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1 Introduction

The events of the period since the financial crisis of 2008 have required a significant

reappraisal of the previous conventional wisdom, according to which interest-rate

policy alone — and more specifically, a policy of adjusting the central bank’s oper-

ating target for a short-term interest rate in response to contemporaneous economic

conditions (as proposed, for example, by Taylor, 1993) — should suffice to maintain

macroeconomic stability. It has become evident that conventional interest-rate policy

will often be constrained by the zero lower bound (ZLB) on nominal interest rates.1

One consequence has been a greater willingness on the part of central banks to make

statements about likely future interest-rate policy, even years in advance, as a sub-

stitute for further immediate interest-rate reduction. But another has been a revival

of interest in the use of counter-cyclical fiscal policy for macroeconomic stabilization.

An important research literature since the crisis has supported the view that fiscal

stabilization policy can be especially valuable when interest-rate policy is constrained

by the ZLB. This literature has mainly addressed the effects of countercyclical gov-

ernment purchases,2 rather than government transfers, on the ground that in simple

representative-agent New Keynesian models, Ricardian equivalence holds in the case

of lump-sum taxes and transfers; lump-sum transfers during a crisis, if expected to

be financed by future lump-sum taxes, should have no effect at all on economic ac-

tivity or inflation.3 On the other hand, the actual fiscal stimulus packages enacted

in response to the crisis consisted to an important extent of increases in government

transfers (Taylor, 2018). This makes it important to further consider the potential

role of countercyclical government transfers as a tool of stabilization policy.

The Ricardian Equivalence result in standard treatments depends crucially on

an assumption of rational expectations on the part of all decision makers. Yet the

grounds for assuming rational expectations in such a case are especially weak. To the

1The effective lower bound need not be exactly zero, and among the policy innovations of the

past decade have been a number of experiments with slightly negative interest rates. For purposes

of our argument here, it is only important that there be some lower bound, and that in certain

situations even reducing the policy rate to that lower bound will provide an insufficient stimulus to

aggregate demand.
2See, for example, Eggertsson (2010), Christiano et al. (2011), or Woodford (2011).
3An exception is the paper of Ascari and Rankin (2013), who instead analyze the question under

an assumption of rational expectations, but using an overlapping generations model. We show that

the effectiveness of fiscal stimulus need not depend critically on the demographic structure (or the

absence of bequest motives), once one allows for finite planning horizons.
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extent that a fiscal stimulus package is an ad hoc response to a single crisis, rather

than an implication of a systematic policy of adjusting the government’s budget in

response to the business cycle, one cannot expect that people should have rational

expectations as a result of learning from experience; instead, one needs to ask what

people should be able to deduce from reasoning about the predictable effects of a

novel policy. Moreover, in order for it to make sense to suppose that people should

anticipate the future tax increases that must result from the increased public debt

occasioned by the stimulus policy, one must assume not merely that people are capable

of forward planning (taking into account the policy change), but that their forward

planning extends over quite a long horizon — as long as is required for the increased

public debt to be fully paid off. In practice, even if one thinks that it should be

predictable that the debt will be financed by future tax increases (and when and

from whom those taxes should be collected), it is typically not the case that there is

any reason to expect the new public debt to be paid off within a few years — decades

might well be required. This means that in order for full (or nearly full) Ricardian

Equivalence to obtain, one needs to assume that most people’s planning horizons

extend far into the future.

In this paper, we reconsider the usefulness of government transfers as a tool of sta-

bilization policy, and the issue of coordination between monetary and fiscal policies,

under a more modest assumption about the degree to which people should be able to

correctly foresee the future consequences of a novel policy. The approach that we take

is the one proposed in Woodford (2019),4 based on the architecture of state-of-the-art

programs to play games of strategy such as chess or go. Our analysis assumes that

in any period, both households and firms look forward from their current situations

some finite distance into the future, to the possible situations that they can reach in

the end period of foresight through some finite-horizon action plan; they use struc-

tural knowledge (including any announcements about novel government policies) to

deduce the consequences of their intended actions over this horizon. (For simplicity,

in this paper planning horizons are taken to be exogenously fixed.)

Interim situations that someone imagines reaching in the end period of foresight

are evaluated using a value function that has been learned from past experience.

Crucially, we suppose that the value functions cannot be adjusted to take account of

4A version of the model proposed in Woodford (2019) is empirically estimated in Gust et al.

(2019).
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an unusual shock or a change in policy, if neither the shock nor the new policy is the

one with which people have had much prior experience, though their value functions

may be well-adapted to the prior environment. Under some circumstances, this kind

of analysis leads to conclusions very similar to conventional rational-expectations

analysis (at least, under a suitable equilibrium selection criterion), as discussed in

Woodford (2019). However, a situation in which monetary policy is constrained by

the ZLB for a period that may last longer than the length of many people’s planning

horizons is one in which the finiteness of planning horizons can make a significant

difference for the predicted macroeconomic dynamics.

This suggests that in a model with finite planning horizons, countercyclical fiscal

stimulus might be a powerful tool, and indeed one that might make it possible to

stabilize the economy despite the lower bound on interest rates, without any need to

resort to commitments about future monetary policy.5 Here we consider what can

be achieved by state-contingent transfer policies when people’s planning horizons are

finite (and perhaps extend only a few quarters into the future).6 We show that fiscal

transfers can indeed reduce the contractionary impact of an increase in the financial

wedge, and that, at least under some circumstances, a willingness to use fiscal policy

with sufficient aggressiveness makes it possible to achieve complete stabilization of

both aggregate economic activity and the overall rate of inflation, despite the zero

lower bound, and regardless of the size of the increase in the financial wedge. Thus

the existence of state-contingent transfer policies expands the degree to which stabi-

lization would be possible using interest-rate policy alone; and we obtain this result

under conditions that would guarantee Ricardian Equivalence under an assumption

of rational expectations.

At the same time, we show that it would be a mistake to conclude that counter-

cyclical transfers are so effective a tool that there is no need for a central bank to

ever indicate that it would allow inflation to overshoot the bank’s long-run inflation

target, nor any need for a commitment to conduct future interest-rate policy in any

way different from what will best serve the bank’s goals at that future date. We find

5Gabaix (2019) obtains a result of this kind, in the context of a “behavioral New Keynesian”

model that downweights the effects of predictable future conditions on current behavior, albeit for

slightly different reasons than those considered here.
6Woodford and Xie (2019) similarly show how the effects of government purchases depend on

the length of decision makers’ planning horizons.
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that state-contingent transfers make possible equilibria that could not be achieved

using interest-rate policy alone, but that there is a limit to the stimulus that can be

achieved even by massive fiscal transfers, in the absence of monetary accommodation

— that is, a commitment not to raise interest rates, even if inflation overshoots its

long-run target.7

We also find that there is a limit to what can be achieved, even by coordinated

fiscal and monetary policy, if the increase in the public debt and the monetary ac-

commodation are both contemplated only for the period in which the financial wedge

remains large, with an immediate return to both the normal level of public debt and

the usual inflation target as soon as the wedge returns to a normal level; a higher

level of welfare is possible, in general, if the monetary and fiscal authorities commit

themselves to history-dependent policies in the period after the real disturbance has

dissipated. Thus while transfer policy can in principle be a useful addition to the

arsenal of policymakers in dealing with a situation of the kind reached in late 2008,

even under ideal assumptions about the precision with which fiscal policy can be ad-

justed to varying conditions, it should not eliminate the need for any commitment to

conduct monetary policy differently in the future than would be the case in normal

times.

