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1 Introduction

The recent economic crisis has further highlighted the importance of interconnections between
firms and sectors in the economy. Both the spread of the risks emanating from the so-called
“toxic” assets on the balance sheets of several financial institutions to the rest of the financial
sector, and the transmission of the economic problems of the financial sector to the rest of the
economy have been linked to such interconnections. In addition, both government policies
aimed at shoring up several key financial institutions and the assistance to General Motors and
Chrysler in the midst of the crisis were justified not so much because these institutions were “too
big to fail” but because they were “too interconnected to fail”. This was also the view of some
industry insiders. In the fall of 2008, rather than asking for government assistance for Ford,
Alan R. Mulally, the chief executive of Ford Motor Co., requested that the government supports
General Motors and Chrysler. His reasoning for asking government support for his company’s
traditional rivals was that the failure of either GM or Chrysler would lead to the potential failure
of their suppliers, and because Ford depended on many of the same suppliers as the other two
automakers, it would also find itself in perilous territory.1 Notably, this reasoning highlights
that what might be important is not first-order interconnections (the fact that General Motors and
Chrysler are highly connected firms), but higher-order interconnections resulting from the fact
that General Motors and Chrysler were connected to suppliers that were in turn connected to
another major company, Ford.

In this paper, we provide a mathematical framework for systematically evaluating how id-
iosyncratic shocks are translated into aggregate volatility because of interconnections. Though
the general framework we develop is applicable to a variety of settings including firm-level
interconnections resulting from producer-supplier relationships and financial linkages, we fo-
cus, for concreteness, on a multi-sector economy with input-output linkages between sectors,
which we refer to as the supply network of the economy. The economy consists of n sectors and
the supply network captures the input requirements of each sector. Mathematically, the supply
network is represented by an n × n matrix Wn , with entry wij capturing the share of sector
j’s product in sector i’s production technology. We refer to the sum of all wij ’s in any column

1In a congressional testimony to the Senate Banking Committee on November 18, 2008, Mulally stated:

“If any one of the domestic companies should fail, we believe there is a strong chance that the entire
industry would face severe disruption. Ours is in some significant ways an industry that is uniquely
interdependent — particularly with respect to our supply base, with more than 90 percent common-
ality among our suppliers. Should one of the other domestic companies declare bankruptcy, the effect
on Ford’s production operations would be felt within days — if not hours. Suppliers could not get fi-
nancing and would stop shipments to customers. Without parts for the just-in-time inventory system,
Ford plants would not be able to produce vehicles.
“Our dealer networks also have substantial overlap. Approximately 400 of our dealers also have a GM
or Chrysler franchise at their dealership, and we estimate that as many as 25% of our top 1500 dealers
also own GM or Chrysler franchises. The failure of one of the companies would clearly have a great
impact on our dealers with exposure to that company. In short, a collapse of one of our competitors
here would have a ripple effect across all automakers, suppliers, and dealers — a loss of nearly 3
million jobs in the first year, according to an estimate by the Center for Automotive Research.” (Mulally
(2008a), see also Mulally (2008b)).
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j as the outdegree or simply the degree of sector j. We define aggregate volatility as the standard
deviation of log output in the economy, and study the relationship between aggregate volatility
and the structure of the supply network.2

How do we determine whether and how much the supply network contributes to aggre-
gate volatility? The most transparent and tractable way of doing this is to consider a sequence
of supply networks {Wn}n∈N corresponding to different levels of disaggregation of the econ-
omy.3 In this context, we can ask two questions. The first is whether as n→∞, aggregate out-
put becomes increasingly concentrated around a constant value (i.e., whether the law of large
numbers holds). The second and the more interesting question concerns the rate at which such
concentration takes place, if at all. For many types of supply networks, in particular those that
feature no input-output linkages and those in which each sector relies equally on all other sec-
tors, the “too interconnected to fail” phenomenon does not take place: the law of large numbers
holds and convergence of aggregate output takes place at the rate

√
n.4 This has two important

implications. First, in such cases, interconnections and network effects would have little impact
on aggregate volatility. Second and relatedly, for reasonably large values of n, without sizable
aggregate shocks, aggregate output would have a very small standard deviation. For example,
if the logarithm of the output of each sector has a standard deviation of 10% and there are 100
sectors in the economy, log per capita output would have a standard deviation of 1%, whereas
with 1000 sectors, this standard deviation would be 0.3%, and with 10,000 sectors (correspond-
ing to very detailed products), it would only be 0.01%. Even if there is additional correlation
between the fluctuations of the output of sectors, the standard deviation of aggregate output
would tend to be very small. This last observation is also the reason why many macroeco-
nomic analyses build on aggregate productivity, credit, demand or monetary shocks in order to
generate sizable output fluctuations.

As already noted by Jovanovic (1987), Durlauf (1993) and Bak, Chen, Scheinkman, and
Woodford (1993), when there are strategic (or economic) connections among sectors and firms,
or as shown by Gabaix (2010), when some firms play a disproportionately important role (due
to their much larger size relative to others), the standard central limit theorems need not hold,
and aggregate fluctuations may result from firm-level (idiosyncratic) shocks. Our approach
highlights that more complex supply networks (rather than the simple networks mentioned in
the previous paragraph) also play a similar role. In particular, our main results characterize con-
ditions on the underlying supply network of the economy under which relatively small shocks
can create cascade effects and as a result, convergence at the rate

√
n no longer applies.

More specifically, we first show that if some sectors have a disproportionately large role in
the supply network (the extreme case being a star-like network, where one sector is an input
supplier to a very large number of other sectors), the law of large numbers does not hold. In this

2We justify the focus on this measure of fluctuations in aggregate output in the text. We also discuss other
measures, and in particular, tail risks, in Section 6.

3In our model economy, the total supply of labor is considered to be fixed. Therefore, an increase in the number
of sectors is equivalent to an increase in the level of disaggregation of the economy.

4More precisely, as is well-known from the central limit theorem, the distribution of the realization of output
minus its limiting value scaled by 1/

√
n converges to a normal distribution as n becomes large.
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case, as n → ∞, aggregate volatility does not disappear (even though there are no aggregate
shocks). The presence of such highly interconnected sectors can create cascade effects in that
negative shocks to those sectors are transmitted to a sufficiently large fraction of other sectors
in the economy. Notably, such cascade effects can arise even in cases in which the fraction of
sectors supplied by the most connected sector in the economy goes to zero relatively fast.

However, even in cases in which the law of large numbers holds, the structure of the supply
network may still affect the behavior of aggregate output by making the convergence rate much
slower than

√
n. First, this can happen because, again, some sectors are suppliers to many other

sectors; that is, because of first-order interconnections, as measured by the degree of the sectors
in the supply network. Second and more interestingly, this can happen due to higher-order
interconnections—i.e., the possibility that high degree sectors are themselves being supplied by
common sources; a notion more closely related to cascade effects. If the supply network ex-
hibits such higher-order interconnections, low productivity in one sector can potentially create
cascade effects through the entire economy, as its high-degree downstream sectors will suffer
and this will in turn affect a large number of further downstream sectors. These types of higher-
order interconnections appear to capture concerns similar to that of Ford Motor Co. regarding
the failure of common suppliers because of failure of General Motors or Chrysler.5 Note that the
intuition for why such interconnections matter is related to Gabaix (2010). Whereas in his work
idiosyncratic shocks translate into aggregate shocks because the firm size distribution is suf-
ficiently heavy-tailed and the largest firms contribute a sufficiently large fraction to aggregate
output, in our economy, such a role is played by the supply network, leading to some sectors to
have a disproportional effect on the aggregate output.

We provide several lower bounds on the rate of convergence as functions of structural prop-
erties of the supply network.6 Before explaining these lower bounds, it is useful to illustrate
the implications of slower convergence. For example, if convergence takes place at the rate n1/4

instead of
√
n, in an economy with 100 sectors each with a standard deviation of 10%, aggregate

volatility would be about 3%, whereas it would be 1.7% and 1% with 1000 and 10,000 sectors,
respectively.7

We prove two key theorems characterizing lower bounds on the rate of convergence (and
thus scaling factors for aggregate volatility). In terms of first-order interconnections, the lower
bound we provide depends on the coefficient of variation of the degree sequence, defined as the
sample standard deviation of the degrees of the sectors in the economy divided by average de-
gree. When the coefficient of variation is high, a few sectors are highly interconnected relative
to the rest. A corollary of this result is that if the degree distribution of the sequence of supply
networks can be approximated by a power law (Pareto distribution) with shape parameter β be-

5In this paper, for simplicity, we assume that the markets are competitive and all firms have Cobb-Douglas
technologies, which imply that shocks to a sector only affects its downstream sectors not its upstream suppliers.
This issue is further discussed in the Conclusion.

6Structural properties here refer to properties that can be determined without full knowledge of the entire supply
network, such as certain moments of the degree distribution.

7And of course, it can also be much slower. For example, if convergence is at the rate log (logn), then aggregate
volatility would remain around 1.7% even if the economy contained trillions of sectors/firms.
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tween 1 and 2, then aggregate volatility decays at a rate slower than n(β−1)/β . More importantly,
we provide lower bounds in terms of second and higher-order interconnections. We also show
that if the second-order degree sequence (appropriately defined so as to incorporate cascading ef-
fects) has a power law tail with shape parameter ζ between 1 and 2, then aggregate volatility
decays at a rate slower than n(ζ−1)/ζ . Notably, two economies with identical degree sequences
(first-order connections) can vary to an arbitrary degree with respect to their coefficients of
higher-order interconnections and to their distribution of second-order degree.

Finally, we study the relationship between the likelihood of “tail events”—e.g., very large
drops in output—and the structure of the supply network. Such tail events are relevant for
understanding large recessions or crashes. Some have claimed that events like the 2008–09 re-
cession and the Long-Term Capital Management collapse in 1998 were results of one in 10,000
likelihood events and thus should not have much bearing for our understanding of risk and
fluctuations. But if these “rare events” are one in 100 rather than one in 10,000, they should
clearly be incorporated into our models and practices. Whether this is so or not requires an
analysis of tail events. We first remark that two economies exhibiting the same level of aggre-
gate volatility (as defined by our standard deviation-based measure) can have widely different
likelihoods of tail events. We then characterize the asymptotic distribution of aggregate output
and the limiting probabilities of tail events using large deviation bounds.

Our paper is most closely related to Gabaix (2010) and to the independent but clearly prior
work by Carvalho (2010). Gabaix’s pioneering work shows that when the firm size distribution
has sufficiently heavy tails (in particular, when it is Pareto with a shape coefficient of one),
idiosyncratic shocks will not wash out at the rate

√
n and provides evidence to support that

this source of aggregate volatility is indeed important in practice. While Gabaix takes the firm
size distribution as given, our approach can be used to endogenize the firm size distribution
as a function of network structure (input-output linkages) and relate the aggregate effects of
idiosyncratic shocks to structural properties of the network structure (though in what follows,
we interpret our micro units as sectors rather than firms). Carvalho (2010) which is even more
closely related to our paper considers a multi-sector model with network effects. He notes that
the law of large numbers does not apply when the economy has a star network structure and
provides results on power law degree distributions that parallel the results we also present.
Carvalho uses a different approach (based on random graphs) and more specific and restrictive
assumptions on the distribution of shocks, whereas our analysis applies to any sequence of
supply networks and to any distribution of sectoral shocks (with finite variance). As a result,
we are able to develop a general framework and more powerful results. First, our more general
approach confirms and extends Carvalho’s results (his main results can be derived as a corollary
of Theorem 3). Second, Carvalho’s analysis does not contain any analog of our results on higher-
order interconnection and cascade effects, which are our main focus. Finally, he does not study
tail events and asymptotic distributions, instead focusing on dynamic implications of network
effects in a multi-sector growth model (a direction we do not pursue).

Like Carvalho (2010), we also build on the literature on the role of sectoral shocks in macro
fluctuations, such as Long and Plosser (1983), Horvath (1998, 2000), Dupor (1999), Conley and
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Dupor (2003) and Shea (2002). In particular, the debate between Horvath (1998, 2000) and Du-
por (1999) centered around whether sectoral shocks would translate into aggregate shocks. Our
results provide fairly complete answers to the questions raised by these pioneering papers. This
literature presents a variety of empirical evidence on the role of sectoral shocks, but does not
provide a general mathematical framework similar to the one developed here.8

Our work also naturally builds on the related literature prior to Gabaix (2010), in particular,
Jovanovic (1987), Durlauf (1993) and Bak et al. (1993). Jovanovic and Durlauf construct models
in which there are strong strategic complementarities across firms, so that shocks to some firms
can create cascade effects. Our approach can therefore be viewed as providing a general frame-
work for a rigorous analysis of this class of models (of which Jovanovic and Durlauf’s models
would be special cases). Bak et al. (1993) construct an economic version of a “sandpile” type
(self-organized criticality) model along the lines of work in physics and statistical mechanics by
Bak and co-authors (e.g., Bak (1996), Bak, Tang, and Wiesenfeld (1987)), as well as Jensen (1998).
Though a very interesting direction of work, their paper only offers a specific example, and one
in which not only weak law of large numbers fails, but in which also mean average output is
infinite. We view our line of research as complementary to these alternatives.

Finally, our work builds on the literature on non-classical central limit theorems in statistics
and the literature on laws of large numbers and limit theorems for non-identically distributed
random variables. It is also related to the PageRank vector as well as the concept of Bonacich
centrality in the network science literature, which capture the importance of vertices of a given
graph (see, e.g., Chung and Zhao (2008), Jackson (2008) and Bonacich (1987)). To the best of our
knowledge, the literature does not provide lower bounds on the asymptotic behavior of these
measures as functions of structural network parameters, which constitutes our main contribu-
tion.

