) = FY |X,01(λk|x).

Since Sk1 ⊆ ∪Kj=1Sj0, there exists such a j and x0. Since, without loss of generality, FU,0 is strictly
increasing on the support of U0, this implies that

uψ
k(x)(0,χk(x)) = uk(1, x).

Then,

FY N |X,11(λk|x) = FU,1(uk(1, x)) = FU,1(uψ
k(x)(0,χk(x))) = FY |X,10(λψk(x)|χk(x)).

¤

The idea of the proof can be seen in the binary case. We define the function χ0(x) so that

u0(0,χ0(x)) = u0(1, x). (4.35)
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The time-1 critical value u for x is equal to the time-0 critical value of u for χ0(x), so that

FY N |X,11(λ0|x) = FU,1(u0(1, x)) = FU,1(u0(0,χ0(x)) = FY |X,10(λ0|χ0(x)).

The variation in x allows us to learn about the distribution of FU,g at different points. If the

variation in x is sufficient, we can learn the distribution of FU,1 in the neighborhood of all

potential critical values of u in time 1, yielding identification of the distribution of Y N11 .

4.3 Bounds in the Discrete CIC Model with Discrete Covariates

Consider what happens if we have discrete covariates and we cannot satisfy the assumption in

Theorem 4.3 that for all k, Sk1 ⊆ ∪Kj=1Sj0. Suppose there is a single covariate with supp[X]=
{0, .., L}. Then, we can use the information in the covariates to tighten the bounds on the
counterfactual distribution FY N ,11 from Theorem 4.2.

Define uk(t, x) as above. Further, for each (k, l), define K(k, l) and L(k, l) by

(K(k, l),L(k, l)) = arg max
k0∈{0,..,K},
l0∈{0,..,L}

FY |X,00(λk0 |l0)

s.t. FY |X,00(λk0 |l0) ≤ FY |X,01(λk|l).

Similarly, define¡K̄(k, l), L̄(k, l)¢ = arg min
k0∈{0,..,K},
l0∈{0,..,L}

FY |X,00(λk0 |l0)

s.t. FY |X,00(λk0 |l0) ≥ FY |X,01(λk|l).

The following result places bounds on the counterfactual distribution of Y N11 .

Theorem 4.4 (Bounds in the Discrete CIC Model With Covariates) Suppose that

Assumptions 4.3-4.5 and Assumption 3.3 hold. Suppose that supp[X] is a discrete set, {0, .., L}.
Then we can place bounds on the distribution of Y N11 based on the distributions of Y00, Y01, and

Y10, as follows:

FLBY N |X,11(λk|l) = FY |X,10(λK(k,l) | L(k, l)), FUBY N |X,11(λk|l) = FY |X,10(λK̄(k,l) | L̄(k, l)).

Proof: Using the definition of the model, we have

(K(k, l),L(k, l)) = arg max
k0∈{0,..,K},
l0∈{0,..,L}

uk
0
(0, l0) s.t. uk

0
(0, l0) ≤ uk(1, l)

and ¡K̄(k, l), L̄(k, l)¢ = arg min
k0∈{0,..,K},
l0∈{0,..,L}

uk
0
(0, l0) s.t. uk

0
(0, l0) ≥ uk(1, l).
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Then, the model tells us that

FY N |X,11(λk|l) = FU1(uk(1, l)) ∈
h
FU1(u

K(k,l)(0,L(k, l))), FU1(uK̄(k,l)(0, L̄(k, l)))
i
.

Substituting in definitions from the model yields the bounds given in the Theorem. ¤

When L = 0 (there is no variation in X), the bounds are equivalent to those given in

Theorem 4.2. More generally, however, as variation in X leads to a denser set of possible

cutpoints uk(t, l), the bounds become tighter.

These bounds are straightforward to estimate; simply replace distribution functions with

their empirical counterparts. Given discrete Y and discrete X , the model is fully parametric,

so standard asymptotic theory can be used to conduct inference on the bounds.

4.4 The Discrete Quantile DID Model

Now consider generalizing the QDID model to allow for discrete outcomes. We can replace the

assumption that h̃(u, g, t) is strictly increasing in u with a weaker assumption:

Assumption 4.6 (Weak Monotonicity in QDID)

h̃(u, g, t) is non-decreasing and right-continuous in u.

Assumption 4.6 allows h̃ to have a discrete range and also requires that h̃ is right-continuous,

just as a probability distribution function would be. We define the discrete QDID model by

the following assumptions: Y N = h̃(U,G, T ), U⊥(G,T ), Assumption 4.6, and

h̃(u, g, t) = h̃G(u, g) + h̃T (u, t). (4.36)

Let supp[Y ] = {λ0, . . . ,λK}. The requirement that the range of h̃ is a finite set is somewhat
restrictive in relation to the additive structure (4.36), since even if h̃G and h̃T both have range

{λ0, . . . ,λK}, the sum might not. For the binary outcome case, to guarantee that h̃G+ h̃T has

range {0, 1}, for each u we must have either h̃T (u, 1) = h̃T (u, 0) or h̃G(u, 1) = h̃G(u, 0).
To see one solution to this problem, let K be even. If λk − λk−1 = ∆ for each k, and each

of h̃G(u, g) and h̃T (u, t) has range {0,∆, 2∆, .., (K/2)∆}, then we ensure that

h̃G(u, g) + h̃T (u, t) ∈ {0,∆, 2∆, ..,K∆} ≡ Λ.

Clearly, the more values for the outcome, the more plausible the model.26 In practice, one

might initially scale the outcomes so that the elements of {λ0, . . . ,λK} are evenly spaced and
then impose (4.36). However, we caution that in a particular application, it may or may not

make sense to impose an additivity assumption for a model when the outcomes are scaled in

this way. In applications where the model is appropriate, we have the following result.

26It is important to note that K∆ may be greater than h̃(1, 0, 1), h̃(1, 0, 1), or h̃(1, 0, 0); that is, K∆ may
never be observed in any of the subpopulations, but it still must be in the set of potential outcomes for group 1
in time 1 in the absence of the intervention.
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Theorem 4.5 (Identification of the Discrete QDID Model) Suppose that in the ab-

sence of the treatment, Y N = h̃(U,G, T ), where h̃(u, g, t) is additively separable in g and t.

Assume further that U is independent of (G,T ) and that Assumption 4.6 holds. Then we can

identify the distribution of Y N11 from the distributions of Y00, Y01, and Y10, according to the

formula

F−1
Y N ,11

(q) = F−1Y,10(q) + F
−1
Y,01(q)− F−1Y,00(q) for q ∈ (0, 1). (4.37)

Proof: By definition,

FY N ,gt(λk) = Pr(h̃(U, g, t) ≤ λk | G = g, T = t) = Pr(h̃(U, g, t) ≤ λk).

Recalling Assumption 4.6, define

h̃−1(λk; g, t) ≡ sup{u : h̃(u, g, t) ≤ λk}.

Without loss of generality, take U to be uniform on [0, 1].27 Then,

FY N ,gt(λk) = Pr(h̃(U, g, t) ≤ λk) = h̃
−1(λk; g, t).

This implies that, given our definitions of inverse distribution functions,

h̃(u, g, t) = F−1
Y N ,gt

(u) for all u ∈ (0, 1),

so that (4.37) holds. ¤

Thus, the QDID approach is the same for the discrete and continuous cases (taking care to

define the inverse distributions properly for discrete distributions).28 The effect of the treatment

on quantile q is

τQDID−Dq = τQDIDq ,

and the average treatment effect is equal to the standard DID treatment effect.

Observe that the assumptions of the model imply that for all u, F−1
Y N ,11

(u) = h̃G(u, 1) +

h̃T (u, 1) = k∆ for some k ≥ 0. Thus, the discrete QDID model imposes an additional restriction
on the data. If, in practice, our estimates of F−1

Y N ,11
(u) were to fall outside of an allowable range,

we would conclude that the model was misspecified.
27To see that there is no loss of generality, observe that given a real-valued random variable U, we can

construct a nondecreasing function ψ such that FU (u) = Pr(ψ(U∗) ≤ u), where U∗ is uniform on [0, 1]. Then,
h̆(u, g, t) = h̃(ψ(u), g, t) is nondecreasing in u since h̃ is.
28Note that the discrete QDID model does not require an assumption analogous to Assumption 4.2, the

conditional independence assumption used to establish point identification in the discrete CIC model. To see
why not, observe that since h and h̃ can be arbitrary monotone functions, we can always normalize U to be
uniform on [0, 1] conditional on a given subpopulation. In the discrete QDID model, since U⊥(G,T ), the same
normalization applies to all subpopulations. In contrast, in the discrete CIC model, U⊥T |G, and we can normalize
FU,0 to be uniform. But then, h(u, t) is uniquely determined by FY,00 and FY,01, and in turn, FU,1 is determined
by FY,10. Thus, FU,1 cannot also be normalized. However, we need to know some properties of FU,1 to calculate
FYN ,11; Assumption 4.2 provides this information.
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5 Inference

In this section we consider inference for the estimators developed in this paper. First, we

present results for the average treatment effect in the continuous CIC model, and we compare

the efficiency of the CIC estimator with the standard DID estimator. Second, we present results

for the effect of the treatment on quantiles and sets of quantiles. Third, we analyze the average

treatment effect for the CIC model with covariates that enter additively and linearly.