The paper proceeds as follows. Section 2 describes the New Keynesian DSGE

model with finite planning horizon and the financial shocks considered in this paper.

As a baseline to which more active stabilization policies can be compared, it analyzes

the effects of such shocks, under alternative assumptions about the length of planning

horizons, when monetary policy is specified by a purely forward-looking inflation tar-

get and strict budget balance is maintained. Section 3 then introduces fiscal transfer

policies, while section 4 considers what can be achieved through coordinated fiscal

and monetary stabilization policies. Section 5 concludes.

7Our conclusions about the importance of monetary accommodation of fiscal stimulus are in

line with those of Ascari and Rankin (2013), though the reason for Ricardian Equivalence to fail is

different in our analysis.
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2 Output and Inflation Determination with Finite

Planning Horizons

2.1 Forward Planning with a Finite Horizon

We study the consequences of limited foresight in a New Keynesian DSGE model with

finite-horizon forward planning, building upon the approach developed in Woodford

(2019). Households and firms make contingent plans for a finite distance into the

future, and use a value function learned from past experiences to evaluate all possible

terminal states in the last period of the planning horizon. Over this horizon, they

use structural knowledge (including any announcements about novel central bank

or government policies) to deduce the consequences of their intended actions. For

simplicity, we assume that the planning horizon is taken to be exogenously fixed.

We illustrate the approach by briefly discussing here the problem of households

in our model.8 As in standard New Keynesian models, we assume an economy made

up of infinite-lived households, here assumed to be identical apart from possible dif-

ferences in their planning horizons. But rather than assuming that each household

formulates an infinite-horizon state-contingent expenditure plan, we suppose that in

any date t, a state-contingent expenditure plan is selected only for dates between t

and some date t+ h, a finite distance in the future. (We call h the household’s plan-

ning horizon, and in the present paper we treat this as exogenously given, though

endogenizing the decision about how far into the future to plan would clearly be a

desirable extension of the theory.)

Letting Ci
τ be household i’s planned consumption in period τ of a composite good

(a CES aggregate of the many differentiated goods produced in the economy), we

suppose that at time t the household chooses state-contingent values {Ci
τ} for each

of the dates t ≤ τ ≤ t + h (specifying real expenditure in each of the exogenous

states that may arise at any of those dates,9 given the state of the world at the time

of the planning) so as to maximize the expected value (according to the household’s

8The decision problem of price-setting firms is treated using similar methods in Woodford (2019).
9Given the value of aggregate real expenditure Ciτ , we suppose that the household’s purchases of

each of the individual differentiated goods in period τ is chosen so as to acquire the desired quantity

of the composite good at minimum cost. This sub-problem of optimal allocation of expenditure

across individual goods within a given period is a static optimization problem, the form of which is

unaffected by our assumption of a finite planning horizon.
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calculations at time t) of an objective of the form

t+h∑
τ=t

βτ−t u(Ci
τ ) + βh+1v(Bi

t+h+1; st+h).

Here the first terms represent the discounted sum of flow utilities from consumption

in periods t through t + h, while the final term represents the household’s estimate

of the value of the discounted sum of flow utilities that it can expect to receive in

later periods, if the wealth that it holds at the end of the planning horizon is Bi
t+h+1.

We allow in general for the possibility that the value assigned to the household’s

continuation problem after period t + h may depend on the state of the world st+h

that has been reached in period t+ h.10

In the household’s planning exercise, it takes into account its budget constraint,

and thus the way in which the value of Bi
t+h+1 will depend on its planned level

of expenditure. As in many simple New Keynesian models, we assume that there

exists only a single financial asset each period, a one-period riskless nominal debt

instrument, the interest rate it on which is also the central bank’s policy instrument.

Because wealth can take this single form, the implications of the household’s choices

over the planning horizon for the value of its continuation problem can be summarized

by a single quantity, Bi
t+h+1, indicating the wealth carried into period t+h+ 1 in the

form of this riskless nominal asset.

The evolution of this quantity is determined by a flow budget constraint of the

form

Bi
τ+1 = (1 + iτ + ∆τ ) [Bi

τ/Πτ + Yτ + Tτ − Ci
τ ] − ∆τ [Bτ/Πτ + Tτ ] (2.1)

for each period t ≤ τ ≤ t + h. Here Bi
τ is the value of the nominal debt held by the

household that matures at date τ , deflated by the period τ − 1 price index Pτ−1,
11

so that it is a predetermined real variable.12 This quantity must be deflated by

10The state st+h refers to variables whose evolution is not under the control of the household, unlike

the variable Bit+h+1 that depends on its own actions (as discussed further in the next paragraph).

But the value function may depend on endogenous economic conditions, such as the general level of

prices in period t+ h, and not only on exogenous states.
11As usual, this price index is the minimum cost at which a unit of the composite good can be

purchased in period τ − 1.
12In particular, Bit+h+1 is a quantity that is determined in period t + h, and thus within the

planning horizon, like the other terms in the objective function.
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Πτ ≡ Pτ/Pτ−1, the gross inflation rate between τ − 1 and τ , to obtain the real value

of the maturing debt in units of the period τ composite good. The term Yτ indicates

production of the composite good in period τ , the value of which is received as income

by the households (and treated as independent of any household decision, in the

household’s forward planning exercise); and Tτ is the value of lump-sum government

transfers (the same to each household), also in units of the composite good. Hence

Bi
τ/Πτ + Yτ + Tτ −Ci

τ is the value of the household’s end-of-period asset balances, in

units of the composite good.