The rest of the paper is organized as follows. In Section 2, we present our model and define
the concept of the supply network. Section 3 characterizes the influence vector (which sum-
marizes the relevant features of the supply network), provides conditions under which aggre-
gate output, with the appropriate scaling, converges to an asymptotic distribution, and finally
provides conditions under which it is asymptotically normally distributed. Section 4 contains
our main results which characterize how structural properties of the supply network, such as
its degree sequence and higher-order interconnectivities, determine the rate at which aggre-
gate volatility vanishes. Section 5 illustrates some of the results using information from the US
input-output matrix (and shows that second-order interconnections indeed appear to be quite
important). Section 6 studies asymptotic distributions and tail events. Section 7 concludes. All
proofs and some additional mathematical details are presented in the Appendix.

8Our model is also related to the smaller literature on the implications of input-output linkages on economic
growth and cross-country income differences, see, for example, Ciccone (2002) and Jones (2009).
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Notation

Throughout the paper, unless otherwise noted, all vectors are assumed to be column vectors.
We denote the transpose of a matrixX byX ′. We write x ≥ y, if vector x is element-wise greater
than or equal to vector y. Similarly, we write x > y, if every element of x is strictly greater than
the corresponding element in y. We use 1 to denote the vector of all ones, the size of which is
adjusted to and clear from the context.

Given two sequences of positive real numbers {an}n∈N and {bn}n∈N, we write an = O(bn), if
they satisfy lim supn→∞ an/bn < ∞, whereas an = Ω(bn) if lim infn→∞ an/bn > 0. On the other
hand, an = o(bn) means that limn→∞ an/bn = 0, and an = ω(bn) means that limn→∞ an/bn =∞.
Finally, we write an = Θ(bn), if an = O(bn) and an = Ω(bn) hold simultaneously.

2 Model

In this section, we present our economic model. We start by describing the interactions between
different sectors in the economy and define the notion of the supply network. Our model is a
static variant of the multi-sector model of Long and Plosser (1983). We choose to focus on a
static model, since the economics (and in fact even the mathematics) is very similar, except
that less notation is necessary to set up and analyze the model. A related dynamic model is
presented and analytically and quantitatively investigated in Carvalho (2010). We omit the
dynamic extension to save space.

2.1 The Environment

Consider a static economy consisting of n sectors, In ≡ {1, 2, . . . , n}, each producing a distinct
product. The output of any given sector can be either consumed or used by other sectors as
inputs (intermediate goods) for production. Each sector consists of a unit-mass continuum of
identical firms with Cobb-Douglas production technologies that use labor and intermediate
goods purchased from other sectors. The production technologies of all firms exhibit constant
returns to scale. More specifically, the output of sector i, denoted by xi, is given by

xi = zαi l
α
i

∏
j∈Ni

x
(1−α)wij
ij , (1)

where Ni ⊆ In is the set of sectors that supply sector i with inputs, α ∈ (0, 1] is the labor share
in the production technologies,9 xij is the amount of commodity j used in production of good i,
and zi is the idiosyncratic productivity shock to firms in sector i. We assume that productivity
shocks zi are independent across sectors, and denote the distribution of εi ≡ log(zi) by Fi. li
denotes the amount of labor employed by sector i.

For any given pair of sectors i and j with j ∈ Ni, the exponent wij > 0 captures the share of
good j in the total intermediate input use of firms in sector i. The fact that firms in a given sector

9Our results are largely unaffected if α is sector-specific (provided that it remains bounded away from 0 and 1 as
n→∞).
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use the output of firms in other sectors as inputs for production is the source of interconnectivity
in the economy. We capture such inter-sectoral supply relations more concisely by defining the
input-output matrix Wn with a generic entry (Wn)ij = wij .10 We also adopt the convention that
wij = 0 if sector j is not an input supplier to sector i. By definition, Wn is a non-negative n× n
matrix. The following assumption guarantees that the sectoral production functions exhibit
constant returns to scale to their labor inputs and the intermediate goods provided by their
suppliers.

Assumption 1. The input shares of any firm i ∈ In in the economy add up to one; that is,∑n
j=1wij = 1.

Note that the above assumption also implies that input-output matrixWn is always a stochas-
tic matrix, meaning that its row sums are one (and thus has an eigenvalue equal to one with
the corresponding right eigenvector consisting of all ones). Also note that we do not assume
wii = 0.

We assume perfectly competitive markets, where firms in each sector take the prices and
wage as given, and maximize profits. In particular, the representative firm in sector i chooses
the amount of labor and intermediate goods in order to maximize its profits

pixi − hli −
n∑
j=1

pjxij , (2)

subject to its production possibility (1), where h denotes the hourly wage in the market and pj

is the market price of commodity j.
In addition to the firms, there is a continuum of identical consumers in the economy, whose

mass is normalized to one. The representative household is endowed with one unit of labor that
can be hired by firms at wage h. We assume that she has symmetric Cobb-Douglas preferences
over all goods in the economy and supplies labor inelastically:

u(c1, c2, . . . , cn) = An

n∏
i=1

(ci)1/n,

where ci is the consumption of good i, and An is a normalization constant which depends on
the inter-sectoral supply structure of the economy (see (23) in the Appendix).11 The symme-
try assumption enables us to focus on the interconnections created through the input-output
relations in the economy, since all products have the same consumption demand. The represen-
tative household maximizes her utility by choosing a consumption bundle (c1, . . . , cn) subject
to her budget constraint

n∑
i=1

pici = h.

10Throughout, for notational simplicity, we do not use the index n for the entries of the matrix Wn (though we do
typically write the subscript n for other objects).

11An only affects the expected value of log GDP in the economy and is introduced to guarantee that the mean
output in economies with different number of sectors remains constant. Its value does not affect aggregate volatility
or other distributional properties of (log) aggregate output, the main quantities of interest in this paper.
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Due to the competitive markets assumption, h is equal to the aggregate nominal value added
in the economy. If the ideal price index is chosen as the numeraire, then h also reflects the real
output in the economy, as well as real GDP per capita.

Given the setup presented above, an economy consisting of n sectors is completely speci-
fied by the tuple En = (In,Wn, {Fi}i∈In), capturing the set of sectors, the input-output matrix,
and the distributions of the idiosyncratic productivity shocks. Since we are interested in the
asymptotic behavior of aggregate output upon disaggregation, throughout the paper, we focus
on a sequence of economies {En}n∈N where the number of sectors increases. Note that in our
model, the total supply of labor is normalized to one for all values of n. Therefore, the increase
in the number of sectors in the sequence {En}n∈N corresponds to disaggregating the structure
of the economy. For any such sequence, we impose the following assumption on the sectoral
productivity shocks.

Assumption 2. Given a sequence of economies {En}n∈N and for any sector i ∈ In, Fi is such
that

(a) Eεi = 0, and

(b) var(εi) = σ2
i ∈ (σ2, σ̄2), where 0 < σ < σ̄ are independent of n.

The first part of Assumption 2 is a normalization which entails no loss of generality. The
second part requires that in any given sequence of economies, the variances of εi’s are uniformly
bounded from below and above.

As our description highlights, there are no externalities or strategic interactions in this econ-
omy. The only non-trivial interactions are through the input-output relations. In particular, as
in Long and Plosser (1983), a negative shock to a sector will reduce its output, and in equilib-
rium, raise the price of its product, reducing the amount demanded by each of its downstream
sectors as input (sector i is a downstream sector for sector j if wij > 0, or alternatively put, if
j ∈ Ni). As a consequence, a negative shock to a sector will reduce the output of all of its down-
stream sectors. This is its first-order effect (we can think of the direct impact of the shock on the
productivity level of the sector as its the zeroth-order effect). There will also be higher-order
effects as the reduction in the output of the downstream sectors will in turn reduce the output
of their own downstream sectors and so on. We will quantify the extent of these effects in the
next section. The characterization of the competitive equilibrium is presented in Appendix B.

2.2 The Supply Network

Pairwise interactions between different sectors through their input supply relations can also
be represented by a weighted, directed graph. In particular, the supply network of economy
En = (In,Wn, {Fi}i∈In) can be represented by the graph Gn = (Vn, En,Wn) with vertex set
Vn = In, edge set En, and edge weight matrix Wn, where each vertex in Vn corresponds to a
sector in the economy, (j, i) ∈ En if sector j supplies firms in sector i with intermediate goods
for production, and the weight of edge (j, i) ∈ En is equal towij , the share of sector j’s output in
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sector i’s production technology. Note that by construction, the supply network corresponding
to an economy is a directed graph. Also, note that our definition of the supply network allows
for self-loops (i, i) ∈ En whenever wii > 0.

We also define the weighted outdegree, or simply the degree, of sector i as the share of sector
i’s output in the input supply of the entire economy normalized by constant 1− α; that is,

di ≡
n∑
j=1

wji. (3)

Clearly, when all supply linkage weights are identical, the outdegree of vertex i is proportional
to the number of sectors it is a supplier of. We refer to the sequence d(n) = (d1, d2, . . . , dn) as the
degree sequence of economy En.12

Throughout the paper, due to the one-to-one correspondence between the supply network
of an economy and its input-output matrix, we use the two concepts interchangeably.

3 The Influence Vector and Aggregate Volatility

In this section, we provide a simple representation of the relationship between the supply net-
work and aggregate output in terms of an influence vector, which summarizes the influence of
each sector on aggregate output. We then use this representation to discuss the conditions un-
der which the law of large numbers holds and then derive key results about convergence to
an asymptotic distribution, which will be the basis of the rest of our analysis. We also briefly
discuss alternative interpretations of the model.

3.1 The Influence Vector

Our main aggregate statistic throughout the paper will be aggregate output, defined as the loga-
rithm of the real value added in the economy, i.e.,

yn ≡ log(h).

Given the environment described in the previous section, it is straightforward to charac-
terize the competitive equilibrium of the economy En = (In,Wn, {Fi}i∈In).13 By choosing an
appropriate constant An and setting the ideal price index to one, we obtain

yn = log(h) = v′nε, (4)

where ε ≡ [ε1 . . . εn]′, and the n-dimensional vector vn is the influence vector, defined as

vn ≡
α

n

[
I − (1− α)W ′n

]−1 1. (5)

12There is no need to define indegree sequences, since in view of Assumption 1, the (weighted) indegrees of all
sectors are equal to one.

13The details are provided in Appendix B. Clearly, one could also obtain a competitive equilibrium by computing
the Pareto efficient allocation (maximizing the utility of the representative household) and invoking the Second
Welfare Theorem.
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As we show in Appendix B, the i-th element of vn is also equal to the equilibrium share of sales
of sector i in the economy, so that vn is also the “sales vector” of the economy. This is of course
not surprising in view of the results in Hulten (1978) and Gabaix (2010), relating changes in
aggregate TFP (total factor productivity) to changes in firm-level TFP weighted by sales.

Thus, aggregate output of economy En can be written in terms of the supply network, as
represented by the matrix Wn, the labor share in the technology α, and the idiosyncratic pro-
ductivity shocks. Assumption 1 guarantees that [I − (1 − α)Wn] is non-singular, and thus, its
inverse is well-defined. Moreover, since none of Wn’s eigenvalues lie outside of the unit circle,
it is possible to express vn in terms of a convergent power series:

v′n =
α

n
1′
∞∑
k=0

(1− α)kW k
n . (6)

Alternatively, from (5), one could also write the influence vector vn as the unique solution to the
following linear system

v′n =
α

n
1′ + (1− α)v′nWn. (7)

The presence of higher-order interconnections can already be seen from equation (7). Indeed,
the second term on the right-hand side implies that the effect of a sector’s idiosyncratic shock
on the aggregate output is greater if it supplies inputs to sectors that are themselves central in
determining the aggregate output, rather than to sectors with marginal effects.

The influence vector in our model coincides with the definition of the PageRank vector of
a graph as well as the concept of Bonacich centrality in the network science literature. Certain
properties of the PageRank vector (so-called because it corresponds to the algorithm used by
Google’s search engine in ranking webpages) and some generalizations of it are discussed in
Chung and Zhao (2008), while Jackson (2008) shows how the PageRank vector is related to
Bonacich centrality, another measure for evaluating the significance of a vertex in a given graph.

Until Section 6, we primarily focus on the behavior of the standard deviation of aggregate
output, to which we refer as aggregate volatility.14 The key observation is that since productivity
shocks to all sectors are mutually independent, aggregate volatility is simply equal to

(var yn)1/2 =

√√√√ n∑
i=1

σ2
i v

2
n,i, (8)

where vn,i denotes the i-th element of the influence vector vn. Since, in view of Assumption 2,
σi is uniformly bounded, (8) implies that aggregate volatility scales with ‖vn‖2, where ‖ · ‖2 is
the Euclidean (vector) norm. Equivalently, we can write this relation as

(var yn)1/2 = Θ(‖vn‖2). (9)

Though simple, this relationship is central for the rest of our analysis as it will enable us both to
understand whether and under which conditions the appropriate law of large numbers holds,
and when it does, at what rate aggregate output concentrates around a constant.

14Note that given our normalizations, the mean of yn = v′nε is zero.
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Throughout the rest of the paper, we adopt the convention that whenever we refer to a
sequence of influence vectors {vn}n∈N, this is associated with a sequence of economies {En}n∈N,
and vice versa, and that all limiting statements are for n→∞.

3.2 Alternative Interpretations

We have so far derived equations (4) and (5) from the model economy described in the previous
section. In the rest of the analysis, we will only use these equations. These or similar relations
could have been derived from alternative models of economic behavior.