We do not analyze inference for several other estimators because standard methods can be

applied. The discrete CIC and QDID models are essentially fully parametric models, so that the

estimators for either the average treatment effect or the quantile treatment effects are maximum

likelihood estimators and their asymptotic properties follow directly from standard asymptotic

theory for maximum likelihood estimators. In the applications, we calculate the standard errors

for these estimators using bootstrapping. The estimators for the average treatment effect and

the quantile treatment effects under the continuous QDID model can be analyzed using standard

techniques using either simple linear regression (for the average treatment effect) or quantile

regression (for the quantile treatment effects), as described above.

5.1 Inference in the CIC Model

5.1.1 Average Treatment Effects in the CIC Model

We make the following assumptions regarding the sampling process.

Assumption 5.1 (Random Sampling)

(i) Conditional on Ti = t and Gi = g, Yi is a random draw from the subpopulation with Gi = g

during period t.

(ii) αgt ≡ Pr(Ti = t,Gi = g) > 0 for all t, g ∈ {0, 1}.

In addition, we make the following assumption regarding the four within-group/within-

period distributions.

Assumption 5.2 (Continuity and Support)

The four random variables Ygt are continuous with densities bounded and bounded away from

zero with support that is a compact subset of R.

We have four random samples, one from each group/period. Let the observations from group

g and time period t be denoted by Ygt,i, for i = 1, . . . , Ngt. We use the empirical distribution

as an estimator for the distribution function:

F̂Y,gt(y) =
1

Ngt

NgtX
i=1

1{Ygt,i ≤ y}. (5.38)
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As an estimator for the inverse of the distribution function we use

F̂−1Y,gt(q) = min{y : F̂Y,gt(y) ≥ q}, (5.39)

for 0 < q ≤ 1 and F−1Y,gt(0) = y
gt
, where y

gt
is the lower bound on the support of Ygt. As an

estimator of τCIC (defined in (3.16)), we use

τ̂CIC =
1

N11

N11X
i=1

Y11,i − 1

N10

N10X
i=1

F̂−1Y,01(F̂Y,00(Y10,i)). (5.40)

Theorem 5.1 (Consistency and Asymptotic Normality) Suppose Assumptions 5.1 and

5.2 hold and supp[Y10] ⊆supp[Y00]. Then:
(i) τ̂CIC

p−→ τCIC ,

(ii)
√
N
¡
τ̂CIC − τCIC¢ d−→ N (0, V00/α00 + V01/α01 + V10/α10 + V11/α11) ,

where V00 = E
£
E[g00(Y00, Y10)|Y00]2

¤
, V01 = E

£
E[g01(Y01, Y10)|Y01]2

¤
,

V10 = V (g10(Y10)) , and V11 = Var(Y11), with

g00(y00, y10) =
1

fY,01(F
−1
Y,01(FY,00(y10)))

· (1{y00 ≤ y10}− FY,00(y10)) ,

g01(y01, y10) =
1

fY,01(F
−1
Y,01(FY,00(y10)))

· (1{FY,01(y01) ≤ FY,00(y10)}− FY,00(y10)) ,

and

g10(y10) = F
−1
Y,01(FY,00(y10)).

Proof: See Appendix.

In general, the variance of the estimator for τCIC is difficult to interpret. We therefore

consider some special cases and compare the variance of τ̂CIC to the variance for the standard

DID estimator τ̂DID. Recall that the CIC model is more general than the standard DID model.

However, in order for the additional support assumption (Assumption 3.4) to be satisified when

outcomes have compact support and the additivity assumptions of the DID model hold, the

two outcome distributions in the initial period must be identical. Further, in the standard DID

model, the second period control group distribution must differ only by an additive shift. For

that case, the following result shows that the variances are equal.

Corollary 5.1 Suppose that Y00
d∼ Y10, that supp[Y10] is compact, and that there exists a ∈ R

such that, for each g, Y Ng0
d∼ Y Ng1 + a. If the density fY,10(y) is bounded away from zero on

supp[Y10], then the variance of τ̂
CIC is equal to the variance of τ̂DID.

Proof: See Appendix.
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More generally, the variance of the CIC estimator can be larger or smaller than the variance

of the standard DID estimator. To see this, suppose that Y00 has mean zero, unit variance,

and compact support, and that Y00
d∼ Y10. Now suppose that Y01 d∼ σ · Y00 for some σ > 0,

and thus Y01 has mean zero and variance σ
2. Note that although in this case the additivity

assumptions for the standard DID estimator are not satisfied, the probability limits of τ̂DID

and τ̂CIC are still identical and equal to E[Y11]−E[Y10]− [E[Y01]−E[Y00]]. If N00 and N01 are
much larger than N10 and N11, the variance of the standard DID estimator is essentially equal

to Var(Y11) + Var(Y10). The variance of the CIC estimator is in this case approximately equal

to Var(Y11)+Var(k(Y10)), which is equal to Var(Y11)+ σ2Var(Y10) because k(y) = σ · y. Hence
with σ2 < 1 the CIC estimator is more efficient, and with σ2 > 1 the standard DID estimator

is more efficient. Intuitively, the CIC estimator accounts for the change in the variance of

outcomes over time.

The asymptotic variance can be estimated by replacing expectations with sample averages,

using empirical distribution functions and their inverses for distributions functions and their

inverses, and by using a consistent nonparametric density estimator for the density functions.

5.1.2 Quantiles in the CIC Model

In the CIC model, because the assumptions are invariant to the scale of the model, many

attributes of the distribution can be summarized by looking at the average treatment effect

for s(Y ), where s is some strictly monotone function. However, in some contexts we may

be interested in the effect of the treatment on specific quantiles or sets of quantiles. This

section derives the large sample properties of the estimator τ̂CICq = F̂−1Y,11(q) − F̂−1Y N ,11(q) for
τCICq = F−1Y,11(q) − F−1Y N ,11(q), where FY N ,11 is defined as in (3.9) and F̂−1Y N ,11 is defined by
empirical distributions and inverses as described above. Define

gq00(y) =
1

fY,01(F
−1
Y,01(FY,00(F

−1
Y,10(q)))

³
1{y ≤ F−1Y,10(q)}− FY,00(F−1Y,10(q))

´
,

gq01(y) =
1

fY,01(F
−1
Y,01(FY,00(F

−1
Y,10(q)))

³
1{FY,01(y) ≤ FY,00(F−1Y,10(q))}− FY,00(F−1Y,10(q))

´
,

gq10(y) =
fY,00((F

−1
Y,10(q))

fY,01(F
−1
Y,01(FY,00(F

−1
Y,10(q)))fY,10(F

−1
Y,10(q))

(1{FY,11(y) ≤ q}− q) ,

and

gq11(y) = y − E[Y11].

For g, t ∈ {0, 1}, let V qgt = E
£
gqgt(Ygt)

2
¤
, and let τ̂CICq,gt =

PNgt
i=1 g

q
gt(Ygt,i)/Ngt.
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Theorem 5.2 (Consistency and Asymptotic Normality of Quantile CIC Estima-

tor) Suppose Assumptions 5.1 and 5.2 hold. Then, defining q and q̄ as in (3.17), for all

q ∈ (q, q̄),
(i) τ̂CICq

p−→ τCICq ,

(ii)
√
N(τ̂CICq − τCICq )

d−→ N (0, V q00/α00 + V
q
01/α01 + V

q
10/α10 + V

q
11/α11).

Proof: See Appendix.

We may also wish to test the null hypothesis of no effect of the treatment by comparing

the distributions of the second period outcome for the treatment group with and without the

treatment — that is, FY I ,11(y) and FY N ,11(y). One approach to doing so is to estimate τ̂
CIC
q for

a number of quantiles and jointly test their equality. For example, one may wish to estimate

the three quartiles or the nine deciles and test whether they are the same in both distributions.

Here we provide some detail on carrying out such tests. Let τ̂CICq1,... ,qK
be the K-dimensional

vector of quantile treatment effect estimators at quantiles q1, q2, . . . , qK , let g
q1,... ,qK
gt (y) be the

vector of functions of dimension K with as kth element the function gqkgt (y). In addition, let

V q1,... ,qKgt = E
£
gq1,... ,qKgt (Ygt) · gq1,... ,qKgt (Ygt)

0¤ .
Theorem 5.3 (Testing the Null of No Treatment Effect) Suppose Assumptions 5.1

and 5.2 hold, and suppose that the distribution of Y N11 and Y11 are identical. Then

N · τ̂CICq1,... ,qK

ÃX
g,t

V q1,... ,qKgt /αgt

!−1
τ̂CICq1,... ,qK

d−→ X 2(K).

Proof: See Appendix.