Because one-period riskless nominal debt is assumed to be the only traded asset,

all of the household’s saving must be held in this form. These assets earn a nominal

financial yield of iτ between periods τ and τ + 1. In addition, we assume that there

is an additional benefit of holding riskless claims, which we represent in (2.1) as an

additional dividend equal to ∆τ per unit of savings held in this form. This additional

dividend is intended to represent the existence of a (time-varying) safety premium as

in the models of Del Negro et al. (2017) and Caballero and Farhi (2017); increases in

the size of such a premium are an important reason for the lower bound on the safe

nominal interest rate to become a tighter constraint during financial crises.13

The final term in (2.1) is a lump-sum effective tax on households, equal in size to

the safety dividend received by households in aggregate (using the notation Bτ for

the aggregate supply of public debt carried into period τ). This indicates that the

advantages to an individual household of holding more safe assets are at the expense

of other households (as the “safety dividend” does not correspond to any additional

resources created by the safe assets). We model the safety premium {∆t} as an

exogenous process, satisfying ∆t ≥ 0 at all times; we do not consider in this paper

the possibility of government policies that can directly affect the size of this wedge.14

13The only consequence of a non-zero value of ∆τ in our model is the introduction of a time-

varying factor in the household Euler equations (2.4)–(2.5) below. The same kind of exogenous shift

factor in the Euler equation could alternatively arise from exogenous variation in households’ rate

of time preference, as assumed in Eggertsson and Woodford (2003). While the latter assumption

would allow for a simpler and more conventional model, we believe that variation in the size of the

financial wedge represented by ∆τ provides a more realistic picture of the kind of disturbance that

is likely to give rise to the policy challenges that we address in this paper.
14For example, one might well suppose that the size of the safety premium can be reduced by

increasing the government supply of safe assets, either through increased government borrowing or

by central-bank purchases of non-safe assets; we abstract from such questions here. This means
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The decision problem of a household at time t depends on the financial wealth

Bi
t that it brings into the period (a predetermined variable, and therefore known at

the time of the decision about how much to spend in period t). It also depends on

the household’s expectations about the state-contingent evolution of the variables

{Πτ , Yτ , Tτ , iτ ,∆τ} over periods t ≤ τ ≤ t + h, that is, the household’s planning

horizon. We assume that in their forward planning exercises, households make use of

correct structural information about how the economy works (including a correct un-

derstanding of monetary and fiscal policy, taking into account any new policies that

may have been announced in response to an unexpected exogenous disturbance).

First, we assume a correct understanding of the state-contingent evolution of all ex-

ogenous state variables; this means that households correctly understand the current

value of ∆t (since they know the economy’s exogenous state, before undertaking for-

ward planning), and the conditional probability of different possible future paths

{∆τ}.
Second, households are assumed to correctly understand the rules that will de-

termine the policy variables {Tτ , iτ} over the planning horizon. For simplicity, we

restrict attention in this paper to fiscal rules under which the path of the real public

debt {Bτ} is exogenously specified;15 this allows us to consider both the case of no

public debt (often assumed in analyses of alternative monetary policies), and vari-

ous ways in which the level of public debt might depend on the path of the financial

wedge {∆τ}. Aggregating over households, and assuming no government purchases,16

it follows from (2.1) that the evolution of the real public debt must satisfy

Bτ+1 = (1 + iτ ) [Bτ/Πτ + Tτ ] (2.2)

for each of the periods t ≤ τ ≤ t + h. This, like other structural equations of our

model, is assumed to be correctly understood by households. Then the assumption

that the effects of fiscal transfers on aggregate demand analyzed in section 3 do not depend on any

effects of increased government debt issuance on the supply of safe assets. Taking into account such

effects in addition would provide a further reason to expect fiscal transfers to be welfare-improving

during a crisis caused by a large increase in the safety premium.
15See Xie (2020) for analysis of regimes in which there is instead feedback from endogenous

variables to the path of real public debt, including “active” fiscal policy regimes according to the

classification of Leeper (1991).
16The framework can easily be extended to allow for government purchases as well. See Woodford

and Xie (2019) for analysis of how the government purchases multiplier is affected by finite planning

horizons.
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that fiscal policy is specified by an exogenous process {Bτ} implies that Tτ must

endogenously adjust, to ensure that (2.2) is satisfied, in response to any changes in

iτ by the central bank, or changes in Πτ as a result of firms’ pricing decisions.

We similarly assume that households correctly understand the way in which iτ

will be determined under any contingency by the central bank’s policy. For example,

if the central bank follows a Taylor rule which requires some relation linking iτ ,Πτ

and Yτ to be satisfied, then the state-contingent evolutions of those variables assumed

in a household’s forward planning will necessarily satisfy that relation. We further

specify the monetary policies to be considered below, but note here that any feasible

policy is assumed to be subject to a ZLB constraint

it ≥ 0 (2.3)

at all times.17

Finally, households are also assumed to correctly understand how the variables

Yτ and Πτ are determined by the decisions of households and price-setting firms

respectively. However, in order not to have to model how the economy should evolve

(or anyone else should be modeling it to evolve) beyond the horizon t+h, a household

with horizon h at time t must model Yτ and Πτ as being determined by households

and firms who do not look beyond the horizon t+ h while making their decisions at

time τ . Just as the household, in its planning at time t, models its own behavior at

some later date τ as the behavior that will appear optimal to someone with a planning

horizon at that time of only t + h − τ periods, it similarly models the behavior of

other households and firms at date τ under the assumption that they will all have

planning horizons of t+ h− τ periods. This means that the household will model all

other households as spending the same amount at time τ as it plans itself to spend

at that time. Hence the amount of income Yτ that it expects to receive in any future

state will be the same as the amount Ci
τ that it expects to spend in that state.

Let Y j
t ,Π

j
t , i

j
t be the (counterfactual) output, inflation, and nominal interest rate

in the case that all economic units (households and firms) have a planning horizon

of j ≥ 0 periods at time t. Then the Euler equation for optimal forward planning

17As noted in the introduction, whether the effective lower bound on the short-term nominal

interest rate is exactly zero is not crucial to our conclusions, though we assume that the lower

bound is zero (as stated here) in the numerical calibration discussed below.
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requires that for any j ≥ 1,

u′(Y j
t ) = β(1 + ijt + ∆t) Et[u

′(Y j−1
t+1 )/Πj−1

t+1 ] (2.4)

while for j = 0,

u′(Y 0
t ) = β(1 + i0t + ∆t) v

′(Bt+1). (2.5)

In (2.5) we use the fact that in equilibrium, a household with planning horizon zero

must anticipate an interest rate i0t that leads it to choose to hold wealth B0
t+1 equal

to the exogenously specified supply of public debt Bt+1 (given that it expects other

households to optimize over the same planning horizon as it does, and it expects the

debt market to clear).

Thus we obtain a system of equations that can be recursively solved for the state-

contingent evolution of the variables {Y j
t } for each possible horizon j ≥ 0, given the

state-contingent evolution of the endogenous variables {Πj
t , i

j
t} for all j, and the state-

contingent evolution of the exogenous variables {∆t, Bt+1}, along with any exogenous

disturbances to the monetary policy rule.18 (Equation (2.5) can be solved for the value

of Y 0
t in any state of the world, given the values of the other variables; then given a

solution for the state-contingent evolution of {Y 0
τ }, the j = 1 case of equation (2.4)

can be solved for the value of Y 1
t in any state of the world; and so on for progressively

higher values of j.)