Consider, for example, a reduced-form model, involving n units (agents, firms, sectors, etc.)

y = W̃ny + ε̃, (10)

where y is the vector consisting of the output levels, value added or other actions (or the loga-
rithms thereof) of these units, W̃n is an n × n matrix capturing the interactions between them,
and ε̃ is a vector of independent shocks to each unit. Clearly, equations (4) and (5) can be de-
rived exactly or approximately from (10). Therefore, one could study the relationship between
the structure of interactions and aggregate volatility in different economic environments that
can be cast in this way. We briefly mention some examples.

First, we should note that while we have modeled the εi’s as productivity shocks, nothing in
our analysis depends on this interpretation. Any other shock affecting sectoral outputs would
lead to identical results.

Second, we could have (10) apply to a set of firms (rather than sectors), in which case the
matrix W̃n would represent the input-output linkages between firms. Even though each firm
could, in general, buy inputs from several suppliers producing closely substitutable inputs, the
failure of a particular supplier could still reduce the outputs of all its downstream customers if
long-term relation-specific investments are involved in the supplier-producer interactions. If so,
(10) could be a reduced-form representation of these firm-level interlinkages, where the failure
of a firm will create downward pressure on the output of its downstream customers. These firm-
level interactions can be further enriched by noting that the failure of a downstream customer
will also depress the output of a supplier, or even potentially cause its failure, because given
the long-term firm-specific investments that the supplier has made, the demand for its output
from other firms will be limited, at least in the short run. This richer environment would be
the one necessary for interpreting the discussion in the Introduction, related to the concerns
of Ford Motor Co. about the failure of their competitors, General Motors and Chrysler, which
could then induce the failure of upstream suppliers that they all share.

Third, equation (10) could also be a reduced-form representations of the counterparty rela-
tionships between financial institutions. In this case, wij > 0 would correspond to firm i being
a counterparty to firm j (i.e., holding some of firm j’s debt or other liabilities on its balance
sheet). Such interlinkages, which have become increasingly common over the last decade, have
been argued to be at the root of the liquidity and insolvency problems faced by many financial
institutions during the 2008–2009 crisis.
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Finally, equation (10) could also be derived from various strategic complementarities, for
example as in Jovanovic (1987) or Durlauf (1993), which would link the input or output choices
of different firms or sectors.

In the rest of this section, we study the behavior of aggregate output as a function of the
structure of the economy when the number of sectors is large. More specifically, we consider
a sequence of economies {En}n∈N, and study the distribution of yn as n → ∞. First, we pro-
vide conditions, in terms of the Euclidean norm of the influence vector, ‖vn‖2, as highlighted
by equation (9), under which sectoral shocks in a well-behaved sequence of economies fail to
average out, implying that the standard shock diversification argument (and the law of large
numbers) does not hold. We then show that even for sequences of economies for which the law
of large numbers holds, the convergence rate need not be

√
n as is generally assumed, but is

instead given by the same object that determines whether the law of large numbers applies; i.e.,
by ‖vn‖2.

3.3 Dominant Sectors and the Law of Large Numbers

We first introduce the following simple definition.

Definition 1. A sequence of economies {En}n∈N has dominant sectors if ‖vn‖∞ = Θ(1), where
‖ · ‖∞ is the sup vector norm; i.e., the largest element of the vector in absolute value.

Recall that vn is the vector of sectoral sales. Thus ‖vn‖∞ = Θ(1) implies that the share of
sales of the largest sector remains bounded away from zero as the number of sectors increases.
This also makes it clear why it is natural to refer to such sectors as “dominant”. If all sectors
were “symmetric”, equation (5), together with the fact that sectoral shocks are independent,
would imply that the influence of each sector gradually declines and ‖vn‖2 → 0. This also
implies ‖vn‖∞ → 0, so that there are no dominant sectors in this case (see the proof of Theorem
1). However, if the influence of some sector does not die down even as the economy becomes
highly disaggregated, then we would have ‖vn‖2 6→ 0 and ‖vn‖∞ 6→ 0 as captured by the above
definition. The relationship between the presence of dominant sectors and ‖vn‖2 is further
clarified by considering star-like supply network structures introduced in the next definition.

Definition 2. A sequence of economies {En}n∈N has a star-like structure if maxi∈In di = Θ(n),
where di denotes the degree of sector i.

In other words, a sequence of economies has a star-like structure if there is a sequence of
central sectors in ∈ In supplying inputs to a non-vanishing fraction of the sectors in En. For
example, the supply network depicted in Figure 1 belongs to this class with the first sector in
each economy taking the role of the central sector. The next proposition shows that star-like
structures do indeed have dominant sectors as defined in Definition 1.

Proposition 1. A sequence of economies {En}n∈N with a star-like structure has dominant sectors.

The main result of this subsection is the following theorem, which follows from a simple
application of Chebychev’s inequality:
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Figure 1: The supply network corresponding to a star-like sequence of economies, where all
supply links are identical. Sector 1 plays the role of the central sector, whose outdegree is of
order Θ(n) .

Theorem 1. Aggregate output in a sequence of economies {En}n∈N converges to zero in probability (as
n→∞) if and only if {En}n∈N does not have dominant sectors.

The simple theorem shows that, even though each sector has independent productivity
shocks given by εi, the (weak) law of large numbers need not apply because of the intercon-
nections created by the supply network. Star-like structures provide one concrete example.15

Another example is provided next. The role of second and higher-order interconnections in
creating dominant firms will be discussed further and clarified in the next section.

Example 1. Consider a sequence of economies {En}n∈N, where the supply network of the econ-
omy consisting of n sectors is depicted in Figure 2. As the figure suggests, the number of sectors
who depend on sector 1 as their sole input supplier scales at rate log n, whereas the outdegree of
sectors who are supplied by sector 1 scale at rate Θ(n/ log n). On the other hand, using equation
(7) it is easy to verify that ‖vn‖2, and hence var(yn), vary with n at rate Θ(1); that is, aggregate
volatility is bounded away from zero as the number of sectors grows. Thus, existence of a
star-like structure is sufficient, but not necessary for the failure of the law of large numbers.

It is also worth noting that, loosely speaking, economies with dominant sectors will be nei-
ther the most heavily connected nor the least connected economies. In particular, it is straight-
forward to see that either ifwij = 0 for all i 6= j (i.e., a disconnected sequence of economies) or if
wij = 1/n for all i and j (i.e., a sequence of complete symmetric networks), we have ‖vn‖2 → 0.
It is only “in the middle” that ‖vn‖2 is uniformly bounded away from zero (see Proposition 2 in
the next section).

Having noted the possible failure of the law of large numbers, in the rest of the analysis we
will focus on the rate at which convergence to zero happens (though our results will be stated
without assuming such convergence). We next present the main result of this section.

15Carvalho (2010) also notes that the law of large numbers fails when the economy has a star network. Theorem 1
generalizes this result and provides an “if and only if” condition for the failure of the law of large numbers.
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Figure 2: The supply network corresponding to a sequence of economies for which the risk
diversification argument predicted by the law of large numbers does not apply, despite the fact
the sequence does not have a star-like structure.

3.4 Asymptotic Distribution and Aggregate Volatility

Even though Theorem 1 shows that in the presence of interconnections (particularly, in the
presence of dominant sectors), the law of large numbers need not hold in general, we would
expect that it would apply in most interesting and realistic situations. However, even then,
inter-sector linkages in the economy might still have a first-order effect on volatility. In this
subsection, we address this question and show that even in sequences of economies in which
aggregate output converges to zero, the convergence rate need not be equal to

√
n. Instead

aggregate output yn has a non-degenerate asymptotic distribution, when scaled by ‖vn‖2—a
value distinct from 1/

√
n in general. The result, which is based on generalizations of the central

limit theorem to independent, but not identically distributed random variables, also provides
conditions under which aggregate output is asymptotically normally distributed, and will be
the basis of all of our results in the next section.

Theorem 2. Consider a sequence of economies {En}n∈N and assume that Eε2i = σ̄2 for all i ∈ In.

(a) Suppose that {εi} are normally distributed for all i ∈ In and all n , then 1
‖vn‖2 yn

d−→ N (0, σ̄2).

(b) If ‖vn‖∞‖vn‖2
−→ 0 (with Fi’s arbitrary), then 1

‖vn‖2 yn
d−→ N (0, σ̄2).

(c) Suppose that {εi} are identically distributed for all i ∈ In and all n, and are not normally distributed.
If ‖vn‖∞‖vn‖2 6→ 0, then the asymptotic distribution of 1

‖vn‖2 yn, when it exists, is non-normal and has
finite variance σ̄2.

This theorem establishes that aggregate output, when normalized by the Euclidean norm
of the influence vector, ‖vn‖2, converges to a non-degenerate distribution. It is thus a natural
complement to, and strengthens, equation (9), which showed that aggregate volatility scales
with ‖vn‖2. Notably, 1/‖vn‖2 is in general distinct from (slower than) the

√
n scaling implied by

the standard central limit theorem (see Lemma 2 in the next section). The most important result
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implied by Theorem 2 is that the rate of decay is determined by the same factor that captures
aggregate volatility, namely ‖vn‖2, which, as we have already seen and will discuss in greater
detail in the next section, is itself shaped by the structural properties of the supply network.

Theorem 2 also shows that the supply structure of the economy not only affects the con-
vergence rate, but also determines the asymptotic distribution of aggregate output: depending
on ‖vn‖∞, which captures the influence level of the most influential sector, aggregate output
(properly normalized) can have a non-normal distribution. In fact, if the conditions in part (c)
of the theorem hold, then the asymptotic distribution of aggregate output necessarily depends
on the specific distribution of the sectoral-level productivity shocks. In either case, however,
the limiting variance of yn/‖vn‖2 is finite and equal to σ̄2.

Note that the last part of the theorem is stated conditional on such an asymptotic distribution
existing. This is necessary, since we have not put any restriction on the sequence of economies
(and in fact we have not even imposed the law of large numbers), and thus ‖vn‖∞ and ‖vn‖2
need not have well-behaved limits. This does not create a problem for part (b) of the theorem,
which shows that any sequence of economies satisfying ‖vn‖∞ / ‖vn‖2 → 0 will necessarily
have a well-behaved distribution when scaled by ‖vn‖2. Also note that, the assumption that
‖vn‖∞ / ‖vn‖2 → 0 ensures that the sequence has no dominant firms, and as a consequence, yn
necessarily converges to its mean, by Theorem 1.

4 Characterizing Aggregate Volatility

In this section, we build on Theorem 2 and further characterize the behavior of aggregate volatil-
ity in terms of the structural properties of the supply network. In particular, we provide lower
bounds on aggregate volatility depending on simple first-order and higher-order interconnec-
tivity properties of the supply network.

4.1 Preliminary Results

Recall throughout that aggregate volatility refers to the standard deviation of aggregate output,
(var yn)1/2.

Lemma 1. All of the elements of the influence vector vn are positive, and ‖vn‖1 = 1.

Recalling that the `1-norm of a non-negative vector, ‖ · ‖1, is simply the sum of the elements
of that vector, this lemma combined with equation (4) which states that yn = v′nε, implies that
aggregate output is simply a convex combination of the logarithm of the idiosyncratic shocks to
each sector. This result holds regardless of the structure of the economy. The supply network, on
the other hand, determines how the unit mass of vector vn is distributed between its n elements,
and hence, the rate at which aggregate volatility decays to zero. The next lemma provides global
bounds on this rate.

Lemma 2. Given a sequence of economies {En}n∈N, aggregate volatility satisfies (var yn)1/2 = O(1)
and (var yn)1/2 = Ω(1/

√
n).
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This result is quite intuitive. It states that aggregate volatility cannot grow unbounded as
n→∞, since this corresponds to the economy becoming further disaggregated. In other words,
as the familiar logic of the law of large numbers implies, having more units (further disaggre-
gation) can only lead to greater “diversification” of the sector-specific shocks. The lemma also
shows that aggregate volatility in the economy does not decay to zero faster than the rate pre-
dicted by the regular law of large numbers for independent variables. In other words, correla-
tions between sectors’ outputs due to interconnections can only decrease the degree of diversi-
fication in the economy.

4.2 First-Order Interconnections and Aggregate Volatility

We now focus on the effects of first-order interconnections, as measured by the degree distribu-
tion, on aggregate volatility. As already hinted at by our discussion in the previous subsection,
this analysis will reveal the importance of the distribution of influences across different sectors.
In particular, our main result in this subsection, Theorem 3, will show that if a “large” fraction of
the sectors rely on a “small” number of sectors for their inputs, then aggregate output exhibits
higher volatility.

Definition 3. Given an economy En = (In,Wn, {Fi}i∈In) with degree sequence d(n) = (d1, d2, . . . , dn),
the coefficient of variation is

CV(d(n)) ≡ STD(d(n))
d̄

where d̄ ≡ 1
n

∑n
i=1 di is the average degree, and STD(d(n)) ≡

[∑n
i=1(di − d̄)2/(n− 1)

]1/2 is the
standard deviation of the degree sequence.