5.1.3 The CIC Model with Covariates

With covariates one can estimate the average treatment effect for each value of the covariates by

applying the estimator discussed in Theorem 5.1 and taking the average over the distribution

of the covariates. When the covariates take on many values this may be infeasible, and one

may wish to smooth over different values of the covariates. One approach is to to estimate the

distribution of each Ygt conditional on covariates X nonparametrically (using kernel regression

or series estimation) and then again average the average treatment effect at each X over the

appropriate distribution of the covariates. Such methods would be similar in spirit to those

used in the literature on program evaluation with selection on observables.29

29See, e.g., Rosenbaum and Rubin (1983), Hahn (1998), Heckman, Ichimura, Todd, (1998), Dehejia and Wahba
(1999), or Hirano, Imbens and Ridder (2000).
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As an alternative, consider a more parametric approach to adjusting for covariates. Suppose

h(u, t, x) = h(u, t) + x0β and hI(u, t, x) = hI(u, t) + x0β

with U independent of X and independent of T given X and G.30 Because, in this model,

the effect of the intervention does not vary with X, the average treatment effect is still given

by τCIC . To derive an estimator for this, we proceed as follows. First, observe that β can be

estimated consistently using linear regression of outcomes onX and the four group-time dummy

variables (without an intercept). We can then apply the CIC estimator to the residuals from

an ordinary least squares regression with the effects of the dummy variables added back in. To

be specific, let D be the four-dimensional vector ((1− T )(1−G), T (1−G), (1− T )G,TG)0. In
the first stage, we estimate the regression

Yi = D
0
iδ +X

0
iβ + εi.

Then construct the residuals with the group/time effects added back in:

Ỹi = Yi −X 0
iβ̂ = D

0
iδ̂ + ε̂i.

Finally, apply the CIC estimator to these augmented residuals Ỹi. Let F̂Ỹ gt() denote the

empirical distribution function of Ỹgt, and similarly for the inverse of the empirical distribution

function. The covariance-adjusted CIC estimator is

τ̃CIC−C =
1

N11

N11X
i=1

Ỹ11,i − 1

N10

N10X
i=1

F̂−1
Ỹ ,01

(F̂Ỹ ,00(Ỹ10,i)).

The following theorem gives the large sample results for the covariance-adjusted estimator,

where the variance components are adjusted to allow for the estimation error in β.

Theorem 5.4 (Consistency and Asymptotic Normality)

(i) τ̃CIC−C p−→ τCIC ,

(ii)
√
N(τ̃CIC−C − τCIC) d−→ N

³
0, Ṽ00/α00 + Ṽ01/α01 + Ṽ10/α10 + Ṽ11/α11

´
,

where Ṽ00, Ṽ00, Ṽ00, and Ṽ00 are defined in the Appendix.

Proof: See Appendix.

6 Applications

In this section, we apply the different DID approaches to the problem studied by Meyer, Viscusi,

and Durbin (1995). These authors used DID methods to analyze the effects of an increase in

30A natural extension would consider a model of the form h(u, t) + g(x); the function g could be estimated
using nonparametric regression techniques, such as series expansion or kernel regression.
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disability benefits in the state of Kentucky, where the increase applied to high-earning but

not low-earning workers. The outcome variable is the number of weeks a worker spent on

disability; this variable is measured in whole weeks, and the distribution is highly skewed. The

authors noticed that their results were quite sensitive to the choice of specification; they found

a significant reduction in the length of spells when the outcome is the natural logarithm of the

number of weeks, but not when the outcome is the number of weeks.

To interpret the assumptions required for the CIC model in terms of the application, we can

start by normalizing h(u, 0) = u. Then, we interpret u as the number of weeks an individual

would desire to stay on disability if the individual faced the period 0 regulatory environment,

taking into account the individual’s wages, severity of injury, and opportunity cost of time.

The distribution of U |G = g should differ across groups because the different earnings groups
have different distributions of severity and cost of time, and because the period 0 legislation

provided different benefits for the two groups. With the normalization in place, the CIC model

then requires two substantive assumptions. First, the distribution of U should stay the same

over time within a group. This seems reasonable, because our definition of u is based on charac-

teristics of people, and changes in disability programs are unlikely to lead to rapid adjustments

in individual or firm employment decisions. Second, in the absence of the treatment, the “out-

come function” h(u, 1) is the same for both groups. This rules out, for example, a change

over time in the relationship between wages and disability benefits among low wage workers,

or a change in welfare policy that differentially affects low wage workers. The more restrictive

DID model requires two additional assumptions: the primary difference between the low- and

high-wage groups is a difference in the mean number of weeks (or ln(weeks)) that a worker

wishes to stay home, and changes over time have the same, additive effect on all individuals.

There is no reason to believe that these assumptions should hold, and indeed, a simple plot (not

reported here) indicates that the distributions of weeks and ln(weeks) have different shapes in

the different groups and in different time periods.

Using the data from the Meyer, Viscusi, and Durbin (1995) paper, we consider alternative

approaches to estimating the effect of the policy change. Since the DID approach depends on the

way in which the outcome variable is scaled, we write DID-level to indicate the procedure where

the outcome is scaled in the number of weeks and DID-log to describe the procedure where the

outcome is ln(weeks). Table I reports the results from five different approaches to calculating

the counterfactual distribution. The first two are DID-level and DID-log. Third, we present

the discrete CIC estimator using the assumption of conditional independence; last, we present

the lower and upper bounds on the treatment effect using the bounds approach to the discrete

CIC estimator. Note that, as discussed above, the lower bound for the average treatment effect

is the effect that would be estimated by applying the continuous CIC estimator, and ignoring

the discreteness of the data. For each of the approaches, Table I provides information about

the difference between the actual and counterfactual outcomes, Y I11 − Y N11 and Y I01 − Y N01 .
Table I shows a number of summary statistics about each distribution. The first four rows
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contains summary statistics about the actual outcomes in each of the four subpopulations. The

columns give the mean, the mean of ln(weeks), as well as four quantiles of the distribution. The

same summary statistics are provided for the estimated treatment effects. No matter which

scaling of the outcome is used when performing DID, we construct the entire counterfactual

distribution, and thus we can compute summary statistics inluding the average of the counter-

factual outcome in weeks and the average of the counterfactual outcome measured in ln(weeks).

Table I also provides standard errors for each of the estimators. In all cases, the standard errors

were computed by bootstrapping using 100 iterations.31 Because of the extreme skewness of the

distribution of outcomes, we will ignore the results about the mean of weeks in our discussion.

The results are provocative. First, consider the comparison between the DID-level and

DID-log approaches, and suppose that we wish to measure the effect of the policy on ln(weeks).

Then, the DID-level approach leads to the prediction that E[ln(Y I11)] − E[ln(Y N11 )] < 0, that

is, increasing the disability benefit decreases time on disability for the treatment group. This

prediction is out of line with all of the other estimates and casts doubt on a model where

group and time effects are additive and constant over the distribution of people. These findings

highlight the fact that the choice of the scaling of the outcome can have a large effect in DID

models. Because of the extreme results from this approach, we will not include the DID-level

model in our subsequent comparisons among the other methods.

Second, observe that the CIC-discrete estimates are comparable in precision to the other

estimates, sometimes larger, sometimes smaller.32

Third, the point estimates are fairly similar for the DID-log and CIC-discrete approaches.

For the treatment group, using each method the effect of the policy change on the mean of

ln(weeks) and on the 75th percentile are more than two standard deviations away from zero,

and they all agree that the increase is about .185 for ln(weeks) and 2 weeks for the 75th

percentile case (as shown in the table, for high earners before the policy change, the mean of

ln(weeks) is 1.38 and the 75th percentile is 8 weeks).

Fourth, we compare the estimated effects for the treatment and control groups. Using

the CIC-discrete approach with the conditional independence assumption, we find that the

estimated effect of an increase in benefits on the mean of ln(weeks) is greater for the control

group (the low earners) than for the treatment group (the high earners). The difference is equal

to .0273 with a standard error of .0114, so that the difference is significant at the 5% level. In

contrast, the DID-log method requires that the estimated effect on the treatment group is the

same as for the control group. We interpret the result as saying that in the low-earnings group,

there is a higher frequency of workers who are very sensitive to the policy.

Finally, consider the bounds on the CIC-discrete estimates. Based on the lower bound

31Because the data are discrete, and the estimators are all smooth functions of sample moments, the bootstrap
is valid.
32Recall that all standard errors are computed using bootstrapping, so they are comparable; however, it should

be noted that the asymptotic distributions of the quantile estimates from discrete distributions are not normal.
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of the treatment effect, we find that the policy did not have a significant impact using any

of the reported metrics. However, using that bound, the point estimate of the effect of the

policy is always positive. Of course, we could potentially narrow the bounds substantially by

incorporating covariates, following the approach suggested in Section 4.3. We leave this exercise

for future work.

In summary, we find substantial differences between the DID-level and all other approaches,

highlighting the important role of the choice of the scale of the outcome in standard methods.

The CIC-discrete method provides mixed results; the point estimates about the effect of the

policy are significant and positive in many cases, but using the less restrictive bounds approach,

we cannot reject the hypothesis that the policy had no impact.