Modeling the optimizing decision of price-setting firms with finite planning hori-

zons, we similarly obtain a system of equations that can be recursively solved for

the state-contingent evolution of the variables {Πj
t} for each possible horizon j ≥ 0,

given the state-contingent evolution of the endogenous variables {Y j
t , i

j
t} and the

state-contingent evolution of the exogenous variables. These equations, together with

the monetary policy rule with which the endogenous variables must be consistent for

each value of j, provide a system that can be jointly solved for the state-contingent

evolution of the endogenous variables {Y j
t ,Π

j
t , i

j
t} for each possible horizon j ≥ 0,

given the state-contingent evolution of the exogenous variables.

In writing the above equations, we take as given the value function v(B) that

households will use in their forward planning, and similarly the value function that

firms will use. In Woodford (2019), the endogenous evolution of these value functions

18The model can easily be extended to allow for exogenous disturbances to productivity, pref-

erences, and government consumption, as treated in Woodford (2019); but in this paper, we are

concerned only with possible policy responses to disturbances to the financial wedge ∆t.
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in response to additional experience is also modeled; here, however, we abstract from

this additional source of dynamics, and assume fixed value functions, that will be the

same for the different policies that we consider. Our assumption is that the value

functions are determined in a backward-looking way (as an inference from outcomes

observed in the past), and not through a forward-looking deductive process; the whole

point of the use of a value function to evaluate conditions that might be reached at

the planning horizon t+h is to avoid having to reason deductively about what should

happen under various contingencies beyond that date.

Thus when an unusual shock hits, and unusual policies are announced in response,

the value functions that households and firms use, at least initially, will continue to be

ones that they learned from macroeconomic conditions prior to either the disturbance

or the new policies. Because our concern in this paper is solely with the effects

of temporary policy changes in response to a transitory disturbance, we simplify

the discussion by abstracting from the changes in the value functions that would

eventually occur if the new conditions were to persist sufficiently long.19 Instead

we assume that the value functions remain fixed over the scenarios that we consider

below, and are ones that represent an optimal adaptation to the stationary conditions

assumed to have existed prior to the disturbance.

In the analyses below, the situation prior to the disturbance is assumed to have

been the one in which the government debt has been zero (Bt = 0 at all times); the

central bank has pursued a forward-looking inflation targeting policy, setting it each

period at the level required to ensure that Πt = Π∗, the long-run inflation target;20

and the financial wedge ∆t has at all times been small enough to make it possible for

the central bank to achieve that target without violating the zero lower bound (2.3).

19Allowing the value functions to adapt is instead critical for certain other kinds of discussions.

These include consideration of the eventual effects of commitment to an interest-rate peg for a long

period of time, as in Woodford (2019); empirical modeling of US economic data over a period of

decades, that included significant shifts in both output and inflation trends, as in Gust et al. (2019);

analysis of the conditions under which joint monetary-fiscal policy regimes imply sustainable long-

run dynamics, as in Xie (2020); and consideration of the difference between commitment to a

systematic price-level targeting rule and adoption of an ad hoc “temporary price-level target” when

the ZLB binds, as in Woodford and Xie (2019).
20This target is assumed to satisfy Π∗ > β, so that a stationary equilibrium is possible in which

this inflation rate is maintained at all times, and in this equilibrium, the ZLB constraint (2.3) is a

strict inequality. Note that this will be satisfied in the case of any non-negative inflation target.
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In a stationary equilibrium in which these conditions always hold, the maximum

attainable discounted utility for a household that enters period t with wealth B is

given by

v(B) =
1

1− β
u(Ȳ + (1− β)B/Π̄), (2.6)

where Ȳ and Π̄ are the stationary values of Yt and Πt.
21 This is the optimal value

function for households in this stationary environment; its use in a finite-horizon

planning exercise in the stationary environment would result in optimal behavior,

regardless of the length of the planning horizon. It is also the value function to

which the adaptive process described in Woodford (2019) would converge, if such an

environment were maintained for a sufficiently long time. Thus we assume the value

function (2.6) for households in our analyses below; we similarly assume for firms a

value function that is optimally adapted to that same stationary environment.

2.2 Log-Linear Approximate Dynamics

As in many rational-expectations analyses, it will be convenient to approximate the

solution to the model structural equations using a log-linear approximation. We

linearize the model’s equations around a stationary equilibrium in which ∆t = 0

at all times, and the policy regime is the one discussed above for which the value

functions of households and firms are adapted. We express the linearized equilibrium

relations in terms of deviations from the stationary equilibrium values of the various

state variables, using the following notation:

yjt ≡ log(Y j
t /Ȳ ), πt ≡ log(Πt/Π̄), bt ≡ Bt/(Π̄Ȳ ),

ı̂t ≡ log

(
1 + it
1 + ı̄

)
, ∆̂t ≡

∆t

1 + ı̄
.

Here ı̄ ≡ β−1Π̄ − 1 > 0 is the stationary equilibrium value of the nominal interest

rate.

21Under the inflation-targeting policy, the real return on assets that do not earn the safety premium

will be constant and equal to the rate of time preference of households. A household’s optimal policy

will then be the one given by the permanent income hypothesis: it should plan to consume a constant

amount C = Ȳ + (1− β)B/Π̄ each period, allowing it to maintain a constant wealth B indefinitely.

This results in the discounted utility indicated by (2.6).
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In terms of this notation, equilibrium conditions (2.4) and (2.5) can be log-

linearized to yield

yjt = −σ(̂ıjt + ∆̂t − Etπ
j−1
t+1) + Ety

j−1
t+1 (2.7)

for each j ≥ 1, and

y0t = −σ(̂ı0t + ∆̂t) + (1− β)bt+1. (2.8)

Note that except for the superscripts, (2.7) has the same form as the “New Keynesian

IS equation” obtained in the rational-expectations version of the model (see, e.g.,

Woodford, 2003, chap. 4).

Similarly, the structural relations describing optimal price-setting behavior by

firms can be log-linearized to yield

πjt = κyjt + βEtπ
j−1
t+1 (2.9)

for each j ≥ 1, and

π0
t = κy0t . (2.10)

(See Woodford, 2019, for the derivation.) Here again, it will be observed that except

for the superscripts, (2.9) has the same form as the “New Keynesian Phillips curve”

obtained in the rational-expectations version of the model (Woodford, 2003, chap.

3).