Theorem 3. Consider a sequence of economies {En}n∈N. Then, aggregate volatility satisfies

(var yn)1/2 = Ω

 1
n

√√√√ n∑
i=1

d2
i

 (11)

and

(var yn)1/2 = Ω

(
1 + CV(d(n))√

n

)
. (12)

Theorem 3 states that if the degree sequence of the supply network exhibits high variabil-
ity as measured by the coefficient of variation, then there is also high variability in the effect
of different sector-specific shocks on the aggregate output. Such heterogeneity then implies
that aggregate volatility decays at a rate slower than

√
n. The supply network can thus have a

considerable effect on aggregate volatility—even when the law of large numbers holds. Intu-
itively, when the coefficient of variation is high, only a small fraction of sectors are responsible
for the majority of the input supplies in the economy. Shocks to these sectors then propagate
through the entire economy as their low productivity leads to lower production for all of their
downstream sectors.
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It is worth noting that Theorem 3 is stated without assuming that the law of large numbers
holds (or that ‖vn‖∞ / ‖vn‖2 → 0); in fact, the failure of the law of large numbers for star-like
supply network structures (e.g., Proposition 1 and Theorem 1) can be obtained as a corollary of
Theorem 3. In particular, for a star-like supply network CV(d(n)) = Θ(

√
n), so that (var yn)1/2 =

Ω (1); i.e., aggregate volatility stays bounded away from zero as n→∞.
A complementary intuition for the results in Theorem 3 can be obtained from equation (11),

which can also be interpreted as a condition on the tail of the degree sequence of the network:
aggregate volatility is higher in economies whose corresponding degree sequences have heavy-
tailed distributions. This observation leads to an immediate corollary to Theorem 3 for supply
networks where the degree sequence satisfies a power law (Pareto) distribution. A similar corol-
lary appears in Carvalho’s work for random graphs.

Definition 4. A sequence of economies {En}n∈N has a power law tail structure, if there exist a
constant β > 1, a function L(·), and a sequence of positive numbers cn = Θ(1) such that for all
n ∈ N and all k < d

(n)
max = Θ(n1/β), we have

Pn(k) = cnk
−βL(k)

where Pn(k) ≡ 1
n |{i ∈ In : di > k}| is the empirical counter-cumulative distribution function

of the outdegrees, d(n)
max is the maximum outdegree of En, and L(·) is a slowly-varying function

satisfying limt→∞ L(t)tε =∞ and limt→∞ L(t)t−ε = 0 for all ε > 0.

In the above definition, β > 1 is called the scaling index or the shape parameter and captures the
scaling behavior of the tail of the degree sequence of the economy. Lower values of β correspond
to heavier tails and thus, larger variations in the degree sequence. We now apply the result
derived in Theorem 3 to a sequence of economies with power law tail structures to obtain the
following corollary.

Corollary 1. Consider a sequence of economies {En}n∈N with a power law tail structure and scaling
index β ∈ (1, 2). Then, aggregate volatility satisfies

(var yn)1/2 = Ω
(
n
−β−1

β
−ε
)
,

where ε > 0 is arbitrary.

The corollary establishes that if the degree sequence of the supply network exhibits rela-
tively heavy tails, then aggregate volatility decreases at a much slower rate than the one pre-
dicted by the regular law of large numbers. We emphasize that Theorem 3, and hence Corollary
1, provide a lower bound on the rate at which aggregate volatility vanishes. Therefore, even if
the scaling index of the power law structure is in the interval (2,∞), other, higher-order struc-
tural properties of the supply network, besides the degree sequence, can still prevent the output
volatility from decaying at rate

√
n. We discuss such effects in the following subsections.
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4.3 Second-Order Interconnections and Aggregate Volatility

First-order interconnections give only limited information about the structure of the supply
network. In particular, as the next example demonstrates, two sequences of economies with
identical degree distributions can have arbitrarily large differences in their structural properties
and influence vectors. Intuitively, first-order interconnections, and hence degree distributions,
provide no information on the true extent of “cascades,” where low productivity in one sector
affects not only its downstream sectors, but the downstream customers of these sectors and so
on.

Example 2. Consider two sequence of economies {En}n∈N and {Ên}n∈N, with corresponding
supply networks depicted in Figures 3(a) and 3(b), respectively. Each edge corresponds to a
supply link of weight one, and all other supply links have weight zero. As the figures suggest,
the two network structures have identical degree sequences for all n ∈ N. More precisely, the
economy indexed n in each sequence contains a sector of degree d (labeled sector 1), d−1 sectors
of degree d′ (labeled 2 through d), with the rest of sectors having degrees zero.16 However, the
two supply networks can exhibit considerably different behaviors as far as aggregate volatility
is concerned.

The influence vector corresponding to the sequence of economies {En}n∈N depicted in Figure
3(a) is equal to

vn,i =


1/n+ vn,2(1− α)(d− 1)/α if i = 1
α/n+ α(1− α)d′/n if 2 ≤ i ≤ d
α/n otherwise,

implying that ‖vn‖2 = Θ(1); i.e., aggregate volatility of En does not converge to zero as n→∞,
regardless of the values of d and d′.

On the other hand, elements of the influence vector corresponding to n-th element in the
sequence of economies {Ên}n∈N depicted in 3(b) are given by

v̂n,i =


1/n+ (1− α)(d− 1)/n if i = 1
1/n+ (1− α)(d′ − 1)/n if 2 ≤ i ≤ d
α/n otherwise,

implying that ‖v̂n‖2 = Θ(d/n + 1/
√
d). Therefore, in general, the rate of decay of aggre-

gate volatility in {Ên}n∈N is significantly different from that of {En}n∈N, despite the fact that
both have identical degree sequences for all n. For example, if d is of order Θ(

√
n), then

‖v̂n‖2 = Θ(1/ 4
√
n), whereas ‖vn‖2 = Θ(1). The source of this difference is of course the fact

that in {En}n∈N, unlike in {Ên}n∈N, the high-degree sectors labeled 2 through d share a common
supplier with one another, creating the possibility of sizable “cascade” effects.

16Note that d and d′ are not independent, as the total number of sectors in the economy is equal to n. More
specifically, it must be the case that (d − 1)d′ + d = n. Also note that there are values of n ∈ N for which no such
decomposition in terms of positive integers d and d′ exists. For such values of n, one needs to sacrifice symmetry
in the degrees of sectors labeled 2 through d. However, this does not affect the issue highlighted by the example, as
only the growth rates of d and d′, and not their actual values, matter.
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(a) High second-order interconnectivity (b) Low second-order interconnectivity

Figure 3: The two structures have identical outdegree sequences. However, depending on the
values of d and d′, the aggregate output volatility can exhibit considerably different behaviors
for large values of n.

Motivated by this example and the general intuition that it conveys, we now provide a lower
bound on the decay rate of aggregate volatility in terms of second-order interconnections. The
key concept is the following new statistic, which we refer to as the second-order interconnectivity
coefficient.

Definition 5. Given an economy En = (In,Wn, {Fi}i∈In), the second-order interconnectivity coef-
ficient is defined as

τ2(Wn) ≡
n∑
i=1

∑
j 6=i

∑
k 6=i,j

wjiwkidjdk, (13)

where dj is the degree of sector j ∈ In, and wji is the (j, i) element of input-output matrix Wn.

The second-order interconnectivity coefficient measures the extent to which sectors with
high degrees (those that are major suppliers to other sectors) are interconnected to one another
through common suppliers. For example, in terms of the discussion in the Introduction, the
situation with Ford, General Motors and Chrysler would correspond to a high second-order
interconnectivity coefficient because all three companies have high degrees (are major suppliers
and important for the economy) and have common suppliers. More specifically, τ2 takes higher
values when high-degree sectors share the same suppliers with other high-degree sectors, as
opposed to sharing suppliers with low-degree ones. This observation is a consequence of the
Rearrangement Inequality, which states that if a1 ≥ a2 ≥ · · · ≥ ar and b1 ≥ b2 ≥ · · · ≥ br, then
for any permutation (â1, â2, . . . , âr) of (a1, a2, . . . , ar), we have (e.g., Wu and Liu (1995) or Steele
(2004)):

a1b1 + a2b2 + · · ·+ arbr ≥ â1b1 + â2b2 + · · ·+ ârbr.

Note that the information captured by τ2 is fundamentally different from the information en-
coded in the degree sequence of a network. For example, the second-order interconnectivity
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coefficient of networks depicted in Figures 3(a) and 3(b) are significantly different even though
they both have identical degree sequences.

It is also worth noting that the second-order interconnectivity coefficient τ2 is different from
the related notion of s-metric introduced by Li, Alderson, Doyle, and Willinger (2005):

s(Wn) =
∑
i 6=j

wjididj .

Whereas τ2 measures the extent to which high-degree vertices share common ancestors (high-
degree sectors having common suppliers), the s-metric measures whether ancestors of high-
degree vertices have high degrees themselves. Our next result shows that as far as aggregate
volatility in a highly disaggregated economy is concerned, the effect captured by the s-metric is
dominated by the effects captured by τ2 (and the degree sequence), and thus the second-order
interconnectivity coefficient appears to be the right concept for our purposes.

Theorem 4. Consider a sequence of economies {En}n∈N. Then, aggregate volatility satisfies

(var yn)1/2 = Ω

(
1√
n

+
CV(d(n))√

n
+

√
τ2(Wn)
n

)
, (14)

where CV(d(n)) is the coefficient of variation of the degree sequence of En and τ2 is the corresponding
second-order interconnectivity coefficient.

Theorem 4 above shows how second-order interconnections, captured by coefficient τ2, af-
fect aggregate volatility. It also shows that even if two sequence of economies have identical
degree sequences for all values n, it is possible for the aggregate volatility to exhibit consider-
ably different behavior. In this sense, Theorem 4 is a refinement of Theorem 3, taking both first
and second-order relations between different sectors into account. It can also be considered to
be the economically more interesting result, as it captures not only the fact that some sectors
are “large” (dominant or quasi-dominant) in the economy, but also the more subtle notion that
there is a clustering of significant sectors caused by the fact that they have common suppliers.
In this way, we believe that Theorem 4 captures the essence of “cascade effects”. We will see
in the next section that Theorem 4 will turn out to be more relevant in the context of the US
input-output linkages than Theorem 3.

Example 2 (continued). Recall the sequence of economies {En}n∈N and {Ên}n∈N depicted in
Figure 3. As mentioned earlier, the two supply networks have identical degree sequences for all
n ∈ N. On the other hand, it is straightforward to verify that the second-order interconnectivity
coefficients are very different; in particular, τ2(Wn) = Θ(n2) and τ2(Ŵn) = 0. In fact, this is
the reason why there is a stark difference in the decay rate of aggregate volatility of these two
sequences of economies. Moreover, note that despite the fact that {En}n∈N does not have a star-
like structure, Theorem 4 and the fact that τ2(Wn) = Θ(n2) guarantee that aggregate volatility
does not vanish as n→∞, implying the presence of a dominant sector (which is sector 1) in the
sequence. The fact that sector 1 plays the role of a dominant sector is exactly due to the presence
of second-order cascade effects.
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Similar to the case of the first-order connections as in (11), one can also think of the effect of
second-order interconnection in terms of the tail distribution of the second-order degree distribu-
tion. We define the second-order degree of a sector i as

qi ≡
n∑
j=1

djwji. (15)

We then have the following counterpart to Corollary 1.

Corollary 2. Suppose {En}n∈N is a sequence of economies whose second-order degree sequences have
power law tails; that is, there is constant ζ > 1, a slowly-varying function L(·), and a sequence of
positive numbers cn = Θ(1) such that for all n ∈ N and all k < q

(n)
max = Θ(n1/ζ), the empirical

counter-cumulative distribution function of the second-order degrees, Qn(k), satisfies

Qn(k) = cnk
−ζL(k).

Then, if ζ ∈ (1, 2), aggregate volatility satisfies

(var yn)1/2 = Ω
(
n
− ζ−1

ζ
−ε
)
,

for any ε > 0.

The above corollary establishes that if the distribution of second-order degrees also exhibits
relatively heavy tails, then aggregate volatility decreases at a much slower rate than the one
predicted by the regular law of large numbers. Note that as Example 2 shows, the second-order
effects can dominate the first-order effect of the degree distribution in determining the decay
rate of aggregate volatility of the economy. In particular, in a sequence of economies with both
first-order and second-order degree distributions exhibiting power law tails, it might be the case
that the shape parameters satisfy ζ < β, and if so, the bound provided in Corollary 2 (which
incorporates cascade effects) will be tighter than the one in Corollary 1.

4.4 Higher-Order Interconnections

The results of the previous subsection can be extended even further in order to capture higher-
order interconnections and more complex patterns of cascades. Mathematically, this will cor-
respond to tighter lower bounds than the one we provided in Theorem 4. Let us define the
higher-order interconnectivity coefficients as follows.

Definition 6. Given an economy En = (In,Wn, {Fi}i∈In), the (m + 1)th-order interconnectivity
coefficient is defined as

τm+1(Wn) ≡
n∑
i=1

∑
j1,...,jm
k1,...,km

all distinct

(dj1dk1) (wjmiwkmi)
m−1∏
s=1

wjsjs+1

m−1∏
r=1

wjrjr+1
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This coefficient captures supply relations between different sectors of order m + 1. In par-
ticular, the third-degree coefficient will be high when the suppliers of high-degree sectors have
common suppliers and so on. Once again the Rearrangement Inequality implies that higher
levels of τm correspond to higher interconnectivities among different sectors.

The main result here is straightforward generalization of Theorem 4.

Theorem 5. Consider a sequence of economies {En}n∈N. Then for any m ∈ N, aggregate volatility
satisfies

(var yn)1/2 = Ω

(
1√
n

+
CV(d(n))√

n
+

√
τ2(Wn)
n

+ · · ·+
√
τm(Wn)
n

)
.

4.5 Balanced Structures

In this subsection, we show that when all sectors are “balanced” in terms of their first-order
interconnections, the decay rate of aggregate volatility is always

√
n and other properties of the

supply network, such as higher-order interconnectivity coefficients, do not influence the nature
of volatility.