7 Conclusion

In this paper, we take an approach to differences-in-differences that highlights the role of changes

in entire distribution functions over time (as opposed to only differences in means or specific

quantiles of distribution functions). Using our methods, it is possible to evaluate a range

of economic questions suggested by policy analysis, such as questions about mean-variance

tradeoffs or which parts of the distribution benefit most from a policy, while maintaining a

single, internally consistent economic model of how outcomes are generated.

The model we focus on, the “changes-in-changes” model, has several advantages. It is

considerably more general than the standard DID model. Its assumptions are invariant to

monotone transformations of the outcome, and it allows for the effect of an individual’s un-

observable to vary over time. It also allows the distribution of unobservables to vary across

groups in arbitrary ways. Thus, in many applications, the CIC model incorporates more plausi-

ble economic assumptions. For example, it allows that in the absence of the policy intervention,

the distribution of outcomes would experience changes over time in both mean and variance.

Our method could evaluate the effects of a policy intervention on the mean and variance of the

treatment group’s distribution relative to the underlying time trend in these moments.

For this model (as well as the alternative “quantile DID” model), we have established

identification, presented new estimators, and provided results about inference. The estimators

are straightforward to apply. Notably, we propose a different estimator than the standard DID

model even in the simplest context where the outcome is binary.

The applications presented in the paper show that the approach used to estimate the effects

of a policy change can lead to results that differ from one another, in magnitude, significance,

and even in sign. Thus, the restrictive assumptions required for standard DID methods can have

significant implications for policy conclusions. Even within the more general classes of models

proposed in this paper, however, choices about which model is appropriate are necessary, and

it will be important to carefully justify these assumptions in applications.

A number of issues concerning DID methods have been debated in the literature. One
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common concern (e.g., Besley and Case, 2000) is that the effects identified by DID may not

be representative if the policy change occurred in a jurisdiction with unusual benefits to the

policy change. That is, the treatment group may differ from the control group not just in terms

of the distribution of outcomes in the absence of the treatment but also in the effects of the

treatment. Our approach allows for both of these types of differences across groups because we

allow the effect of the treatment to vary by unobservable characteristics of an individual, and

the distribution of those unobservables varies across groups. So long as there are no differences

across groups in the underlying treatment and non-treatment “production functions” that map

unobservables to outcomes at a point in time, our approach can be used to provide consistent

estimates of the effect of the policy on both the treatment and control group.

Of course, there are other concerns about the use of DID methods. For example, in some

applications the composition of groups may change over time or as a result of the policy change

(see, e.g., Marrufo (2001)). We do not address these issues here, instead maintaining the

assumption that groups are stable over time. As described in the introduction, other recent

papers focus on concerns about calculating standard errors (Donald and Lang (2001), Bertrand,

Duflo and Mullainathan (2001)). We ignore these concerns in this paper, leaving for future work

extensions to multiple control groups and multiple periods and the corresponding analysis of

adjustments to standard errors.
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8 Appendix

Before presenting a proof of Theorem 5.1 we give a couple of preliminary results. These results will

be used in constructing an asymptotically linear representation of τ̂CIC . The technical issues involve

checking that the asymptotic linearization of F̂Y,01(F̂Y,00(z)) is uniform in z at the appropriate rate since

τ̂CIC involves the average (1/N10)
P
i F̂Y,01(F̂Y,00(Y10,i)). This in turn will hinge on an asymptotically

linear representation of F−1Y,gt(q) that is uniform in q ∈ [0, 1] at the appropriate rate (Lemma 8.5). The
key result uses a result by Stute (1982), restated here as Lemma 8.3, that bounds the supremum of the

difference in empirical distributions functions evaluated at points close together.

For (g, t) ∈ {(0, 0), (0, 1), (1, 0)}, let Ygt,i, . . . , Ygt,Ngt
be iid with common density fY,gt(y). We

maintain the following assumptions.

Assumption 8.1 (Distribution of Ygt)

(i): The support of Ygt is equal to Ygt = [ygt, ȳgt].
(ii) The density fY,gt(y) is bounded away from zero.

(iii) The density fY,gt(y) is continuously differentiable on Ygt.

Let N = N00+N01+N10, and let Ngt/N → αgt, with αgt positive. Hence any term that is Op(N
−δ
gt )

is also Op(N
−δ), and similarly terms that are op(N−δgt ) are op(N−δ). For notational convenience we

drop in the following discussion the subscript gt when the results are valid for Ygt for all (g, t) ∈
{(0, 0), (0, 1), (1, 0)}.

As an estimator for the distribution function we use the empirical distribution function:

F̂Y (y) =
1

N

NX
i=1

1{Yj ≤ y} = FY (y) + 1

N

NX
i=1

(1{Yi ≤ y}− FY (y)) ,

and as an estimator of its inverse we use

F̂−1Y (q) = Y([N·q]) = min{y : F̂Y (y) ≥ q}, (8.41)

for q ∈ (0, 1], where Y(k) is the kth order statistic of Y1, . . . , YN , [a] is the smallest integer greater than
or equal to a, and F−1Y (0) = y. Note that this implies that

q ≤ F̂Y (F̂−1Y (q)) < q + 1/N,

with F̂Y (F̂
−1
Y (q)) = q if q = j/N for some integer j ∈ {0, 1, . . . , N}, and

y −max
i
(Y(i) − Y(i−1)) < F̂−1Y (F̂Y (y)) ≤ y,

with F̂−1Y (F̂Y (y)) = y at all sample values.

First we state a general result regarding the uniform convergence of the empirical distribution func-

tion.

Lemma 8.1 For any δ < 1/2,

sup
y∈Y

N δ · |F̂Y (y)− FY (y)| p→ 0.
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Proof: Billingsley (1968), or Shorack and Wellner (1986) show that for a uniform random variable

X

sup
0≤x≤1

N1/2 · |F̂X(x)− x| = Op(1).

Hence for all δ < 1/2,

sup
0≤x≤1

Nδ · |F̂X(x)− x| p→ 0.

Consider the one-to-one transformation Y = F−1Y (X) so that the distribution function for Y is FY (y).

Then:

sup
y∈Y

N δ · |F̂Y (y)− FY (y)| = sup
0≤x≤1

N δ · |F̂Y (F−1Y (x))− FY (F−1Y (x))| = sup
0≤x≤1

N δ · |F̂X(x)− x| p→ 0,

because F̂X(x) = (1/N)
P
1{FY (Yi) ≤ x} = (1/N)

P
1{Yi ≤ F−1Y (x) = F̂Y (F

−1
Y (x)). ¤

Next, we show uniform convergence of the inverse of the empirical distribution:

Lemma 8.2 For any δ < 1/2,

sup
q∈[0,1]

N δ · |F̂−1Y (q)− F−1Y (q)| p→ 0.

Proof: By the triangle inequality,

sup
q
N δ ·

¯̄̄
F̂−1Y (q)− F−1Y (q)

¯̄̄

≤ sup
q
Nδ ·

¯̄̄
F̂−1Y (q)− F−1Y (F̂Y (F̂

−1
Y (q)))

¯̄̄
+ sup

q
N δ ·

¯̄̄
F−1Y (F̂Y (F̂

−1
Y (q)))− F−1Y (q)

¯̄̄
. (8.42)

First consider the second term in (8.42). Because q ≤ F̂Y (F̂−1Y (q)) < q + 1/N ,

sup
q
N δ ·

¯̄̄
F−1Y (F̂Y (F̂

−1
Y (q)))− F−1Y (q)

¯̄̄
≤ sup

q
N δ · ¯̄F−1Y (q + 1/N)− F−1Y (q)

¯̄ ≤ Nδ ·
¯̄̄̄
1

f
· (1/N)

¯̄̄̄
p→ 0.

Next, consider the first term in (8.42).

sup
q
N δ ·

¯̄̄
F̂−1Y (q)− F−1Y (F̂Y (F̂

−1
Y (q)))

¯̄̄
≤ sup

y
N δ ·

¯̄̄
y − F−1Y (F̂Y (y))

¯̄̄

= sup
y
Nδ ·

¯̄̄
F−1Y (FY (y))− F−1Y (F̂Y (y))

¯̄̄
≤ sup

y
Nδ ·

¯̄̄̄
1

f
· (F̂Y (y)− FY (y))

¯̄̄̄
,

which converges to zero in proability by Lemma 8.1. ¤
Next we state a result concerning uniform convergence of the difference between the difference of

the empirical distribution function and its population counterpart and the same difference at a nearby

point. The following lemma is for uniform distributions on [0, 1].
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Lemma 8.3 (Stute, 1982) Let

ω(a) = sup
0≤y≤1,0≤x≤a,0≤x+y≤1

N1/2 ·
¯̄̄
F̂Y (y + x)− F̂Y (x)− (FY (y + x)− FY (y))

¯̄̄
.

Suppose that (i) aN → 0, (ii) N ·aN →∞, (iii) log(1/aN ) log logN →∞, and (iv) log(1/aN )/(N ·aN )→
0. Then:

lim
N→∞

ω(aN)p
2aN log(1/aN )

= 1 w.p.1.