Finally, in terms of the deviations variables, the zero lower bound constraint can

be written as

ı̂t ≥ ı̂ (2.11)

where ı̂ < 0, meaning that the constraint does not bind when it is near its stationary

equilibrium value ı̄.22

2.3 A Crisis Scenario

We consider the effects of alternative monetary and fiscal policies under the following

scenario: prior to date t = 0, we suppose that the economy has for a long time

been in the stationary equilibrium discussed above, in which the financial wedge

has always been small, the government’s budget has been balanced each period (so

22If the lower bound is exactly zero, then we will have ı̂ = −(r∗ + π∗) < 0, where r∗ ≡ β−1 − 1

is the stationary equilibrium real rate of return inclusive of the safety premium. This is assumed in

our numerical calibration, but our qualitative results depend only on our assumption that ı̂ < 0.
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that government debt has remained equal to zero), and the inflation target π∗ has

been consistently achieved. As a result, households and firms have learned the value

functions that are appropriate to a stationary environment of that kind. At time

t = 0, however, an unexpected financial disturbance occurs, and the economy enters

a “crisis” state, in which there is a substantial financial wedge ∆̂t > 0 between the

return on safe assets (balances held at the central bank) and other assets.

We further assume that the crisis state persists to the following period, whenever

the economy is currently in that state, with probability 0 < µ < 1, while with

probability 1−µ the economy reverts back to its “normal” state, in which we suppose

that the financial wedge ∆̂t will subsequently equal zero forever after. For simplicity,

we assume that the probability of exit from the crisis state is independent of the

length of time already spent in that state. We further assume that the size of the

financial wedge while in the crisis state is constant; thus the exogenous fundamental

{∆t} evolves according to a two-state Markov chain, as in Eggertsson and Woodford

(2003). We write the constant financial wedge in the crisis state as ∆̂t = −ı̂ + ∆,

where ∆ > 0; the latter quantity measures the degree to which the financial wedge is

too large to be offset through a contemporaneous interest-rate reduction.23 It is the

fact that ∆ > 0 that means that the inflation target can no longer be maintained at

all times, using only conventional interest-rate policy and with a balanced government

budget.

2.3.1 Numerical calibration

We illustrate a number of our conclusions about the effects of alternative policies

under such a scenario for economic fundamentals using numerical computations. In

these calculations, we calibrate the model — including our assumption about the

size and persistence of the disturbance to fundamentals — largely in accordance

with the parameter values proposed by Eggertsson (2011), who shows that under

the assumption of rational expectations and a zero inflation target, these parameter

values would imply a contraction of the size experienced by the US economy during

the Great Depression, as shown by Eggertsson (2011). However, in this paper, we

specify “normal” monetary policy as involving an inflation target π∗ of two percent

23In the notation of Eggertsson (2011), this quantity corresponds to ∆ = −r− π∗, where r < 0 is

the natural rate of interest in the crisis state.
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Table 1: Calibrated Parameter Values

Value

Subject discount factor β = 0.997

Response of inflation to output gap in Phillips curve κ = 0.00859

Intertemporal elasticity of substitution σ = 0.862

Financial wedge in “crisis” state ∆̂ = 0.013

Probability of staying in “crisis” state µ = 0.903

Inflation target π∗ = 0.005

per year, rather than a target of zero inflation, as in Eggertsson’s model of the Great

Depression. This makes the zero lower bound a less severe constraint in our scenario

than in the one considered by Eggertsson, since we continue to assume the same size

of increase in the financial wedge as in his Depression scenario.

In our numerical calculations, the periods of our discrete-time model are identified

with quarters. We set the subjective discount factor β = 0.997, the slope of the

Phillips curve κ = 0.00859, and the elasticity of intertemporal substitution σ =

0.862. The shock required to account for the size of the contraction during the Great

Depression is one in which ∆̂ = 0.013,24 and the probability of staying in the crisis

state is µ = 0.903, so that the expected length of a crisis is about 10 quarters.

In addition, we assume a long-run inflation target of 2 percent per year; that is,

π∗ = 0.005 in quarterly terms, which implies that the part of financial wedge that

cannot be offset by monetary policy owing to the ZLB is ∆̃ = 0.005, or two percent

per year.25 The calibrated parameter values are summarized in Table 1.

2.3.2 Contraction in the absence of a policy response

We first consider the consequences of a temporary large increase in the size of the

financial wedge (the “crisis scenario” explained above), in the case that monetary and

fiscal policy continue to be conducted as under normal conditions, which is to say as

24This is a quarterly rate; thus the assumed increase in the size of the financial wedge is a bit

greater than 5 percent per annum. The natural rate of interest in the normal state is r∗ = β−1 − 1,

or slightly above 1 percent per annum; thus we assume that in the crisis state, the natural rate of

interest falls to -4 percent per annum, as in Eggertsson (2011).
25Note that this is only half the size of ∆̃ in the crisis state considered by Eggertsson (2011).
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assumed above in our discussion of the stationary equilibrium prior to the occurrence

of the shock. We assume that the government budget continues to be balanced each

period, so that Bt+1 = 0 at all times, and that the central bank continues to conduct

monetary policy in accordance with a strict inflation target. The latter stipulation

implies that in each period, ı̂t will be set as necessary to ensure that inflation is equal

to the target rate (πt = 0, in our deviations notation), if this is consistent with the

ZLB; if inflation undershoots the target in any period t even when the interest rate is

at its lower bound, then ı̂t will equal ı̂ in that period (the policy as close as possible

to achieving the inflation target in that period, taking as given the expected conduct

of monetary policy in all future periods).

Let us first recall the analysis of such a situation under the assumption of rational

expectations (RE) by Eggertsson and Woodford (2003) and Eggertsson (2011). The

linearized equations of the RE model can be written in vector form as

zt = AEtzt+1 − σa (̂ıt + ∆̂t), (2.12)

where we define

zt ≡

[
yt

πt

]
, A ≡

[
1 σ

κ β + κσ

]
, a ≡

[
1

κ

]
.

(Note that the path of public debt is irrelevant, owing to Ricardian Equivalence.)

Under the assumption that ∆̂t evolves according to the two-state Markov process and

that ı̂t is chosen according to the inflation targeting policy, there exists a rational-

expectations solution that is also Markovian, in the sense that the vector zt takes

only two possible values: a vector z in any period t in which the crisis state persists,

and the zero vector in each period after the reversion to the normal state (in which

case the inflation target is achievable each period from then on).26

In the case that

κσµ < (1− µ)(1− βµ),

26Mertens and Williams (2018) call this the “target equilibrium”; it is not the only possible RE

solution, even if one restricts attention to Markovian solutions. It is however the solution emphasized

in the RE literature, following Eggertsson and Woodford (2003); we show below that restriction of

attention to this RE solution can be justified as the limit of the unique solution associated with a

model with finite planning horizons, when the length of the planning horizons is made arbitrarily

long.
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the matrix A has two positive real eigenvalues, both less than µ−1, and the Marko-

vian solution is also the unique bounded solution to the linear system (2.12). This

condition holds if and only if

µ < µ̄, (2.13)

where µ̄ is a bound between zero and 1 that depends on the values of κσ and of β;

this is the case considered by Eggertsson and Woodford (2003).27 In this case, the

Markovian RE solution under which the crisis state persists is given by

zt = zRE ≡ −σ (I − µA)−1a∆ << 0. (2.14)

In this equilibrium, both output and inflation remain persistently below their

target values as long as the crisis state continues, but return immediately to their

target values as soon as the financial wedge returns to its normal (negligible) value.