Definition 7. A sequence of economies {En}n∈N is balanced if maxi∈In di = Θ(1).

In balanced structures, each sector’s output is used approximately to the same extent that
the sector itself depends on outside suppliers. In this sense, balanced structures are the polar
opposite of star-like structures studied in the previous section. The complete graph with equal
supply weights and the fully disconnected graph are examples of balanced structures. We have
the following simple result:

Proposition 2. Consider a sequence of balanced economies {En}n∈N. Then there exists ᾱ ∈ (0, 1) such
that for α ≥ ᾱ, (var yn)1/2 = Θ(1/

√
n).

Thus when the supply network has a balanced structure and when the role of the inter-
mediate inputs in production is sufficiently small, volatility decays at the rate

√
n, implying

that other structural properties of the supply network cannot contribute further to aggregate
volatility. This proposition is a generalization of Theorem 2 of Dupor (1999) and Carvalho
(2010)’s results for complete networks. As noted by Dupor as well as Horvath (1998) in a re-
lated context, Proposition 2 is both an aggregation and irrelevance result for economies with
balanced structures. As an aggregation result it suggests an observational equivalence between
the single aggregate sector economy and the multi-sector economy where the variance of sector-
specific shocks scales by the level of disaggregation. On the other hand, as an irrelevance result,
it shows that within the class of balanced structures, different input-output matrices generate
roughly the same amount of volatility. However, note that, differently from what is suggested in
Lucas (1977) and Dupor (1999), our earlier results clearly establish that neither the aggregation
nor the irrelevance interpretations hold for more general supply networks.
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Figure 4: Empirical counter-cumulative distribution function (CCDF) of first-order degrees.

5 Application: First and Second-Order Interconnections in the US
Supply Network

In this section, we briefly look at the structure of interconnections implied by the 2002 US input-
output matrix (Commodity-by-Commodity direct requirements table) published by the Bureau
of Economic Analysis (see, e.g., Streitwieser (2009)).17 Even though we think of our model as
applying at a finer level than the most detailed level at which the US input-output matrix is
available, this exercise is useful to obtain a rough empirical grounding for the results we have
derived so far and to perform a back-of-the-envelope calculation of how the interconnections
implied by the US input-output structure affect the relationship between sectoral variability
and aggregate volatility.

The US input-output matrix we use is the Commodity-by-Commodity direct requirement
matrix, which comprises 423 commodities.18 These are based on five-digit NAICS (North Amer-
ican Industry Classification System) sectors but are further aggregated and reclassified by the
Bureau of Economic Analysis. Typical sectors are fairly broad and include, for example, Semi-
conductor and related device manufacturing, Wholesale trade, Retail trade, Truck transporta-
tion, Advertising and related services, etc.

The direct requirements table gives the equivalent of our W matrix.19 From this, we com-
puted first-order and second-order degrees, di and qi, according to equations (3) and (15). Figure
4 plots the logarithm of the empirical counter-cumulative distribution function for first-order

17The results are very similar if we instead use the Commodity-by-Industry or the Industry-by-Industry tables.
18There are 425 industries in the Commodity-by-Industry table.
19Except that its row sums are not necessarily equal to one. This is because the direct requirement tables report

input needs as a fraction of total output. But once we exclude from the matrix the value added, tax components, etc.,
rows no longer sum to one. We solve this by re-normalizing all the row entries by the total input requirement of the
industry. We checked that all the results still apply when we do not perform this normalization.
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degrees (i.e., one minus the empirical cumulative distribution function) against the logarithm
of first-order degrees, and Figure 5 plots the logarithm of the empirical counter-cumulative dis-
tribution function of second-order degrees against the logarithm of second-order degrees (the
graphs only include 407 sectors that have non-zero first-order and second-order degrees). In
both cases, and particularly for second-order degrees, the tail is well-approximated by a power
law distribution as shown by the approximate linear relationship (recall that for distributions
with a Pareto tail, we have, logP (x) ' γ0 − γ1 log x, where P (x) is the empirical counter-
cumulative distribution function for x = d or q).

The first panels in both figures also plot the estimated slopes at the tails of the two dis-
tributions. The tail is taken to corresponds to the 82 industries (20% of the sample) with the
highest d and q, respectively). The shape parameter estimates (which are equal to the negative
of the slopes at the tails) are β = 1.47 for the first-order degree distribution and ζ = 1.29 for
the second-order degree distribution.20 The second panels in both figures show non-parametric
estimates of the empirical counter-cumulative distributions using the Nadaraya-Watson kernel
regression with a bandwidth selected using least squares cross-validation (Nadaraya (1964) and
Watson (1964)).21 Using again the 20% of the sample at the tail of the distribution, the average
slopes are, respectively, −1.54 and −1.26, thus fairly close to the estimates from the linear re-
gression.22 For the remainder of the discussion, we take the shape parameters for the tail of the
distribution as β = 1.5 and ζ = 1.3 for the first-order and second-order degree distributions,
respectively.

These numbers imply that, as suggested by the discussion following Corollary 2, the lower
bound on the scaling of standard deviation obtained by looking at second-order degrees is
considerably tighter than that obtained from the first-order degree distribution.

Clearly, we only observe the input-output matrix, which is the equivalent of ourW , for a sin-
gle economy, rather than a sequence of economies. Thus any extrapolation from the distribution
of first-order or second-order degrees in this economy to their potential limiting distributions
is bound to be speculative. Nevertheless, we can appeal to the scale free nature of the power
law distribution and presume that the power law tail will capture the behavior of a sequence of

20These coefficients are estimated very precisely, though, for reasons explained in Gabaix and Ibragimov (2009),
ordinary least squares standard errors are biased downwards. Gabaix (2009) and Gabaix and Ibragimov (2009)
suggest a different method of estimation using a modified regression of the logarithm of the rank of a sector on its
first- or second-order degree. These regressions, with or without Gabaix and Ibragimov’s correction, also lead to a
similar pattern (in particular, using Gabaix and Ibragimov’s estimation procedure, the β coefficient increases from
1.47 to 1.57, while the ζ coefficient increases from 1.30 to 1.38).

21The optimal bandwidth is estimated as 0.5 for the first-order degree and as 0.35 for the second-order degree.
The cross-validation criterion puts zero weight on observations near the support of x (first-order or second-order
degree). In general, optimal bandwidths are sensitive to the observations near the boundary. We excluded the small-
est number of observations close to the boundary, after which excluding further observations led to little change in
the estimate of optimal bandwidth. (Naturally, the observations near the boundary are always included in the esti-
mation once the optimal bandwidth is obtained). As discussed in greater detail in the next footnote, the bandwidth
choice has little effect on the average slopes at the tail, which are our main focus.

22Different choices of bandwidth change the goodness of fit of the kernel regression. Nevertheless, the average
slope at the tail is not significantly affected by different choices of bandwidth. For example, with various values for
bandwidth between 0.1 and 1, the average slope at the tail for the first-order degree distribution is between −1.49
and −1.58 (except at 0.2, where it is −1.21) and for the second-order degree distribution, it is only between −1.22
and −1.3.
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Figure 5: Empirical counter-cumulative distribution function (CCDF) of second-order degrees.

economies (as n grows large and thus the level of disaggregation increases). Even though there
is no guarantee that such extrapolation is reliable, it is still useful to give an impression of the
possible quantitative magnitudes of the types of input-output interactions observed in the US
economy.

Let us focus on the second-order degree distribution, which clearly gives a better lower
bound on the rate at which aggregate volatility decays. The coefficient ζ = 1.3 implies that
aggregate volatility will decay no faster than n(ζ−1)/ζ ' n0.23, which is obviously much slower
than

√
n (the lower bound implied by the first-order degree distribution is n(β−1)/β ' n0.33,

which corresponds to a significantly faster convergence rate). To get a sense of the implications
of this rate of decay, we computed the average (over-time) standard deviation of the logarithm
of value added across 459 four-digit (SIC) manufacturing industries from the NBER produc-
tivity database between 1958 and 2005 (after controlling for a linear time trend to account for
the secular decline in several manufacturing industries). This average standard deviation is
estimated as 0.219.23 Between 1958 and 2005, the average of US GDP accounted for by man-
ufacturing is about 20%,24 so that we can think of the 459 four-digit manufacturing sectors as
corresponding to 1/5th of the GDP. Hence, for the purposes of our back-of-the-envelope cal-
culation, we suppose that the economy comprises 5 × 459 = 2295 sectors at the same level of
disaggregation as four-digit manufacturing industries.25 With a sectoral volatility of 0.219, if
aggregate volatility decayed at the rate

√
n (as would be the case with a balanced structure),

23If we instead weight different industries by the logarithm of value added so that small industries do not receive
disproportionate weight, the average is very similar, 0.214.

24Data from http://www.bea.gov/industry/gdpbyind data.htm.
25One might be concerned that manufacturing is more volatile than non-manufacturing. This does not appear

to be the case, however, at the three-digit level, where we can compare manufacturing and non-manufacturing
industries. If anything, manufacturing industries appear to be somewhat less volatile with or without controlling
for industry size (though this difference is not statistically significant in either case).
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we would expect aggregate volatility to be approximately about 0.219/
√

2295 ' 0.005, which
is clearly a very small amount of variability, underscoring the result that with a reasonably
large number of sectors, sector-specific variability will average out and will not translate into a
sizable amount of aggregate volatility.

If, instead, as suggested by our lower bound from the second-order degree distribution,
aggregate volatility decays at the rate n0.23, the same number would be 0.219/ (2295)0.23 '
0.037, which is a sizable number. This back-of-the-envelope calculation thus suggests that the
types of interconnections implied by the US input-output structure can generate significant
aggregate fluctuations from sectoral shocks. We should add, however, that as we have already
emphasized, these calculations are merely suggestive and are no substitute for a systematic
econometric and quantitative investigation of the implications of the input-output linkages in
the US economy, which we leave for future work.

6 Asymptotic Distributions and Tail Events

We have so far focused on the standard deviation (or variance) of the logarithm of aggregate
output as the measure of aggregate fluctuations in the economy. This is a good measure of
macro fluctuations “near the mean” as it follows from a second-order approximation to the
moment generating function. However, the standard deviation is not the proper measure for
capturing significant deviations from the mean (and in fact, we will see that this is true even
when the asymptotic distribution is normal). In this section, we first provide sufficient condi-
tions on structural properties of the supply network to ensure that the asymptotic distribution
is normal. Then, more importantly, we relate the probability of large deviations of output from
the mean, i.e., the probability of so-called tail events, to the supply network.

6.1 Asymptotic Normal Distributions

We first define the concept of kn-decomposability for a sequence of economies.

Definition 8. Consider a sequence of positive integers {kn}n∈N and a sequence of economies
{En}n∈N. The sequence {En}n∈N is said to be kn-decomposable, if there exist a sequence an =
o(kn), a constant c > 0, and a partition of In denoted by P(n) = {Pn1, Pn2, . . . , Pnm}, such that
for all n ∈ N:

(a) the size of any given element of partition P(n) is at most an.

(b)
∑

j∈Pni,s 6∈Pni wsj < c for all Pni ∈ P(n).

In other words, the sequence of economies is kn-decomposable, whenever there are cuts
partitioning the corresponding networks to components of size growing slower than kn, and
the cut values do not grow with n. Given the above definition, it is straightforward to show
that if a sequence of economies is kn-decomposable, then it is also k̂n-decomposable as long
as k̂n = ω(kn). The next theorem provides a sufficient condition for asymptotic normality of
aggregate output in terms of decomposability of the supply structure.
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Figure 6: The supply network structure of a sequence of economies in which aggregate volatility
decays at rate

√
n, but aggregate output is not normally distributed.

Theorem 6. Suppose that Eε2i = σ̄2 for all i ∈ In and all n and that the sequence of economies {En}n∈N

is
√
n-decomposable. Then there exists ᾱ ∈ (0, 1) such that for α ≥ ᾱ, 1

‖vn‖2 yn
d−→ N (0, σ̄2).

The theorem establishes that if by removing a reasonably small number of supply links an
economy consisting of n sectors can be divided into sub-economies each of size at most

√
n,

then aggregate output is asymptotically normally distributed, regardless of the distribution of
sector-specific shocks. Note that balanced structures are clearly

√
n-decomposable.

The next two examples show that in general, the rate at which the law of large numbers
applies and the asymptotic distribution of aggregate output are independent.

Example 3. Consider the sequence of economies {En}n∈N with the supply network as depicted
in Figure 6, where each edge in the supply network corresponds to a supply weight of value
one, and all other supply weights are zero. Then the elements of the influence vector are given
by:

vn,i =
{

1/n+ (1− α)(d1 − 1)/n if i = 1
α/n if 2 ≤ i ≤ n,

where d1 is the out–degree of sector 1, and satisfies d1 = Θ(
√
n). Therefore,

‖vn‖∞ = Θ
(
1/
√
n
)

‖vn‖2 = Θ
(
1/
√
n
)
,

implying that the condition for asymptotic normality in Theorem 2 does not apply, despite the
fact that ‖vn‖2 and thus, aggregate volatility decay at rate

√
n, the convergence rate predicted

by the regular law of large numbers.

Our next example shows that it is possible to have asymptotic normal distribution for the
properly normalized aggregate output despite the fact that aggregate volatility decays to zero
at an arbitrarily slow rate.