Proof: See Stute (1982), Theorem 0.2, or Shorack and Wellner (1986), Chapter 14.2, Theorem 1.

Lemma 8.4 (Uniform Convergence) Suppose Assumption 8.1 holds. Then, for 0 < η < 3/4, and

0 < δ < 1/2, δ > 2η − 1, and 2δ > η,

sup
y,|x|≤N−δ

Nη ·
¯̄̄
F̂Y (y + x)− F̂Y (y)− x · fY (y)

¯̄̄
p−→ 0.

Note that implicitly here and in the proof below we only take the supremum over y and x such that

y ∈ Y and y + x ∈ Y.
Proof: By the triangle inequality

Nη ·
¯̄̄
F̂Y (y + x)− F̂Y (y)− x · fY (y)

¯̄̄

≤ Nη ·
¯̄̄
F̂Y (y + x)− F̂Y (y)− (FY (y + x)− FY (y))

¯̄̄
+Nη · |FY (y + x)− FY (y)− x · fY (y)| .

(8.43)

First consider the second term in (8.43):

sup
y,|x|≤N−δ

Nη · |FY (y + x)− FY (y)− x · fY (y)| ≤ sup
y,|x|≤N−δ,|λ|≤1

Nη · |x · fY (y + λx)− x · fY (y)|

≤ sup
y,|x|≤N−δ

Nη−δ|fY (y + x)− fY (y)| ≤ sup
y,|x|≤N−δ

Nη−δ|xf 0Y (y)| ≤ sup
y
Nη−2δ|f 0Y (y)| p→ 0,

because η − 2δ < 0 and the derivative of fY (y) is bounded because fY (y) is continuously differentiable
on a compact set.

Hence it remains to show that:

sup
y,|x|≤N−δ

Nη ·
¯̄̄
F̂Y (y + x)− F̂Y (y)− (FY (y + x)− FY (y))

¯̄̄
p−→ 0. (8.44)

Let aN = N−δ. Since 0 < δ < 1/2, Conditions (i) − (iv) in Lemma 8.3 are satisfied. Hence ω(aN )
satisfies

lim
N→∞

ω(aN)p
2aN log(1/aN )

= 1 w.p.1.
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Therefore, because δ > 2η − 1 and thus −δ/2 + η − 1/2 < 0

lim
N→∞

ω(aN ) ·Nη−1/2 = lim
N→∞

p
2aN log(1/aN )N

η−1/2 = lim
N→∞

p
2δ logN ·N−δ/2+η−1/2 = 0.

Thus,

sup
y,|x|≤N−δ

Nη
¯̄̄
F̂Y (y + x)− F̂Y (y)− (FY (y + x)− FY (y))

¯̄̄
p−→ lim

N→0
Nη−1/2 · ω(aN ) = 0 w.p.1.

This proves the supremum of the two terms in (8.43) goes to zero in probability as N goes to infinity.

¤.
Next we state a result regarding asymptotic linearity of quantile estimators, and a rate on the error

of this approximation.

Lemma 8.5 For all 0 < η < 3/4,

sup
q
Nη ·

¯̄̄̄
F̂−1Y (q)− F−1Y (q) +

1

fY (F
−1
Y (q))

³
F̂Y (F

−1
Y (q))− q

´¯̄̄̄
p→ 0.

Proof: By the triangle inequality,

sup
q
Nη ·

¯̄̄̄
F̂−1Y (q)− F−1Y (q) +

1

fY (F
−1
Y (q))

³
F̂Y (F

−1
Y (q))− q

´¯̄̄̄
(8.45)

≤ sup
q
Nη ·

¯̄̄̄
¯F̂−1Y (q)− F−1Y (F̂Y (F̂

−1
Y (q))) +

1

fY (F̂
−1
Y (q))

(F̂Y (F̂
−1
Y (q))− FY (F̂−1Y (q)))

¯̄̄̄
¯ (8.46)

+ sup
q
Nη ·

¯̄̄̄
¯ 1

fY (F
−1
Y (q))

(F̂Y (F
−1
Y (q))− q)− 1

fY (F̂
−1
Y (q))

(F̂Y (F̂
−1
Y (q))− FY (F̂−1Y (q)))

¯̄̄̄
¯ (8.47)

+ sup
q
Nη ·

¯̄̄
F−1Y (F̂Y (F̂

−1
Y (q)))− F−1Y (q)

¯̄̄
(8.48)

First consider (8.48). Because |F̂Y (F̂−1Y (q))− q| < 1/N for all q, this converges to zero uniformly in q.

Next, consider (8.47). By the triangle inequality,

sup
q
Nη ·

¯̄̄̄
¯ 1

fY (F
−1
Y (q))

(F̂Y (F
−1
Y (q))− q)− 1

fY (F̂
−1
Y (q))

(F̂Y (F̂
−1
Y (q))− FY (F̂−1Y (q)))

¯̄̄̄
¯

≤ sup
q
Nη ·

¯̄̄̄
¯ 1

fY (F
−1
Y (q))

(F̂Y (F
−1
Y (q))− q)− 1

fY (F̂
−1
Y (q))

(F̂Y (F
−1
Y (q))− q)

¯̄̄̄
¯

+sup
q
Nη ·

¯̄̄̄
¯ 1

fY (F̂
−1
Y (q))

(F̂Y (F
−1
Y (q))− q)− 1

fY (F̂
−1
Y (q))

(F̂Y (F̂
−1
Y (q))− FY (F̂−1Y (q)))

¯̄̄̄
¯
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≤ sup
q
Nη/2 ·

¯̄̄̄
¯ 1

fY (F
−1
Y (q))

− 1

fY (F̂
−1
Y (q))

¯̄̄̄
¯ · supq Nη/2 ·

¯̄̄
(F̂Y (F

−1
Y (q))− q)

¯̄̄
(8.49)

+
1

f
sup
q
Nη ·

¯̄̄
(F̂Y (F

−1
Y (q))− q)− (F̂Y (F̂−1Y (q))− FY (F̂−1Y (q)))

¯̄̄
. (8.50)

Since Nη/2|F̂Y (y)− FY (y)| converges to zero uniformly, it follows that both supyNη/2|1/fY (F̂−1Y (y))−
1/fY (F

−1
Y (y))| and supqNη/2|F̂Y (F−1Y (q)) − q| ≤ supy N

η/2|F̂Y (y) − FY (y)| converge to zero. Hence
(8.49) converges to zero. Next, consider (8.50). By the triangle inequality

sup
q
Nη ·

¯̄̄
(F̂Y (F

−1
Y (q))− q)− (F̂Y (F̂−1Y (q))− FY (F̂−1Y (q)))

¯̄̄

≤ sup
q
Nη ·

¯̄̄
F̂Y (F

−1
Y (q))− F̂Y (F−1Y (F̂Y (F̂

−1
Y (q))))

¯̄̄
(8.51)

+ sup
q
Nη ·

¯̄̄
F̂Y (F̂

−1
Y (q))− q

¯̄̄
(8.52)

+ sup
q
Nη ·

¯̄̄
(F̂Y (F

−1
Y (F̂Y (F̂

−1
Y (q))))− F̂Y (F̂−1Y (q)))− (F̂Y (F̂−1Y (q))− FY (F̂−1Y (q)))

¯̄̄
. (8.53)

The second term, (8.52), converges to zero by definition of F̂−1Y (y). For (8.51):

sup
q
Nη ·

¯̄̄
F̂Y (F

−1
Y (q))− F̂Y (F−1Y (F̂Y (F̂

−1
Y (q))))

¯̄̄
≤ sup

q
Nη ·

¯̄̄
F̂Y (F

−1
Y (q))− F̂Y (F−1Y (q + 1/N))

¯̄̄

≤ sup
q
Nη ·

¯̄̄
F̂Y (F

−1
Y (q))− F̂Y (F−1Y (q) + 1/(fN)))

¯̄̄

≤ sup
q
Nη ·

¯̄̄
F̂Y (F

−1
Y (q))− F̂Y (F−1Y (q) + 1/(fN)))− ¡FY (F−1Y (q))− FY (F−1Y (q) + 1/(fN)))

¢¯̄̄

+sup
q
Nη · ¯̄FY (F−1Y (q))− FY (F−1Y (q) + 1/(fN)))

¯̄

≤ sup
y
Nη ·

¯̄̄
F̂Y (y)− F̂Y (y + 1/(fN)))−

¡
FY (y)− FY (y + 1/(fN)))

¢¯̄̄
(8.54)

+ sup
q
Nη · ¯̄FY (y)− FY (y + 1/(fN)))¯̄ (8.55)

The first term (8.54) converges to zero using the same argument as in (8.44). The second term (8.54)

converges because
¯̄
FY (y)− FY (y + 1/(fN)))

¯̄ ≤ f̄ /(fN). This demonstrates that (8.51) converges to
zero.
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For (8.53), note that

sup
q
Nη ·

¯̄̄
(F̂Y (F

−1
Y (F̂Y (F̂

−1
Y (q))))− F̂Y (F̂−1Y (q)))− (F̂Y (F̂−1Y (q))− FY (F̂−1Y (q)))

¯̄̄
≤ sup

y
Nη ·

¯̄̄
F̂Y (F

−1
Y (F̂Y (y)))− F̂Y (y)−

³
F̂Y (y)− FY (y)

´¯̄̄
. (8.56)

Note that we can write the expression inside the brackets as¯̄̄
F̂Y (y + x)− F̂Y (y)− (FY (y + x)− FY (y))

¯̄̄
,

for x = F−1Y F̂Y (y)− y. The probability that (8.56) exceeds ε can be bounded by sum of the conditional

probability that it exceeds ε conditional on supy N
δ|F̂Y (y) − FY (y)| > 1/f and the probability that

supy N
δ|F̂Y (y) − FY (y)| > 1/f . By choosing N sufficiently large we can make the second probability

arbitrarily small by Lemma 8.1, and by (8.44) we can choose N sufficiently large that the first probability

is arbitrarily small. Thus (8.53) converges to zero. Combined with the convergence of (8.51) and (8.52)

this implies that (8.50) converges to zero. This in turn combined with the convergence of (8.49) implies

that (8.47) converges to zero.