As Eggertsson and Woodford (2003) show in a calibrated example, this equilibrium

can involve quite a severe contraction as well as substantial deflation, in response to

even a few percentage points’ increase in the financial wedge. We now examine the

robustness of these conclusions to allowing for finite planning horizons.

Assume again that the central bank adheres to a strict inflation targeting policy,

and suppose also that there is no government debt (so that the fiscal authority main-

tains a balanced budget).28 Equations (2.7) and (2.9) can then be written in vector

form as

zjt = AEtz
j−1
t+1 − σa (̂ıjt + ∆̂t) (2.15)

for each j ≥ 1, using the notation zjt for the vector [yjt π
j
t ]
′, while (2.8) and (2.10) can

be written as

z0t = −σa (̂ı0t + ∆̂t) + (1− β)a bt+1. (2.16)

Under the assumption of zero public debt, equation (2.16) implies that an expectation

of strict inflation targeting requires that horizon-zero agents expect an interest rate

ı̂0t = max{−∆̂t, ı̂}.
27A Markovian rational-expectations solution can also be defined when µ exceeds the bound (2.13),

but in this case it does not correspond to the limit of an equilibrium with finite-horizon planning,

as planning horizons are made arbitrarily long.
28This is a common assumption in New Keynesian models used for monetary policy analysis,

though in models where Ricardian Equivalence would hold, it is without loss of generality. With

finite planning horizons, the assumption is not innocuous, as we show in section 3.
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Under the assumption that the financial wedge evolves as a two-state Markov chain,

this implies that z0t = 0 if t is any date after the reversion to the normal state, while

z0t = z0 ≡ −σa∆ << 0 (2.17)

if t is any date at which the crisis state continues.

We can then use this result to solve recursively for the behavior of households and

firms with progressively longer planning horizons. First we observe that if t is any

date after the reversion to the normal state, zht = 0 for all h. This can be established

recursively; we first show that if zht = 0 for all dates after the reversion to normal for

some horizon h ≥ 0, (2.15) implies that inflation targeting will require ı̂h+1
t = 0 at

any date after the reversion to normal, and hence that zh+1
t = 0 as well. Then the

fact that we have already shown that z0t = 0 after the reversion to normal implies

that zht = 0 for all h.

Next, consider instead dates t at which the crisis state continues, and suppose that

it has already been established for some horizon h that in any crisis state, zht = zh,

where zh is a vector that is negative in both elements. Then it follows from (2.15)

that even if ı̂h+1
t = ı̂ (the most expansionary possible monetary policy that can be

expected), in any crisis state the vector zh+1
t will equal

zh+1
t = µAzh − σa∆ << 0.

Hence the ZLB will necessarily bind, and we will have zh+1
t = zh+1 in any such state,

where

zh+1 = µAzh − σa∆ << 0. (2.18)

It follows that the equilibrium will be Markovian,29 and that the sequence of vectors

{zh} characterizing the Markovian equilibrium can be computed recursively, using

(2.18) together with the initial condition (2.17).

This system of equations can be recursively solved to yield

zh = −σ
h∑
j=0

(µA)ja∆ << 0 (2.19)

29Note that this is not an assumption (equilibrium selection criterion), as in the case of the

rational-expectations analysis; we have shown that in the case of finite-horizon planning, there is

necessarily a unique solution, and that it has this property.

18



0 10 20 30 40

-8

-7

-6

-5

-4

-3

-2

-1

0
10

-2

0 10 20 30 40

-2.5

-2

-1.5

-1

-0.5

0
10

-2

Figure 1: Expenditure and rates of price increase during the crisis period, under

different assumptions about the planning horizon h (in quarters) of households and

firms, when the central bank follows a strict inflation targeting policy and there is no

response of fiscal policy.

for any planning horizon h ≥ 0. Note that the solution is well-defined for any fi-

nite h; if in addition to our more general assumptions, µ satisfies the bound (2.13),

the solution has a well-defined limit as h is made unboundedly large. In this lat-

ter case, we find that as h → ∞, zh → zRE, so that the unique equilibrium with

finite-horizon planning approaches the Markovian rational-expectations equilibrium

discussed above. It follows that any long enough finite planning horizon will lead to

outcomes similar to those in the RE analysis.

If planning horizons are only of modest length, however, the quantitative predic-

tions of the model with finite-horizon planning are different from those of the RE

analysis. Since each of the terms in the sum (2.19) is a vector with both elements

negative, it is evident that both yh and πh are more negative the longer the planning

horizon. This is illustrated in Figure 1, for the numerical parameter values listed in

Table 1.
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This solution tells us the value of yh and πh for each possible planning horizon h.

These calculations are the same regardless of the distribution of planning horizons

in the economy. For a given distribution of planning horizons {ωh}, we can then

compute the predicted state-contingent evolution of aggregate output and inflation

by aggregating the individual decisions of the agents with different horizons. In the

case of an exponential distribution of planning horizons with ωh = (1−ρ)ρh for some

0 < ρ < 1, the condition required for the infinite sum
∑∞

h=0 ωhz
h to converge — and

hence for there to be a well-defined equilibrium under the assumed policies — is

ρµ < µ̄, (2.20)

where µ̄ is defined as in (2.13). This is thus a weaker condition than (2.13), that

requires only that the product ρµ not be too large; it will be satisfied if either most

planning horizons are not too long (ρ is well below 1) or the financial disturbance

is not expected to last too long (µ is well below 1), or both. In the case that it is

satisfied, aggregate outcomes in the crisis state will be given by

z = −σ [I − ρµA]−1a∆ << 0 (2.21)

Note that if (2.20) is satisfied, (2.21) is the unique solution to our model, not simply

one among multiple possible solutions, as in the rational-expectations analysis. In the

case that (2.13) is satisfied, the solution (2.21) approaches the RE solution specified

in (2.14) as ρ approaches 1; this provides a possible justification for selecting that

solution in a rational-expectations analysis.

We see from Figure 1 that when households and firms have finite planning hori-

zons, the contractionary and disinflationary effects of an increase in the financial

wedge are less severe than in a rational-expectations analysis; the more short-sighted

people are assumed to be, the milder the effects. Even if we assume a 10-year planning

horizon for all households and firms (the case h = 40), the contraction is only slightly

more than half as severe as under the RE analysis.30 Nevertheless, assuming some

degree of foresight, the ZLB can pose a serious problem, under these assumptions

30Even under rational expectations, the contraction is only half as large in our calculations as in

those of Eggertsson (2011), because the higher inflation target assumed in our calculations mean

that the value of ∆ is only half as large for us. Thus the contractions shown in Figure 1 are much

smaller than a Great Depression, even when planning horizons are long.
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about policy. (A larger increase in the financial wedge would produce a correspond-

ingly larger contraction than those shown in the figure.) Thus it is still desirable to

explore whether alternative policies can mitigate this problem.