Example 4. Consider the supply network structure depicted in Figure 7, where the first d sectors
are connected to all sectors labeled d + 1 through n. Assume that d = o(n) and d = ω(1). Each
edge connecting the supplier sectors to the downstream sectors have a weight equal to 1/d, and
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Figure 7: The supply network structure of a sequence of economies in which aggregate output
converges to a normal distribution. Aggregate output volatility converges to zero at rate

√
d

which can be arbitrarily slow.

the self-loops have value 1. This guarantees that the indegree of each sector is exactly equal to
one. Simple calculations show that

vn,i =
{

1/n+ (1− α)(n− d)/(nd) if 1 ≤ i ≤ d
α/n otherwise.

Therefore, we have the following relations:

‖vn‖∞ = Θ (1/d)

‖vn‖2 = Θ
(

1/
√
d
)
,

implying that ‖vn‖∞ = o(‖vn‖2). At the same time, one can pick the rate of growth of d such
that ‖vn‖2, and thus aggregate volatility, decays to zero arbitrarily slowly.

6.2 Tail Events

It might first appear that when the asymptotic distribution of aggregate output is normal, for
example, when the supply network is

√
n-decomposable, our measure of aggregate volatility

(the standard deviation of aggregate output) should give us all the information we need about
tail events and the probabilities of large deviations (based on the intuition that a normal distri-
bution is fully described by its mean and variance). In this subsection, we will see that this is
not true, and the probability of large deviations can be significantly different for two economies
converging to a normal distribution with identical variances. We will then relate the probability
of tail events to the structural properties of the supply network.

We first define the probability of tail events more precisely as the probability that aggregate
output is smaller than a certain level; that is, as P (yn < −c) where c is a positive constant.26 The
behavior of this probability can be characterized by using large deviations analysis. We next
present an example illustrating that two sequences of economies converging to an identical
asymptotic (normal) distribution can exhibit significantly different probabilities of tail events.

26Symmetrically, we can also define the tail probabilities as P (yn > c) for large positive deviations (recall that the
mean of yn is equal to zero). When the asymptotic distribution is symmetric, these two notions coincide.
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Figure 8: The supply network corresponding to a sequence of economies, for which aggregate
volatility decays at rate

√
n.

Example 5. Consider a sequence of economies {En}n∈N, where the input-output matrix of the
economy with n sectors has the block diagonal form

Wn =
[
1e′1 0
0 I

]
,

where e1 is the first unit vector, and the upper-left block component is a matrix of dimension
blog nc. In other words, the economy consists of one hub-like sector (indexed 1), acting as the
input supplier to a collection of sectors whose size grows at rate Θ(log n). On the other hand,
the outputs of the rest of the sectors are not used as intermediate goods for production at all
(except maybe by the sectors themselves). Figure 8 depicts the structure of the corresponding
supply network.

It is easy to verify that the element of the influence vector corresponding to sector 1 is
vn,1 = Θ(log n/n), whereas vn,i = Θ(1/n) when i 6= 1. Therefore, ‖vn‖2 = Θ(1/

√
n), implying

that aggregate volatility vanishes at rate
√
n regardless of the distribution of sectoral shocks.

Moreover, Theorem 2 implies that yn/‖vn‖2 is asymptotically normally distributed for all dis-
tributions that satisfy the conditions of the theorem. However, large deviation probabilities
depend on the distribution of sectoral shocks. In particular, if shocks are normally distributed,
then − log P(yn < −c) grows at rate Θ(n), a result similar to standard large deviation theorems
for sums of independent and identically distributed random variables (see for example, Durrett
(2005)). On the other hand, if the shocks have an exponential tail, then it can be shown (and it
follows from Theorem 8 below) that

− log P (yn < −c) = Θ (n/ log(n)) ,

establishing a much slower decay rate for the tail event probabilities than the standard case.

This example motivates the need to characterize the tail event probabilities more closely.
In general, these probabilities depend both on the distribution of sector-specific productivity
shocks and on the supply network. We next present two results illustrating these relationships.
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Theorem 7. Consider a sequence of economies {En}n∈N in which the distribution of idiosyncratic pro-
ductivity shocks {Fi}i∈In are normal with variance σ2, for all n ∈ N. Then, for all c > 0,

P (yn < −c) = Φ
(

c

σ‖vn‖2

)
,

where Φ(·) denotes the cumulative distribution function of the standard normal. Consequently,

− log P (yn < −c) = Θ
(

1/ ‖vn‖22
)
. (16)

This theorem establishes that the the supply network of the economy not only affects the
level of deviations from the mean, but also has a significant influence on the probabilities of
large deviations. The result suggests that in the specific case of normally distributed productiv-
ity shocks, this dependence is captured by the Euclidean norm of the influence vector—the same
quantity that measures aggregate volatility. It is then straightforward to provide lower bounds
on tail event probabilities using the same kind of analysis, and in terms of the same structural
properties such as first-order and higher-order interconnectivity coefficients, as in Section 4.
This nice parallel between our baseline measure of aggregate volatility and tail events is, unfor-
tunately, not true in general (with other distributions). We next establish the interesting result
that with non-normal distributions, other properties of the supply network can become crucial
for the rate of decay of large deviation probabilities.

Definition 9. A random variable with distribution function F (·) has an exponential tail if 0 <

lim inft→∞−(1/t) log F̄ (t) ≤ lim supt→∞−(1/t) log F̄ (t) < ∞, where F̄ (t) ≡ 1 − F (t) denotes
the counter-cumulative distribution function.

In other words, a random variable has an exponential tail if the tail probabilities decay ex-
ponentially. For example, if F̄ (t) = L(t)e−γt for some constant γ > 0 and some polynomial
function L(t), then the corresponding random variable has an exponential tail. Naturally, ran-
dom variables with exponential tails have unbounded support. Our next result establishes the
relationship between large deviation probabilities and the supply structure of the economy in
presence of exponential tails.

Theorem 8. Consider a sequence of economies {En}n∈N in which the distribution of idiosyncratic pro-
ductivity shocks {Fi}i∈In are identical for all n ∈ N, and are symmetric around their mean Eεi = 0. If
the shock distributions have an exponential tail, then for all c > 0,

− log P (yn < −c) = Θ (1/‖vn‖∞) . (17)

The significance of Theorem 8 is highlighted by comparing it to Theorem 7 for normally
distributed shocks. Whereas with normally distributed shocks it is ‖vn‖2 that captures the rate
of decay of the tail events, this role is played by ‖vn‖∞ for shocks with exponential tails. The
fact that the influence vector satisfies ‖vn‖22 ≤ ‖vn‖∞, a consequence of Hölder’s inequality
(Steele (2004)), implies that tail events are always more likely with exponential tails than with
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normally distributed sector specific shocks. Example 5 above illustrates the contrast of these
two theorems. 27

Our final example shows that economies with non-trivial input-output interconnections and
thin-tailed shocks can exhibit properties similar to economies consisting of isolated sectors but
with heavy-tailed productivity shocks.

Example 6. Consider a sequence of economies {En}n∈N similar to the one depicted in Figure 8,
but instead assume that the degree of sector 1 scales as n/ log(n) rather than log(n). By Theorem
8, the large deviation probability in such a sequence and in the presence of productivity shocks
with exponential tails satisfies

− log P (yn < −c) = Θ(log n).

Consider next another sequence of economies {Ên}n∈N, where no sector is an input supplier to
any other sector; i.e., Ŵn is the identity matrix for all n ∈ N, in which case the corresponding
influence vector is equal to v̂n = 1

n1. Also suppose that the sector-specific productivity shocks
have a symmetric distribution, with a power law tail with exponent ξ > 2, that is F̄i(t) =
L(t)t−ξ, where L(·) is a slowly-varying function. Then, by the large deviation results for heavy-
tailed random variables (see, for example, Mikosch and Nagaev (1998)), we have

lim
n→∞

P(yn > c)
nF̄ (nc)

= 1,

implying that
− log P(yn < −c) = Θ (log n) .

That is, the probability of extreme events in {Ên}n∈N decays at a rate similar to that in {En}n∈N,
despite the fact the productivity shocks in the latter are thin-tailed, as opposed to the former.

7 Conclusion

Recent events have highlighted that interconnections across firms or sectors linked through
supply networks or financial linkages might create cascades as shocks to some firms/sectors
spread to the rest of the economy. In this paper, we provide a general framework for the analysis
of the relationship between the network structure of an economy and its aggregate volatility.
We study a sequence of economies consisting of a set of sectors linked through a supply (input-
output) network, specifying the extent to which each sector needs to use the output of other
sectors as intermediate goods for production. We define aggregate volatility as the standard
deviation of the logarithm of GDP per capita in the economy and study the relationship between
sector-specific volatility and aggregate volatility as a function of the structural properties of the
supply network.

27Stanley et al. (1996) find that the distribution of annual growth rate of Compustat manufacturing firms is well
approximated by an exponential distribution. We find the same pattern when we look at the annual growth rate of
four-digit manufacturing sectors in the NBER productivity database.
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More formally, we consider a sequence of economies (in which the number of sectors grows)
and investigate whether and at what rate aggregate volatility disappears upon disaggregation.
First, we show that in the presence of dominant sectors (for example when the sequence has a
star-like structure with certain “central” sectors supplying to a non-vanishing fraction of the
sectors in the economy), the weak law of large numbers fails and aggregate volatility does
not disappear. This case starkly illustrates how aggregate fluctuations may result from purely
idiosyncratic (sectoral) variability.

Our main focus, however, has been on sequences of economies for which the weak law of
large numbers holds. For such economies, when the network structure is such that there exists
a uniform upper bound on the extent to which each firm supplies the rest of the economy,
aggregate volatility declines asymptotically at the rate

√
n, consistent with the standard central

limit theorem. In this case, in reasonably-sized economies, sectoral-level (or when units are
interpreted as firms, firm-level) shocks wash out rapidly. On the other hand, we show that in
the presence of richer network interactions, the rate of convergence can be significantly lower
(and convergence is not necessarily to a normal distribution). Our analysis also shows that
in the debate between Dupor (1999) and Horvath (1998, 2000), the former’s critique applies to
economies with balanced structures (such as the ones he studies), whereas as emphasized by
the latter, more generally, the sectoral structure of the economy is important for understanding
business cycles (see also the discussion in Carvalho (2010)).

We start with a general characterization result linking aggregate volatility to the Euclidean
norm of an influence vector measuring the importance of each sector in the supply network.
Other properties of this influence vector also determine whether aggregate output is asymptot-
ically normally distributed or not.

Our main results provide various lower bounds on the rate of convergence of aggregate
volatility as the size of the economy grows. A first bound is provided by analyzing the effects
of first-order connections, represented by the degree sequence induced by the supply network.
This lower bound is in terms of the coefficients of variation of the degree sequence. An imme-
diate corollary of this result is that for degree sequences that exhibit a power law (meaning that
the tail of the degree sequence is Pareto), the lower bound can be characterized in terms of the
shape parameter of the Pareto distribution.

Our most important results provide a more useful (and economically more subtle) bound by
analyzing the effects of second and higher-order connections, which more closely correspond
to the idea of “cascades”. For example, just taking into account second-order interconnections,
the lower bound is in terms of two-hop ahead connections, capturing whether two highly con-
nected sectors also share common suppliers. This is important for aggregate volatility because
when these suppliers are hit by negative shocks, there is a cascade in the supply network—their
low output translates into low inputs for their downstream sectors, which are themselves im-
portant and supply many other downstream sectors. We also provide an analog of this result
for higher-order interconnections.

Interestingly, even though it is at a fairly aggregated level, the US input-output matrix sug-
gests that second-order interconnections are more important for aggregate volatility than first-
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order interconnections, highlighting the importance of the types of cascades discussed in the
previous paragraph.

Finally, we also provide an analysis of tail events—the likelihood of large deviations of ag-
gregate output from its mean. Even for two sequences of economies converging to identical
asymptotically normal distributions, the probabilities of tail events can be significantly differ-
ent. This suggests that even when the central limit theorem holds, the supply network can have
significant implications for tail events. We show that when sector-specific shocks are normally
distributed, tail events are determined by the same structural properties of the supply network
that shapes our baseline measure of aggregate volatility. But for other distributions of sector
specific shocks, yet other structural properties influence the events.

Several areas of future research are opened up by this analysis. First, it would be inter-
esting to relate the probabilities of tail events to structural properties of supply networks for
distributions other than the ones we studied here.

Second, the same analysis can be carried out at the firm level (rather than at the sectoral
level), but in this case substitution between different suppliers needs to be modeled more care-
fully. Interestingly, substitution possibilities might be different in the short run than in the long
run. For example, many firms might be beholden to their suppliers in the short run, but can
switch suppliers with sufficient advance planning.

Third, our analysis focused on a competitive economy with Cobb-Douglas technologies,
which implied that only “outdegrees”, that is, supply linkages, mattered. The discussion of
the US auto industry during the crisis in the Introduction suggests that both supply and de-
mand linkages are important in general; Ford’s concern during the crisis was that the failure
of either GM or Chrysler would lead to failures of auto suppliers (their upstream suppliers)
and auto dealers (their downstream costumers) that would then cascade to Ford. Extending the
current model to a monopolistically competitive environment would allow us to have a flexible
framework in which both supply and demand linkages matter, and is thus a natural next step.

Fourth and more importantly, we have throughout taken the supply network as given. In
practice, however, the supply network is endogenously determined both at the firm and the
sectoral levels. For example, at the firm level, firms can decide how many suppliers (and
downstream customers) to form long-term relationships with. They can also choose which
ones to form such relations with. The more substitutable suppliers a firm has, the less subject
to supplier-level productivity shocks it will be. But making duplicate investments for build-
ing relationships with several suppliers (or customers) is costly, creating a trade-off. Part of
this trade-off will be shaped by how risky different suppliers are perceived to be and how risk
is evaluated and priced in the economy. Another source of trade-off arises from the fact that
complex supply networks are likely to increase productivity by enabling specialization, and yet
through the cascade effects quantified in this paper, may also increase volatility.