Third, consider (8.46):

sup
q
Nη ·

¯̄̄̄
¯F̂−1Y (q)− F−1Y (F̂Y (F̂

−1
Y (q))) +

1

fY (F̂
−1
Y (q))

(F̂Y (F̂
−1
Y (q))− FY (F̂−1Y (q)))

¯̄̄̄
¯

≤ sup
y
Nη ·

¯̄̄̄
y − F−1Y (F̂Y (y)) +

1

fY (y)
(F̂Y (y)− FY (y))

¯̄̄̄
Expanding F−1Y (F̂Y (y)) around FY (y) we have

F−1Y (F̂Y (y)) = y +
1

fY (F
−1
Y FY (y)))

(F̂Y (y)− FY (y))− ∂ log fY
∂y

(ỹ)(F̂Y (y)− FY (y))2.

By Lemma 8.1 we have that for all δ < 1/2, N δ · supy |F̂Y (y)−FY (y)| p−→ 0, and implying that for η < 1

we have Nη · supy |F̂Y (y)− FY (y)|2 p−→ 0. This in combination with that fact that both the derivative

of density is bounded and the density is bounded away from zero, we have

sup
y
Nη · |F−1Y (F̂Y (y))− y − 1

fY (y)
(F̂Y (y)− FY (y))| p−→ 0,

which proves that (8.46) converges to zero. Hence all three terms (8.46)-(8.48) converge to zero, and

therefore (8.45) converges to zero. ¤

Lemma 8.6 (Consistency and Asymptotic Normality) Suppose Assumption 8.1 holds. Then:

(i):

1

N10

N10X
i=1

F̂−1Y,01(F̂Y,00(Y10,i))
p−→ E[F−1Y,01(FY,00(Y10))],

and (ii):

√
N(

1

N00

N10X
i=1

F̂−1Y,01(F̂Y,00(Y10,i))− E[F−1Y,01(FY,00(Y10))]) d−→ N (0, V00/α00 + V01/α01 + V10/α10),

where V00, V01, V10, g00, g01, and g10 are defined as in Theorem 5.1.
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Proof: Because F̂Y,00(z) converges to FY,00(z) uniformly in z, and F̂
−1
Y,01(q) converges to F

−1
Y,01(q)

uniformly in q, it follows that F̂−1Y,01(F̂Y,00(z)) converges to F
−1
Y,01(FY,00(z)) uniformly in z. Hence

1
N10

PN10

i=1 F̂
−1
Y,01(F̂Y,00(Y10,i)) converges to

1
N10

PN10

i=1 F
−1
Y,01(FY,00(Y10,i)) which by a law of large numbers

converges to E[F−1Y,01(FY,00(Y10))], which proves the first statement.
Next, define

µ̂11 =
1

N10

N10X
i=1

F̂−1Y,01(F̂Y,10(Y10,i)), µ11 = E
h
F−1Y,01(FY,10(Y10))

i

g10(z) = F
−1
Y,01(FY,00(z)), g01(y, z) =

1

fY (F
−1
Y,01(FY,00(z)))

(1{FY,01(y) ≤ FY,00(z)}− FY,00(z)) ,

g00(x, z) =
1

fY,01(F
−1
Y,01(FY,00(z)))

(1{x ≤ z}− FY,00(z)) ,

µ̂10 =
1

N10

N10X
i=1

g10(Y10,i), µ̂00 =
1

N10

1

N00

N10X
i=1

N00X
j=1

g00(Y00,j , Y10,i),

µ̂01 =
1

N10

1

N01

N10X
i=1

N01X
j=1

g01(Y01,j , Y10,i), and µ̃11 = µ̂10 + µ̂00 + µ̂01.

First we show that the asymptotic distribution of
√
N(µ̂11 − µ11) is the same as the asymptotic

distribution of
√
N(µ̃11 − µ11). The first step is to show that

N1/2

Ã
1

N10

N10X
i=1

F̂−1Y,01(F̂Y,00(Y10,i))−
1

N10

N10X
i=1

F−1Y,01(F̂Y,00(Y10,i))− µ̂01
!

p→ 0. (8.57)

To see this, note that

N1/2

¯̄̄̄
¯ 1N10

N10X
i=1

F̂−1Y,01(F̂Y,00(Y10,i))−
1

N10

N10X
i=1

F−1Y,01(F̂Y,00(Y10,i))− µ̂01
¯̄̄̄
¯

≤ N1/2

¯̄̄̄
¯ 1N10

N10X
i=1

F̂−1Y,01(F̂Y,00(Y10,i))−
1

N10

N10X
i=1

F−1Y,01(F̂Y,00(Y10,i))

− 1

N10

1

N01

N10,iX
i=1

N01,jX
j=1

1

fY,01(F
−1
Y,01(F̂Y,00(Y10,j)))

³
1{FY,01(Y01,j) ≤ F̂Y,00(Y10,i)}− F̂Y,00(Y10,i)

´¯̄̄̄¯̄

+N1/2

¯̄̄̄
¯̄ 1N10 1

N01

N10,iX
i=1

N01,jX
j=1

1

fY,01(F
−1
Y,01(F̂Y,00(Y10,j)))

³
1{FY,01(Y01,j) ≤ F̂Y,00(Y10,i)}− F̂Y,00(Y10,i)

´
− µ̂01

¯̄̄̄
¯̄ .
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The first term can be bounded by

N1/2 sup
q

¯̄̄̄
¯̄F̂−1Y,01(q)− F−1Y,01(q)− 1

N01

N01,jX
j=1

1

fY,01(F
−1
Y,01(q))

(1{FY,01(Y01,j) ≤ q}− q)
¯̄̄̄
¯̄

= N1/2 sup
q

¯̄̄̄
¯F̂−1Y,01(q)− F−1Y,01(q)− 1

fY,01(F
−1
Y,01(q))

³
F̂Y,01(F

−1
Y,01(q))− q

´¯̄̄̄¯
which converges to zero in probability by Lemma 8.5.

The convergence of the second term follows by an argument similar to that of the convergence of

(8.47).

The second step is to show that

N1/2

Ã
1

N10

N10X
i=1

F−1Y,01(F̂Y,00(Y10,i))−
1

N10

N10X
i=1

F−1Y,01(FY,00(Y10,i))− µ̂00
!

p→ 0. (8.58)

To see this, note that

N1/2

Ã
1

N10

N10X
i=1

F−1Y,01(F̂Y,00(Y10,i))−
1

N10

N10X
i=1

F−1Y,01(FY,00(Y10,i))− µ̂00
!

≤ N1/2 sup
y

¯̄̄
F−1Y,01(F̂Y,00(y))− F−1Y,01(FY,00(y))

− 1

fY,01(F
−1
Y,00(FY,00(y)))

1

N00

N00X
i=1

(1{Y00,i < y}− FY,00(y))
¯̄̄̄
¯ .

The convergence of this term follows from Lemma 8.1, which implies that N1/2 supy |F̂Y (y) − FY (y)|2
converges to zero.

Hence

µ̂11 =
1

N10

N10X
i=1

F̂−1Y,01(F̂Y,00(Y10,i))

=

Ã
1

N10

N10X
i=1

F̂−1Y,01(F̂Y,00(Y10,i))−
1

N10

N10X
i=1

F−1Y,01(F̂Y,00(Y10,i))− µ̂01
!

(8.59)

+

Ã
1

N10

N10X
i=1

F−1Y,01(F̂Y,00(Y10,i))−
1

N10

N10X
i=1

F−1Y,01(FY,00(Y10,i))− µ̂00
!

(8.60)

+µ̂01 + µ̂00 +
1

N10

N10X
i=1

F−1Y,01(FY,00(Y10,i)).