One possibility would be to consider what can be achieved by committing to

a more expansionary monetary policy following the return of the financial wedge

to its normal level, as proposed by Eggertsson and Woodford (2003). In their RE

analysis, such a policy can greatly improve upon the outcomes associated with a

purely forward-looking inflation targeting regime; however, the effects of such “for-

ward guidance” depend entirely upon its being taken into account in the expectations

of households and firms during the crisis period, which depends upon planning hori-

zons being sufficiently long.31 An alternative approach is to consider what can be

achieved by increasing fiscal transfers in response to the financial disturbance. As we

shall see, when planning horizons are finite, the use of this additional tool can achieve

greater stabilization than even the best-designed forward guidance policy can on its

own. However, the ideal policy response will involve both increased fiscal transfers

and forward guidance regarding future interest-rate policy.

3 Fiscal Transfers and Aggregate Demand

As explained in section 2, in this paper we consider only fiscal policies in which the

real public debt Bt+1 is a function of the exogenous state in period t (including the

history of exogenous evolution of the financial wedge, through period t, and any

information available at time t about future financial wedges); but in this section we

no longer require that Bt+1 = 0 at all times. The implied state-contingent level of net

lump-sum transfers Tt is then given by equation (2.2). While we now allow the path

of the debt to respond to shocks, we consider only policies under which the process

{Bt+1} remains within finite bounds with certainty for all time; this means that

we consider only policies under which any increase in the public debt is eventually

paid off, with certainty.32 Given this — together with the facts that all taxes and

31See Woodford and Xie (2019) for quantitative analysis of the degree to which shortening the

assumed length of planning horizons reduces the predicted effects of such policies, even when clearly

explained and fully credible.
32This is true regardless of how prices, interest rates, and economic activity may evolve; thus we

do not consider the effects of “non-Ricardian” fiscal policy rules of the kind discussed, for example,
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transfers are lump-sum and distributed equally to all households, and that there are

no financial constraints (other than the “financial wedge” that allows riskless claims

on the government to trade at a lower equilibrium rate of return than private debt)

— our model is one in which Ricardian Equivalence would hold under an assumption

of rational expectations.

Instead, if households have finite planning horizons — or even, if a sufficient

number of them do — a bounded increase in the path of the real public debt (resulting

from an initial increase in lump-sum transfers, followed eventually — though possibly

much later — by the tax increases required to keep the debt from exploding) will

increase aggregate demand. Note that the household FOCs (2.4)–(2.5) imply that

real expenditure Y h
t by households with a planning horizon of h periods must satisfy

u′(Y h
t ) = Et[

h∏
j=1

Dh+1−j
t+j · D̃0

t+hv
′(Bt+h+1)], (3.1)

where the stochastic discount factors are defined by

Dj
t+1 ≡ β

1 + ijt + ∆t

Πj−1
t+1

for any j ≥ 1, D̃0
t ≡ β(1 + i0t + ∆t).

Now consider the effect of a fiscal policy change, that increases the planned level of

Bt+1 for at least some future dates (in at least some possible states of the world), while

decreasing it at no dates. If the paths of neither goods prices nor asset prices change

(as would be the case under Ricardian Equivalence), then (3.1) implies that Y h
t must

increase in any period t with the property that Bt+h+1 is increased in at least some

states that remain possible, conditional on the state at date t.33 Aggregating across

households with different planning horizons, one concludes that aggregate output Yt

must increase, in at least some periods; thus Ricardian Equivalence does not obtain.

The key to this result, of course, is our assumption that announcement of the

policy change does not change the value function v(B) used to evaluate terminal

states. A household with rational expectations should instead understand that if a

policy change results in a higher real public debt Bt+h+1, it must imply higher tax

obligations in periods subsequent to t + h (that is, beyond the planning horizon);

in Woodford (2001).
33This follows from the fact that both u′(Y ) and v′(B) are decreasing functions of their respective

arguments.
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and this should change the level of private wealth Bi
t+h+1 needed in order to ensure

a given level of continuation utility. Thus the correct value function v(Bi
t+h+1) would

have as another argument the aggregate supply of debt Bt+h+1. Because the value

function takes account only of a coarse description of the household’s situation —

and because the situation that gives rise to an unusually large public debt following

a financial crisis may not be similar to situations that the household has frequently

encountered in the past — we suppose that households have not already learned how

to take this additional state variable into account in the way that they value terminal

states. Neglect of this state variable is what breaks Ricardian Equivalence. The

degree to which this is quantitatively important will depend on the extent to which

the time that it takes for the real public debt to return to its normal level following

a shock exceeds the planning horizons of many households.

The failure of Ricardian Equivalence adds another dimension along which govern-

ment policy can shift the equilibrium allocation of resources, possibly in ways that

can improve stabilization outcomes. This is particularly easy to see in the case of an

exponential distribution of planning horizons, ωh = (1−ρ)ρh for all h ≥ 0, where the

parameter 0 < ρ < 1 determines the mean planning horizon h̄ ≡ ρ/(1 − ρ). In this

case, the log-linearized aggregate demand relations (2.7)–(2.8) can be aggregated to

yield

yt = −σ(̂ıet + ∆̂t − ρEtπt+1) + ρEtyt+1 + (1− ρ)(1− β)bt+1, (3.2)

where

ı̂et ≡ (1− ρ)
∞∑
j=0

ρj ı̂jt

is an average of the interest rates expected by households with different planning

horizons.34 The linearized aggregate supply relations (2.9)–(2.10) can similarly be

aggregated to yield

πt = κyt + ρβEtπt+1. (3.3)

34In Woodford (2019), this equation involves ı̂t, the actual interest-rate target of the central bank,

rather than the variable ı̂et defined here. The form (3.2) is more generally valid. In the earlier paper,

monetary policy is assumed to be characterized by a linear relationship among ı̂t and other aggregate

variables, such as a Taylor rule ı̂t = φ(πt, yt; st), where st is an exogenous state and φ is linear in

the first two arguments. In such a case, the fact that the policy rule is understood by all households

implies that ı̂jt = φ(πjt , y
j
t ; st) for each horizon j; aggregating over the different horizons then implies

that ı̂et = φ(πt, yt; st) = ı̂t, owing to the linearity of φ. When the zero lower bound sometimes

constrains policy, as in the cases considered in this policy, ı̂et will in general no longer equal ı̂t.
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Note that equations (3.2) and (3.3) relating the evolution of aggregate output and

inflation reduce to the structural equations of the standard New Keynesian model

under rational expectations in the limit as ρ→ 1.