Fifth, both the analysis of scale effects and the trade-offs between profitability and risks cre-
ated through interconnections are particularly important in the context of financial networks
(e.g., Allen, Babus, and Carletti (2010), Brunnermeier, Gorton, and Krishnamurthy (2010) and
Caballero and Simsek (2010)). A first step might be to derive a theoretically-grounded version
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of our influence vector that might summarize several important dimensions of interactions in fi-
nancial networks. However, in this context it might be the tail risks that are transmitted through
the financial network, rather than all shocks to output or profitability as in our model. This set
of issues requires a different type of analysis.

Finally, an analysis of dynamics in extended model including potential switches between
suppliers and endogenous relationships is also a potential area for future research. We think
that all of these areas are very promising for enriching our understanding of aggregate volatility
and risk in the economy.
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Appendix

A Central Limit Theorems

A.1 The Lindeberg-Feller Theorem

The Lindeberg-Feller Theorem provides sufficient conditions under which distribution of sums
of independent, but not necessarily identically distributed random variables converge to the
normal law, and thus, can be considered as a generalization of the central limit theorem. The
statement and proof of the theorem can be found in many probability textbooks, e.g., Durrett
(2005, p. 114).

Theorem 9 (Lindeberg-Feller). Consider the triangular array of independent random variables ζin,
1 ≤ i ≤ n, with zero expectations and finite variances such that

n∑
i=1

Eζ2
in = 1.

Also suppose that Lindeberg’s condition holds:

lim
n→∞

n∑
i=1

E
(
ζ2
inI{|ζin|>δ}

)
= 0 for all δ > 0, (18)

where I denotes the indicator function. Then,

ζ1n + ζ2n + · · ·+ ζnn
d−→ N (0, 1).

It is easy to verify that for Lindeberg’s condition (18) to hold, the triangular array of random
variables {ζin}must satisfy the asymptotic negligibility property, which requires that

max
1≤i≤n

P (|ζin| > δ) −→ 0 ∀ δ > 0, (19)

as n→∞. The asymptotic negligibility property guarantees that the limit distribution of ζ1n +
ζ2n+ · · ·+ζnn is insensitive to the behavior of finitely many components in the sequence (Linnik
and Ostrovskiı̆ (1977)).

A.2 Non-Classical Central Limit Theorems

To establish asymptotic normality for triangular arrays of random variables {ζin} that violate
asymptotic negligibility property, one needs to apply “non-classical” generalizations of the cen-
tral limit theorem. The following theorem is from Rotar (1975). A detailed treatment of the
subject can be found in Chapter 9 of Linnik and Ostrovskiı̆ (1977).

Theorem 10. Consider a triangular array of independent random variables ζin, 1 ≤ i ≤ n, with
distributions Gin, zero expectations, and finite variances σ2

in, such that
∑n

i=1 σ
2
in = 1. Then ζ1n+ ζ2n+

· · ·+ ζnn→N (0, 1) in distribution, only if

lim
n→∞

n∑
i=1

∫
|t|>δ
|t| |Gin(t)− Φin(t)) |dt = 0 for all δ > 0, (20)
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where Φin(t) = Φ(t/σin) and Φ denotes the standard normal distribution.

B Competitive Markets Equilibrium

In this section, we define and compute the competitive markets equilibrium of the static econ-
omy studied in the paper. Consider an economy En = (In,Wn, {Fi}i∈In) consisting of n differ-
ent sectors with input-output matrix Wn. The representative consumer’s problem can be stated
as

max
l,{ci}i∈In

1
n

n∑
i=1

log(ci) + log(An)

subject to
n∑
i=1

pici = hl (21)

0 ≤ l ≤ 1,

where l is total amount of labor supplied by the consumer. The representative firm in sector
i maximizes profits subject to its production possibilities, captured by the sector’s production
technology; that is,

max
li,xi,{xij}j∈In

pixi − hli −
n∑
j=1

pjxij

subject to xi = zαi l
α
i

∏
j∈Ni

x
(1−α)wij
ij . (22)

Finally, market clearing conditions for the economy En are given by

ci +
n∑
j=1

xji = xi ∀i ∈ In

n∑
i=1

li = l.

Given the above, we can now define the equilibrium of En.

Definition 10. A competitive markets equilibrium of economy En consists of prices (p1, p2, . . . , pn),
wage h, consumption bundle (c1, c2, . . . , cn), labor supply l, and quantities (li, xi, (xij)) such
that

(a) the representative consumer maximizes her utility,

(b) the representative firms in each sector maximize profits,

(c) labor and commodity markets clear.
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To characterize the competitive markets equilibrium of the above economy, note that since
the representative consumer does not value leisure, she supplies one unit of labor inelastically.
It is also easy to verify that given the commodity prices and wage, the optimal consumption
bundle of the consumer is given by ci = h/(npi). On the other hand, taking first-order condi-
tions with respect to li and xij in firm i’s problem implies that

li =
αpixi
h

xij =
(1− α)piwijxi

pj
,

the substitution of which in the firm’s production technology leads to

α log(h) = αεi −H(α) + log(pi)− (1− α)
n∑
j=1

wij log(pj)− (1− α)Hi

whereH(α) = −α log(α)−(1−α) log(1−α) andHi is the input weight entropy of sector i, defined
as Hi ≡ −

∑n
j=1wij log(wij). Writing the above equality in vector form, and premultiplying

both sides by the influence vector v′n = α
n1
′[I − (1− α)Wn]−1 yields

log(h) = v′nε+
1
n

n∑
i=1

log(pi)−
H(α)

α
− 1− α

α
v′nH,

where H = [H1 . . . Hn]′ is the vector of input entropies of all sectors. Finally, by setting

An = n exp
(

1
α

[
Hα + (1− α)v′nH

])
(23)

and normalizing the ideal price index to 1, i.e.,

n

An
(p1p2 . . . pn)1/n = 1,

we obtain
yn = log(h) = v′nε.

That is, logarithm of real value added in a given economy (which we also refer to as its aggre-
gate output) is a weighted sum of sector-specific productivity shocks, where the weights are
determined by the corresponding influence vector.

We now show that the influence vector also captures the equilibrium share of sales of dif-
ferent sectors. By plugging the optimal values of labor and goods purchased by the firms and
the optimal consumption of the consumers in the market clearing condition for commodity i

we have:

h/n+ (1− α)
n∑
j=1

wjipjxj = pixi,

which implies that

si = h/n+ (1− α)
n∑
j=1

sjwji,
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where si = pixi is the equilibrium value of sales of sector i. Thus, the vector of equilibrium sales
is related to the influence vector through

s′ = (h/n)1′ [I − (1− α)W ]−1 = (h/α)v′n,

implying that
vn,i =

pixi∑n
j=1 pjxj

,

where we have used the fact that v′n1 = 1, proved in Lemma 1.

C Proofs

C.1 Proofs of Section 3

Proof of Proposition 1: By definition, the presence of central sectors in the economy implies
that ‖Wn‖1 = Θ(n), where ‖Wn‖1 is the induced `1-norm of matrix Wn and is equal to the
maximum outdegree in the economy. On the other hand, equation (6) implies that

v′n ≥
α(1− α)

n
1′Wn

and as a result,

‖vn‖∞ ≥
α(1− α)

n
‖Wn‖1.

which guarantees that ‖vn‖∞ = Ω(1). Therefore, ‖vn‖∞ is uniformly bounded away from zero
for all n, completing the proof.

Proof of Theorem 1: Suppose that the sequence of economies {En}n∈N has a dominant sec-
tor; i.e., ‖vn‖∞ = Θ(1), by definition. Therefore, inequality ‖vn‖∞ ≤ ‖vn‖2 implies that ‖vn‖2 =
Ω(1). This means that the standard deviation (variance) of aggregate output yn remains bounded
away from zero as n→∞, ruling out the possibility of convergence of yn to zero in probability.

Now suppose that the sequence has no dominant sectors; that is ‖vn‖∞ = o(1). Then,
Hölder’s inequality ‖vn‖22 ≤ ‖vn‖∞‖vn‖1 (see, e.g., Steele (2004)) and the fact that ‖vn‖1 = 1
(proved in Lemma 1 below) imply that ‖vn‖2 converges to zero as n → ∞. Thus, by Cheby-
chev’s inequality, aggregate output yn converges to its mean in probability.

Proof of Theorem 2: The proof of part (a) is trivial and is omitted.
In order to prove part (b) of the theorem, we define the triangular array of real numbers

{ζin}1≤i≤n whose elements are given by ζin = vn,iεi/σ̄‖vn‖2 for all i ∈ In. Thus, by definition,
1

σ̄‖vn‖2 yn = ζ1n + ζ2n + · · ·+ ζnn. It is also straightforward to verify that the following relations
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hold:

Eζin = 0.
n∑
i=1

Eζ2
in = 1.

Therefore, by the Lindeberg-Feller Theorem, which we have stated in Appendix A, yn/σ̄‖vn‖2
converges in distribution to the standard normal law, as long as Lindeberg’s condition (18) is
satisfied. In order to verify that Lindeberg’s condition indeed holds, notice that we have,

n∑
i=1

E
(
ζ2
inI{|ζin|>δ}

)
=

1
σ̄2‖vn‖22

n∑
i=1

v2
n,i E

[
ε2i I|εi|> δσ̄‖vn‖2

|vn,i|

ff
]

≤ 1
σ̄2‖vn‖22

n∑
i=1

v2
n,i E

[
ε2i In|εi|> δσ̄‖vn‖2

‖vn‖∞

o]
=

1
σ̄2

E
[
ε2i In|εi|> δσ̄‖vn‖2

‖vn‖∞

o] .
By the dominated convergence theorem and the assumption that ‖vn‖∞ = o(‖vn‖2), the right-
hand side of the above equality converges to zero as n→∞, and therefore,

lim
n→∞

n∑
i=1

E
(
ζ2
inI{|ζin|>δ}

)
= 0 for all δ > 0,

i.e., Lindeberg’s condition is satisfied. As a result, the Lindeberg-Feller Theorem guarantees
that 1

‖vn‖2 yn → N (0, σ̄2) in distribution. This completes the proof of part (b).

In order to prove part (c), note that assumption ‖vn‖∞‖vn‖2 6→ 0 implies that the triangular array
of random variables ζin = vn,iεi/σ̄‖vn‖2 does not satisfy the asymptotic negligibility property
(19) stated in Appendix A, and hence, the Lindeberg-Feller Theorem is not applicable. Instead,
one needs to apply the non-classical variant of the central limit theorem stated as Theorem 10
in Section A.2.28

To prove that asymptotic normality does not hold for non-normal εi’s, we need to show that
condition (20) is not satisfied. By the definition of ζin, we know that its distribution function is
given in terms of the common distribution of εi’s as Gin(t) = F (tσ̄‖vn‖2/vn,i). Therefore, we
have

n∑
i=1

∫
|t|>δ
|t| |Gin(t)− Φin(t)) |dt =

1
σ̄2‖vn‖22

n∑
i=1

v2
n,i

∫ ∞
−∞
|s| |F (s)− Φ(s)| I

|s|> δσ̄‖vn‖2
|vn,i|

ffds

≥
(
‖vn‖∞
σ̄‖vn‖2

)2 ∫ ∞
−∞
|s||F (s)− Φ(s)|In|s|> δσ̄‖vn‖2

‖vn‖∞

ods.
Therefore, unless F = Φ, for small enough δ > 0, the right-hand side of the above relation is
bounded away from zero for infinitely many n. Hence, Theorem 10 implies that 1

‖vn‖2 yn is not
normally distributed as n→∞.

28For a similar argument, see Christopeit and Werner (2001).
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C.2 Proofs of Section 4

Proof of Lemma 1: By definition, yn = v′nε, where vn = α/n [I − (1− α)W ′n]−1 1. Also note that
by equation (6), it is possible to express vn in terms of a convergent power series of Wn:

v′n =
α

n
1′
∞∑
k=0

(1− α)kW k
n

which implies that vn is the sum of infinitely many non-negative vectors. Moreover, since the
first term in the summation is equal to α

n1
′, it must be the case that vn is entry-wise positive. To

prove the second part, we multiply both sides of the above equation by the vector of all ones
and observe that v′n1 = α

∑∞
k=0(1− α)k = 1. Thus, ‖vn‖1 =

∑n
i=1 vn,i = 1.

Proof of Lemma 2: The proof immediately follows from the inequalities ‖vn‖2 ≤ ‖vn‖1 and
1/
√
n‖vn‖1 ≤ ‖vn‖2, and the fact that var(yn) = Θ(‖vn‖22).

Proof of Theorem 3: Recall that aggregate volatility is of order ‖vn‖2. Moreover, equation
(6) and the fact that Wn is element-wise non-negative imply that

v′n ≥
α

n
1′ +

α(1− α)
n

1′Wn.

Therefore,

‖vn‖22 ≥ α2

n2
1′1 +

2α2(1− α)
n2

1′Wn1 +
α2(1− α)2

n2
‖W ′n1‖22

=
α2(3− 2α)

n
+
α2(1− α)2

n2
‖W ′n1‖22

= Θ (1/n) + Θ

(
1
n2

n∑
i=1

d2
i

)
(24)

where we have used the fact that the i-th column sum of Wn is the outdegree of sector i, and
that the sum of all its elements is equal to n. Given that inequality

√
n‖z‖2 ≥ ‖z‖1 holds for any

n-dimensional vector z, we conclude that

n∑
i=1

d2
i ≥

1
n

(
n∑
i=1

di

)2

= n.