The first two terms, (8.59), and (8.59) are op(N
−1/2), so that µ̂11 = µ̂01 + µ̂00 + µ̂10 + op(N

−1/2) =
µ̃11 + op(N

−1/2).
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Next, note that for all relevant i, j, k, l, E[g10(Y10,i)·g01(Y01,j , Y10,k)] = 0, E[g10(Y10,i)·g00(Y01,j , Y10,k)] =
0 and E[g00(Y10,i, Y00,l) · g01(Y01,j , Y10,k)] = 0, which all follow by taking iterated expectations, condi-

tioning on Y10,1, . . . , Y10,N10 first. Hence the covariances of µ̂00, µ̂01 and µ̂10 are all zero and V (µ̃11) =

V (µ̂00) + V (µ̂01) + V (µ̂00).

Since µ̂10 is a simple sample average, we can directly apply a central limit theorem to getp
N10(µ̂10 − µ11) d−→ N (0, V10),

with V10 = V (F
−1
01 (FY,00(Y10))).

Next consider µ̂00. Its variance normalized by N00 is

V (
√
N00 · µ̂00) = N00 · E

 1

N2
00

1

N2
10

N00X
i=1

N10X
j=1

N00X
k=1

N10X
l=1

g00(Y00,i, Y10,j) · g00(Y00,k, Y10,l)
 .

Terms in this sum with i 6= k have expectation zero, so that

V (
√
N00 · µ̂00) = E

 1

N00

1

N2
10

N00X
i=1

N10X
j=1

N10X
l=1

g00(Y00,i, Y10,j) · g00(Y00,i, Y10,l)
 .

Ignoring the N10N00 terms of lower order with j = l, the expectation reduces to

E [g00(Y00,i, Y10,j) · g00(Y00,i, Y10,l)] = E
£
E[g(Y00, Y10)|Y00]2

¤
= V00.

The average µ̂00 also satisfies a central limit theorem so thatp
N00µ̂00

d−→ N (0, V00).

Similarly,p
N01µ̂01

d−→ N (0, V01).

Then adding up the three terms and normalizing by
√
N gives the result in the Lemma. ¤

Proof of Theorem 5.1: Apply Lemma 8.6. That gives us the asymptotic distribution of
P
F̂−1Y,01(F̂Y,00(Y10i))/N10.

We are interested in the large sample behavior of
P
Y11i/N11 −

P
F̂−1Y,01(F̂Y,00(Y10i))/N10, which leads

to the extra variance term V11, with the normalizations now by N = N00 +N01 +N10 +N11. ¤
Proof of Corollary 5.1: The variance of τ̂DID is equal to

P
g,tVar(Ygt)/αgt. The variance of τ̂

CIC is

equal to
P
g,t Vgt/αgt. Hence it is sufficient to prove that for all g, t ∈ {0, 1}, under the assumptions of

Corollary 5.1, Var(Ygt) = Vgt. First note that under these assumptions for all y:

FY,01(y) = Pr(Y01 ≤ y) = Pr(h(U, 1) ≤ y|G = 0) = Pr(h(U, 0) + a ≤ y|G = 0)

= Pr(h(U, 0) ≤ y − a|G = 0) = Pr(Y00 ≤ y − a) = FY,00(y − a).

Hence

kCIC(y) = F−1Y,01 (FY,00(y)) = y + a,

and

fY,01(y) = fY,00(y − a).
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Also, FY,10(y) = FY,00(y) for all y by assumption, so that fY,10(y − a) = fY,01(y). Let ȳ and y be the
upper limit and the lower limit respectively of the support of Y00, which is equal to the support of Y10

and compact by assumption.

Now we shall show that Var(Ygt) = Vgt for each combination of g and t.

(i) g = 1, t = 1. This is by definition of V11.

(ii): g = 1, t = 0:

V10 = Var(g00(Y10)) = Var
³
F−1Y,01(Fy,00(Y10))

´
= Var(Y10 + a) = Var(Y10).

(iii): g = 0, t = 0:

g00(x, z) =
1

fY,01(F
−1
Y,01(FY,00(z)))

(1{x ≤ z}− FY,00(z))

=
1

fY,01(z + a)
(1{x ≤ z}− FY,00(z)) .

Take the expectation of g00(Y00, Y10) conditional on Y00:

E[g00(y00, Y10)] =
Z ȳ

y

1

fY,01(y10 + a)
(1{y00 ≤ y10}− FY,00(y10)) fY,10(y10)dy10.

Because fY,01(y + a) = fY,10(y), this simplifies to:Z ȳ

y

1{y00 ≤ y10}− FY,00(y10)dy10.

The first term integrates out to ȳ − y00, and the second one integrates out to E[Y10]− ȳ, using the fact
that for a random variable Y with support [y, ȳ], we have

E[Y ] = y +

Z ȳ

y

(1− FY (y))dy.

By assumption E[Y10] is equal to E[Y00], so that

E[g00(Y00, Y10)|Y00] = E[Y00]− Y00,

and hence

V00 = E
h
(E[g00(Y00, Y10)|Y00])2

i
= E[(E[Y00]− Y00])2] = Var(Y00).

(iv): g = 0, t = 1: Using the same arguments as before,

E[g00(Y01, Y10)|Y01]

=

Z ȳ

y

1

fY,01(F
−1
Y,01(FY,00(y10)))

(1{FY,01(Y01) ≤ FY,00(y10)}− FY,00(y10)) fY,10(y10)dy10

=

Z ȳ

y

1

fY,01(y10 + a)
(1{FY,01(Y01) ≤ FY,10(y10)}− FY,10(y10)) fY,10(y10)dy10
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=

Z ȳ

y

1

fY,10(y10)
(1{FY,01(Y01) ≤ FY,10(y10)}− FY,10(y10)) fY,10(y10)dy10

=

Z ȳ

y

1{FY,01(Y01) ≤ FY,10(y10)}− FY,10(y10)dy10

= ȳ − (Y01 − a) + E[Y10]− ȳ = E[Y01]− Y01.

Hence

V01 = E
h
(E[g01(Y01, Y10)|Y01])2

i
= E[(E[Y01]− Y01])2] = Var(Y01).

¤
Proof of Theorem 5.2: We will prove that τ̂CICq =

P
g,t τ̂

CIC
q,gt + op(N

−1/2) and thus has an asymp-
totically linear representation. Then the result follows directly from the fact that the gqgt(Ygt) all have

expectation zero, variances equal to V qgt and zero covariances. To prove this assertion is sufficient to

show that

F̂−1Y,01(F̂Y,00(F̂
−1
Y,10(q))) = F

−1
Y,01(FY,00(F

−1
Y,10(q)))

+
1

N00

N00X
i=1

gq00(Y00,i) +
1

N01

N01X
i=1

gq01(Y01,i) +
1

N10

N10X
i=1

gq00(Y10,i) + op(N
−1/2).

By Lemma 8.5,

F̂−1Y,01(F̂Y,00(F̂
−1
Y,10(q))) = F

−1
Y,01(FY,00(F̂

−1
Y,10(q)))

+
1

N01

N01X
i=1

1

fY,01(F
−1
Y,01(FY,00(F̂

−1
Y,10(q)))

³
1{FY,01(Y01,i) ≤ FY,00(F̂−1Y,10(q))}− FY,00(F̂−1Y,10(q))

´

+
1

N00

N00X
i=1

1

fY,01(F
−1
Y,01(FY,00(F̂

−1
Y,10(q)))

³
1{Y00,i ≤ F̂−1Y,10(q)}− FY,00(F̂−1Y,10(q))

´
+ op(N

−1/2).

By consistency of F̂−1Y,10(q) for F
−1
Y,10(q), and continuity of fY,01(y), F

−1
Y,01(q), and FY,00(y), it follows that

fY,01(F
−1
Y,01(FY,00(F̂

−1
Y,10(q))) = fY,01(F

−1
Y,01(FY,00(F

−1
Y,10(q))) + op(1). (8.61)

Using the same type of argument as in Lemma 8.5, we have

1

N01

N01X
i=1

³
1{FY,01(Y01,i) ≤ FY,00(F̂−1Y,10(q))}− FY,00(F̂−1Y,10(q))

´

=
1

N01

N01X
i=1

³
1{FY,01(Y01,i) ≤ FY,00(F−1Y,10(q))}− FY,00(F−1Y,10(q))

´
+ op(N

−1/2). (8.62)
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Combining (8.61) and(8.62) implies that

1

N01

N01X
i=1

1

fY,01(F
−1
Y,01(FY,00(F̂

−1
Y,10(q)))

³
1{FY,01(Y01,i) ≤ FY,00(F̂−1Y,10(q))}− FY,00(F̂−1Y,10(q))

´

=
1

N01

N01X
i=1

gq01(Y01,i) + op(N
−1/2). (8.63)

By the same argument,

1

N00

N00X
i=1

³
1{Y00,i ≤ F̂−1Y,10(q)}− FY,00(F̂−1Y,10(q))

´

=
1

N00

N00X
i=1

³
1{Y00,i ≤ F−1Y,10(q)}− FY,00(F−1Y,10(q))

´
+ op(N

−1/2), (8.64)

which combined with (8.61) implies that

1

N00

N00X
i=1

1

fY,01(F
−1
Y,01(FY,00(F̂

−1
Y,10(q)))

³
1{Y00,i ≤ F̂−1Y,10(q)}− FY,00(F̂−1Y,10(q))

´

=
1

N00

N00X
i=1

gq00(Y00,i) + op(N
−1/2). (8.65)

Finally, using the fact that F̂−1Y,10(q) = F
−1
Y,10(q)−

P
(1/fY,10(y))(1{FY,10(Y10,i) ≤ q}− q)/N10, combined

with continuity of F−1Y,01(q) and FY,00(y), we have

F−1Y,01(FY,00(F̂
−1
Y,10(q))) = F

−1
Y,01(FY,00(F

−1
Y,10(q)))

− 1

N10

N10X
i=1

fY,00((F
−1
Y,10(q))

fY,01(F
−1
Y,01(FY,00(F

−1
Y,10(q))) · fY,10(F−1Y,10(q))

(1{FY,11(y) ≤ q}− q) + op(N−1/2).