Thus, the first term in (24) is always dominated by the second term. This establishes the first
relation.

To prove the second part of the theorem, note that the average outdegree d̄ is equal to one,
and therefore, we can write the sum of degree squares in terms of the standard deviation of the
degree sequence as:

1
n2

n∑
i=1

d2
i =

n− 1
n2

[
CV(d(n))

]2
+

1
n
,
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establishing that var(yn) = Ω
(

1+CV2(d(n))
n

)
. This completes the proof.

Proof of Corollary 1: We define

P̂n(k) ≡ 1
n

∣∣{i ∈ In : d2
i > k

}∣∣
as the empirical counter-cumulative distribution function of the outdegrees-squared. Clearly,
by definition, we have P̂n(k) = Pn(

√
k) for all k. We also define B = {b1, . . . , bm} to be the set

of values that the outdegrees-squared of En take, where bk+1 > bk for all k. Thus, we have

n∑
i=1

d2
i = n

m∑
k=1

bk

[
P̂n(bk−1)− P̂n(bk)

]
= n

m−1∑
k=0

(bk+1 − bk) P̂n(bk)

with the convention that b0 = 0. Therefore,

n∑
i=1

d2
i = n

∫ bm

0
P̂n(t)dt = 2n

∫ d
(n)
max

0
tPn(t)dt

where the last equality is due to a simple change of variables. The fact that L(·) is a slowly-
varying function, satisfying limt→∞ L(t)tε =∞ for any positive ε > 0, implies that

n∑
i=1

d2
i ≥ nĉn

∫ d
(n)
max

0
t(1−β−2ε)dt,

where ĉn = Θ(1) is a sequence of positive numbers. Thus, from (11) in Theorem 3 and since
β ∈ (1, 2), we have

(var yn)1/2 = Ω
(
n

1−β
β
−ε
)
,

proving the result.

Proof of Theorem 4: Once again, recall that the influence vector corresponding to economy
En can be written as a power series of Wn specified by equation (6). Given the fact that all terms
in this infinite sum are non-negative vectors, we have

v′n ≥
α

n
1′
[
I + (1− α)Wn + (1− α)2W 2

n

]
.

Therefore,

‖vn‖22 ≥ α2

n2
1′
[
I + (1− α)Wn + (1− α)2W 2

n

] [
I + (1− α)Wn + (1− α)2W 2

n

]′ 1
= Θ

(
1
n2
‖1′Wn‖22

)
+ Θ

(
1
n2

1′W 2
nW

′
n1
)

+ Θ
(

1
n2

∥∥1′W 2
n

∥∥2

2

)
, (25)
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where we have used the fact that 1
n2 ‖1′Wn‖22 = 1

n2

∑n
i=1 d

2
i dominates 1/n for large values of n.

For the second term on the right-hand side of (25), we have

1′W 2
nW

′
n1 =

n∑
i=1

n∑
j=1

wjididj

=
n∑
i=1

∑
j 6=i

wjididj +
n∑
i=1

wiid
2
i

= s(Wn) +O

(
n∑
i=1

d2
i

)
,

where s denotes the s-metric corresponding to the economy, defined in Section 4. On the other
hand, for the third term on the right-hand side of (25), we have

∥∥1′W 2
n

∥∥2

2
=

n∑
i=1

 n∑
j=1

wjidj

2

=
n∑
i=1

wiidi +
∑
j 6=i

wjidj

2

=
n∑
i=1

w2
iid

2
i + 2

n∑
i=1

∑
j 6=i

wiiwjididj +
n∑
i=1

∑
j 6=i

wjidj

2

= O

(
n∑
i=1

d2
i

)
+O (s(Wn)) +

n∑
i=1

∑
j 6=i

d2
jw

2
ji +

n∑
i=1

∑
j 6=i

∑
k 6=i,j

wjiwkidjdk

= O

(
n∑
i=1

d2
i

)
+O (s(Wn)) + Θ (τ2(Wn))

where in the next to last equality we have used the fact that wii ≤ 1 for all i. The last equality
holds because of the fact that

∑n
i=1w

2
ji ≤ 1 for all j. Thus, combining all the above leads to

‖vn‖22 = Ω

(
1
n2

[
n∑
i=1

d2
i + s(Wn) + τ2(Wn)

])
.

Now, inequality
n∑
i=1

di −∑
j 6=i

wjidj

2

≥ 0

guarantees that
n∑
i=1

d2
i +

n∑
i=1

∑
j 6=i

d2
jw

2
ji + τ2(Wn) ≥ 2s(Wn)

implying that s(Wn) = O
(∑n

i=1 d
2
i + τ2(Wn)

)
. Therefore, in highly disaggregated economies,

the effect captured by the s-metric is dominated by the sum of the other two terms, and as a
result

‖vn‖2 = Ω

 1
n

√√√√ n∑
i=1

d2
i +

√
τ2(Wn)
n

 ,
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completing the proof.

Proof of Corollary 2: By equation (25), we have (var yn)1/2 = Ω
(

1
n‖1

′W 2
n‖2
)
, which implies

that

(var yn)1/2 = Ω

 1
n

√√√√ n∑
i=1

q2
i

 .

The rest of the proof then simply follows from a similar argument as in proof of Corollary 1.

Proof of Theorem 5: Following the same logic as in the proof of Theorem 4, it is easy to verify
that for any positive integer m, the influence vector satisfies the following inequality; a conse-
quence of equation (6):

vn ≥
α

n

m∑
k=0

(1− α)k1′W k
n .

Therefore, one can obtain the following lower bound for the Euclidean norm of the influence
vector:

‖vn‖22 ≥
α2

n2

m∑
k=1

(1− α)2k1′W k
nW

′k
n 1.

Writing the matrix powers in terms of the input-output weights, and upon some simplification
and rearrangement of terms, we get the result for any positive constant integer m.

Proof of Proposition 2: By definition, for a balanced sequence of economies, we have ‖Wn‖1 =
maxi∈In di = Θ(1). Moreover, equation (7) implies that

‖vn‖∞ ≤
α

n
+ (1− α)‖Wn‖1‖vn‖∞ ≤

α

n
+ C(1− α)‖vn‖∞.

where C is a constant not depending on n. Therefore, for α > (C − 1)/C, we have ‖vn‖∞ ≤
α[1 − (1 − α)C]−1/n, implying that ‖vn‖∞ = Θ(1/n). Finally, Hölder’s inequality ‖vn‖2 ≤√
‖vn‖1‖vn‖∞ and Lemma 1 guarantee that ‖vn‖2 = Θ(1/

√
n), which completes the proof.

C.3 Proofs of Section 6

Proof of Theorem 6: In order to prove the theorem, we first show that the largest element of
the influence vectors corresponding to the sequence {En}n∈N converges to zero at a rate slower
than

√
n.

By equation (7) and for any sector j ∈ Pni, we have

vn,j =
α

n
+ (1− α)

∑
k∈Pni

vn,kwkj + (1− α)
∑
k 6∈Pni

vn,kwkj
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which implies that∑
j∈Pni

vn,j =
α |Pni|
n

+ (1− α)
∑
k∈Pni

∑
j∈Pni

vn,kwkj + (1− α)
∑
j∈Pni

∑
k 6∈Pni

vn,jwkj

≤ α|Pni|
n

+ (1− α)
∑
k∈Pni

vn,k + (1− α)‖vn‖∞
∑
j∈Pni

∑
k 6∈Pni

wkj

≤ αan
n

+ (1− α)
∑
k∈Pni

vn,k + (1− α)c‖vn‖∞

where an is the n-th element of a sequence {an}n∈N satisfying an = o(
√
n), and c is a positive

constant not depending on n, the existence of which is guaranteed by the assumption of
√
n-

decomposability. Hence,

max
j∈Pni

vn,j ≤
∑
j∈Pni

vn,j ≤
an
n

+
1− α
α

c‖vn‖∞.

On the other hand, note that ‖vn‖∞ = maxi maxj∈Pni vn,j , and therefore,

‖vn‖∞ ≤
an
n

+
1− α
α

c‖vn‖∞.

Thus, for α > c
c+1 , we have

‖vn‖∞ ≤
αan

(α+ αc− c)n
= o

(
1√
n

)
.

So far, we have established that ‖vn‖∞ = o(1/
√
n) for any

√
n-decomposable sequence of

economies. On the other hand, the inequality 1/
√
n‖vn‖1 ≤ ‖vn‖2 and Lemma 1 guarantee

that ‖vn‖2 ≥ 1/
√
n, implying that ‖vn‖∞‖vn‖2 → 0 as n → ∞. Thus, by Theorem 2, yn/‖vn‖2 is

asymptotically normally distributed.

Proof of Theorem 7: The proof of the first part of the theorem is straightforward. Note that the
sum of independent normal random variables is normally distributed with the variance equal
to the sum of variances. We now prove (16). The statement holds trivially if ‖vn‖2 = Θ(1).
Thus, we only consider the case that ‖vn‖2 = o(1). By the first part of the proposition, we have

P (yn < −c) = 1− Φ
(

c

σ‖vn‖2

)
= Θ

(
φ (c/σ‖vn‖2)
c/σ‖vn‖2

)
,

where Φ(·) and φ(·) denote the cumulative distribution and the probability density functions of
the standard normal, respectively, and we have used the fact that limt→∞

t[1−Φ(t)]
φ(t) = 1.29 Taking

logarithms from both sides establishes the result.

Proof of Theorem 8: If the sequence of economies is such that ‖vn‖∞ = Θ(1), e.g. as in star-
like structures, the law of large numbers does not apply and therefore, P(yn < −c) does not

29See for example, Grimmett and Stirzaker (2001, p. 98).
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decay to zero as n → ∞. Thus, (17) holds trivially. For the rest of the proof, we assume that
‖vn‖∞ = o(1).

We first show that when all {εi}i∈In have a common symmetric distribution F (·) with an
exponential tail, then lim supn→∞−‖vn‖∞ log P(yn < −c) < ∞. Note that if vn,iεi < −c and∑

j 6=i vn,jεj < 0 hold for some i, then yn < −c. Therefore, by independence and symmetry
assumptions, we have

P(yn < −c) ≥
1
2

P (εi‖vn‖∞ < −c) =
1
2
F̄ (c/‖vn‖∞) ,

which implies that

lim sup
n→∞

−‖vn‖∞ log P(yn < −c) ≤ lim sup
n→∞

−‖vn‖∞ log F̄ (c/‖vn‖∞) .

Now, since ‖vn‖∞ = o(1) and F (·) has an exponential tail, the right-hand side of the above
inequality is finite, which implies that − log P(yn < −c) = O (1/‖vn‖∞).

We now prove lim infn→∞−‖vn‖∞ log P(yn < −c) > 0. To establish this, we compute an
upper bound for the generating function of εi, and use Chernoff’s inequality to bound the tail
event probability P(yn < −c).30 However, we first remark that if F (·) has an exponential tail,
then there exists a positive constant γ such that

F̄ (t) < e−γt (26)

for all t > 0. This is due to the fact that the function −(1/t) log F̄ (t) is always positive for t > 0
and has a strictly positive limit inferior.

We now proceed with the proof. Note that by symmetry of the distributions, and for k ≥ 2
we have

1
2

E |εi|k =
∫ ∞

0
tkdF (t) =

∫ ∞
0

ktk−1 (1− F (t)) dt

where we have used integration by parts and the fact that

0 ≤ lim
t→∞

tk (1− F (t)) = lim
t→∞

exp
[
k log(t) + log(F̄ (t))

]
= 0;

a consequence of the exponential tail assumption. Thus, by (26), there exists a positive constant
r = 1/γ such that

1
2

E|εi|k ≤
∫ ∞

0
ktk−1e−t/rdt = rkk!

for all k ≥ 2. Therefore, for all i ∈ In and for δ < 1
r‖vn‖∞ , we have

E
(
eδvn,iεi

)
= 1 +

∞∑
k=2

δkvkn,i
k!

E
(
εki

)
≤ 1 + 2

∞∑
k=2

(δrvn,i)
k .

30For a similar argument, see, e.g., Teicher (1984).
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The above inequality implies that

E
(
eδvn,iεi

)
≤ 1 +

2(δrvn,i)2

1− δrvn,i
≤ exp

(
2(δrvn,i)2

1− δr‖vn‖∞

)
. (27)

Using (27), we now compute an upper bound for the large deviation probability. From
Chernoff’s inequality, we have

P(yn < −c) = P(yn > c) ≤ e−δcE
(
eδyn

)
= e−δc

n∏
i=1

E
(
eδvn,iεi

)
implying that

log P(yn < −c) ≤ −δc+
n∑
i=1

2(δrvn,i)2

1− δr‖vn‖∞
= −δc+

2(δr‖vn‖2)2

1− δr‖vn‖∞
.

Now, setting δ = c/(4r2‖vn‖22 + rc‖vn‖∞) leads to31

log P(yn < −c) ≤
−c2

8r2‖vn‖22 + 2rc‖vn‖∞
≤ −c2

2r‖vn‖∞(4r + c)

where we have used the fact that ‖vn‖∞ ≥ ‖vn‖22. Therefore,

lim inf
n→∞

−‖vn‖∞ log P(yn < −c) ≥
c2

8r2 + 2rc
> 0,

completing the proof.

31Note that this choice of δ satisfies δr‖vn‖∞ < 1, the condition required for deriving (27).
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