= F−1Y,01(FY,00(F
−1
Y,10(q)))−

1

N10

N10X
i=1

gq10(Y10,i) + op(N
−1/2). (8.66)

Then combining (8.63), (8.65) and (8.66) gives the desired result. ¤
Proof of Theorem 5.3: Theorem 5.2 implies that

τ̂CICq1,... ,qK
=
X
g,t

1

Ngt

NgtX
i=1

gq1,... ,qKgt (Ygt,i) + op(N
−1/2).

Then the independence of Ygt and Yg0t0 for (g, t) 6= (g0, t0) and the definition of V q1,... ,qKgt implies that
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√
N
¡
τ̂CICq1,... ,qK − τCICq1,... ,qK

¢ d−→ N
Ã
0,
X
g,t

V q1,... ,qKgt /αgt

!
.

Under the null of no treatment effect all elements of τCICq1,... ,qK are zero, and so the result follows imme-

diately. ¤
Before proving Theorem 5.4, we give some preliminary results. First consider the estimator for β.

We can linearize the estimator asÃ
δ̂

β̂

!
=

Ã
1

N

NX
i=1

Ã
DiD

0
i DiX

0
i

XiD
0
i iX

0
i

!!−1
1

N

NX
i=1

Ã
DiYi

XiYi

!

=

Ã
δ

β

!
+

Ã
E[DD0] E[DX 0]
E[XD0] E[XX 0]

!−1
1

N

NX
i=1

Ã
Di(Yi −D0

iδ −X 0
iβ)

Xi(Yi −D0
iδ −X 0

iβ)

!
+ op(N

−1/2).

Now partition the inverse of the population covariance matrix of D and X as

V (D,X)−1 =

Ã
E[DD0] E[DX 0]
E[XD0]0 E[XX 0]

!−1
=

Ã
V (D,X)−1dd V (D,X)−1dx
V (D,X)−1xd V (D,X)−1xx

!
=

Ã
V (D,X)−1d·
V (D,X)−1x·

!
.

Lemma 8.7 (Linearization of Regression Estimates)

β̂ − β = α00
N00

N00X
i=1

V (D,X)−1x· ·
Ã
D00,i(Y00,i −D0

00,iδ −X 0
00,iβ)

X00,i(Y00,i −D00,iδ −X 0
00,iβ)

!
V (D,X)−1x·

+
α01
N01

N01X
i=1

V (D,X)−1x·

Ã
D01,i(Y01,i −D0

01,iδ −X 0
01,iβ)

X01,i(Y01,i −D01,iδ −X 0
01,iβ)

!

+
α10
N10

N10X
i=1

V (D,X)−1x· ·
Ã
D10,i(Y10,i −D0

10,iδ −X 0
10,iβ)

X10,i(Y10,i −D10,iδ −X 0
10,iβ)

!

+
α11
N11

N11X
i=1

V (D,X)−1x· ·
Ã
D11,i(Y11,i −D0

11,iδ −X 0
11,iβ)

X11,i(Y11,i −D11,iδ −X 0
11,iβ)

!
+ op(N

−1/2)

Proof: This follows from the asymptotically linear representation of the least squares estimator,

(e.g., for the general case, β̂ = β+E[XX 0]−1
P
Xi(Yi−X 0

iβ)/N). We then separate the sample average

for the four subsamples and consider only the part of the estimator for the coefficients on the covariates,

discarding the coefficients on the group/time dummies. ¤
Next, define the following functions to obtain asymptotic linearity of the estimator:

g00(y00, x00, d00, y, x) =
1

fY,01(F
−1
Y,01(FY,00(y − x0β)))

(1{y00 − x000β ≤ y − x0β}− FY,00(y − x0β))
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+α00
fY,00(y − x0β)

fY,01(F
−1
Y,01(FY,00(y − x0β)))

x000V (D,X)
−1
x· ·

Ã
d00(y00 − d000δ − x000β)
x00(y00 − d00δ − x000β)

!

g01(y01, x01, d01, y, x) =
1

fY,01(F
−1
Y,01(FY,00(y − x0β)))

(1{FY,01(y01 − x001β) ≤ FY,00(y − x0β)}− FY,00(y − x0β)) ,

+α01
fY,00(y − x0β)

fY,01(F
−1
Y,01(FY,00(y − x0β)))

x001V (D,X)
−1
x· ·

Ã
d01(y01 − d001δ − x001β)
x01(y01 − d01δ − x001β)

!

g10(y10, x10, d10, y, x) = α10
fY,00(y − x0β)

fY,01(F
−1
Y,01(FY,00(y − x0β)))

x010V (D,X)
−1
x· ·

Ã
d10(y10 − d010δ − x010β)
x10(y10 − d10δ − x010β)

!

g11(y11, x11, d11, y, x) = α11
fY,00(y − x0β)

fY,01(F
−1
Y,01(FY,00(y − x0β)))

x011V (D,X)
−1
x· ·

Ã
d11(y11 − d011δ − x011β)
x11(y11 − d11δ − x011β)

!

Lemma 8.8 (Linearization of Transformation)

F̂−1Y,01(F̂Y,00(y − x0β̂)) = F−1Y,01(FY,00(y − x0β))

+
1

N00

N00X
i=1

g00(Y00,i, X00,i, D00,i, y, x) +
1

N01

N01X
i=1

g01(Y01,i, X01,i, D01,i, y, x)

+
1

N10

N10X
i=1

g10(Y10,i, X10,i, D10,i, y, x) +
1

N11

N11X
i=1

g11(Y11,i, X11,i, D11,i, y, x) + op(N
−1/2).

Proof: The proof follows the same pattern as the proof for Lemma 8.5. The difference is that there is an

additonal term in the expansion of the estimator capturing the uncertainty coming from the estimation

error β̂ − β. This term has the form

fY,00(y − x0β)
fY,01(F

−1
Y,01(FY,00(y − x0β)))

· x0(β̂ − β).

We then combine that with the asymptotically linear representation for β̂ − β, and add it to the terms
in Lemma 8.7 to get the desired result.

Proof of Theorem 5.4: Define g00(·), g01(·), and g10(·) as before, and let

g11(y11, x11, d11, y, x) = y11 − x011β − E[Y11 −X 0
11β]

+α11
fY,00(y − x0β)

fY,01(F
−1
Y,01(FY,00(y − x0β)))

x011V (D,X)
−1
x· ·

Ã
d11(y11 − d011δ − x011β)
x11(y11 − d11δ − x011β)

!
.
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In addition, define

τ̂00 =
1

N00

1

N10

N00X
i=1

N10X
j=1

g00(Y00,i, X00,i, D00,i, Y10,j , X10,j),

τ̂01 =
1

N01

1

N10

N01X
i=1

N10X
j=1

g01(Y01,i, X01,i, D01,i, Y10,j , X10,j),

τ̂10 =
1

N10

1

N10

N10X
i=1

N10X
j=1

g10(Y10,i, X10,i, D10,i, Y10,j , X10,j),

and

τ̂11 =
1

N11

1

N10

N11X
i=1

N10X
j=1

g11(Y11,i, X11,i, D11,i, Y10,j , X10,j).

Then

τ̂CIC = τ̂00 + τ̂01 + τ̂10 + τ̂11 + op(N
−1/2).

By iterated expectations (first conditioning on Y10,i, for i = 1, 2, . . . , N10), it can be shown that τ̂00, τ̂01,

τ̂10, and τ̂11, are uncorrelated.

The variance of τ̂00, normalized by
√
N00, is, using the same argument as in the proof for Lemma

8.6,

Ṽ00 = E
£
E[g00(Y00, X00, D00, Y10, X10)|Y00, X00, D00]2

¤
Similarly

Ṽ01 = E
£
E[g01(Y01, X01, D01, Y10, X10)|Y01, X01, D01]2

¤
Ṽ10 = E

£
E[g01(Y01,1, X01,1, D01,1, Y10,2, X10,2)|Y01,1, X01,1, D01,1]2

¤
(where Y10,1 and Y10,2 are independent random variables with the same distribution FY,10(y)), and

Ṽ11 = E
£
E[g11(Y11, X11, D11, Y10, X10)|Y11, X11, D11]2

¤
.

¤
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Figure I: Illustration of Transformations