Equation (3.2) shows that variation in the level of real public debt bt+1 (the debt

issued in period t) shifts the aggregate-demand relation in exactly the same way as

does variation in ı̂t, the central bank’s interest-rate target. It follows that, if one is

concerned solely with stabilization of the aggregate variables yt and πt, there is no

need to consider varying the path of the real public debt, as long as it is possible for

the central bank to vary ı̂t to the desired degree instead. However, when the zero

lower bound is a binding constraint on interest-rate policy, the fact that the public

debt can still be increased through transfer policy can effectively relax this constraint.

This allows stabilization of the aggregate economy in cases where this would not

be possible under a policy that maintained bt+1 = 0 at all times. Note that the paths

in which yt = πt = 0 at all times are consistent with both equations (3.2) and (3.3)

holding at all times, if and only if

−σ(̂ıet + ∆̂t) + (1− ρ)(1− β)bt+1 = 0 (3.4)

at all times. Since everyone is assumed to understand that the central bank’s policy

must conform to the lower bound ı̂t ≥ ı̂, the interest rates expected by households

must satisfy ı̂et ≥ ı̂ at all times. Hence if ∆t > −ı̂ at some time, it will not be possible

to satisfy (3.4) with bt+1 = 0.

Instead the condition can always be satisfied if we allow fiscal transfers. Let us

suppose that the central bank’s interest-rate target tracks variations in the financial

wedge to the extent that this is consistent with the ZLB, i.e., that monetary policy

ensures that

ı̂t = max{−∆̂t, ı̂} (3.5)

each period.35 Then (since the interest rate is specified as a function of the exogenous

35More precisely, we assume that this policy is followed during a relatively brief period in which

there is a non-trivial financial wedge, but that after that period the central bank reverts to a policy

rule that ensures achievement of its inflation target. The latter stipulation is required in order to

ensure that there should not be any long-run drift in the value functions of households and firms,

allowing us to abstract from modeling the endogenous adjustment of value functions, as discussed

in section 2. If the rule (3.5) were followed forever, then the learning process for the value functions

specified in Woodford (2019) would lead to unstable dynamics, as shown in that paper for the case

of a permanent zero financial wedge.
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state) ı̂et will equal ı̂t, and condition (3.4) will be satisfied if and only if fiscal policy

is given by

bt+1 =
σ

(1− ρ)(1− β)
∆̃t (3.6)

where

∆̃t ≡ max{∆̂t + ı̂, 0} (3.7)

measures the part of the financial wedge that is not offset by interest-rate policy. If

monetary policy is given by (3.5) and fiscal policy by (3.6), equilibrium will involve

yt = πt = 0 at all times, regardless of the path of the financial wedge.36

4 Coordinated Monetary and Fiscal Stabilization

Policy

The striking result of the previous section might make it seem that there is no need

for a central bank to depart from its commitment to a strict inflation-targeting policy,

given that fiscal transfers can be varied to offset any effects on aggregate demand of

variations in the financial wedge. Can one simplify the tasks of both policy authori-

ties, and communication with the public as well, by stating that the sole concern of

the central bank should be to ensure that inflation remains equal to the target rate,

while it is the responsibility of the fiscal authority to offset any excessive financial

wedge (any positive value of ∆̃t) with fiscal transfers, so as to maintain a zero output

gap? We shall argue that this would be a mistake. Successful use of fiscal policy as a

tool of stabilization policy requires that it be supported by an appropriate monetary

policy; moreover, the ideal joint policy will involve a commitment that monetary

policy will continue to depart from the central bank’s usual inflation targeting policy,

even after the financial wedge has returned to its normal size.

36It is immediately obvious from inspection of equations (3.2) and (3.3) that the asserted solution

is consistent with both of these equations at all times. We show in Appendix A that this is indeed

the unique equilibrium outcome, assuming a bound on the asymptotic growth rate of the excess

financial wedge. The required condition holds, for example, in the case of the two-state Markov

process for the financial wedge introduced in section 2.3 as long as (2.20) is satisfied.
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4.1 The Dependence of Fiscal Stimulus on Monetary Accom-

modation

It might seem from the analysis above that the central bank can commit itself to the

inflation targeting policy considered in section 2.3.2 (setting ı̂t as needed to achieve

the inflation target, or as low as possible if the target cannot be achieved), and that

as long as fiscal policy is given by (3.6), the outcome will be complete stabilization of

both inflation and the output gap. This would however be incorrect. It is true that

the equilibrium described at the end of the previous subsection is one in which the

paths of ı̂t and πt conform to the proposed monetary policy rule; but it is not true

that that equilibrium is consistent with everyone expecting that monetary policy will

be conducted in accordance with that rule. In our model, because of people’s finite

planning horizons, it matters not only what happens in equilibrium, but what the

central bank would be expected to do out of equilibrium; and the complete stabiliza-

tion of macroeconomic aggregates actually depends on people’s understanding that

the central bank is not determined to prevent over-shooting of the long-run inflation

target under any circumstances.

In order to see this, we need to consider the forward plans of agents with differing

planning horizons in the equilibrium in which yt = πt = 0 at all times. Substituting

the monetary policy rule (3.5) into (2.15)–(2.16) yields

zjt = AEtz
j−1
t+1 − σa ∆̃t (4.1)

for each j ≥ 1, and

z0t = −σa ∆̃t + (1− β)a bt+1.

In the case of an arbitrary process for the financial wedge and an arbitrary fiscal

policy, this system of equations can be solved recursively to yield

zht = −σ ·
h∑
j=0

[Aja] Et∆̃t+j + (1− β)[Aha] Etbt+h+1 (4.2)

for any planning horizon h ≥ 0. The implied solutions for the aggregates yt and πt

are then obtained by averaging over the various planning horizons h. If fiscal policy

is given by (3.6), these equations imply yt = πt = 0; however, they do not generally

imply yht = πht = 0 for each individual planning horizon.
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Consider, for example, the case in which the financial wedge evolves according

to a two-state Markov chain of the kind proposed in section 2.3. In this case, the

right-hand side of (4.2) depends only on whether the economy is still in the crisis

state at date t, or has already returned to normal. In any period t such that the

economy remains in the crisis state, the solution is given by

zht = zh ≡ σ ·

{
µh

1− ρ
[Aha] −

h∑
j=0

µj [Aja]

}
·∆,

where ∆ > 0 is the excess financial wedge in this state. Instead, in any period after

the return to the normal state, zht = 0. Note that the solution for zh is well-defined

for any finite horizon h, regardless of parameter values.

One observes that in the crisis state, the elements of zh are different for different

horizons h. For example, when h = 0,[
y0

π0

]
= σ

ρ

1− ρ

[
1

κ

]
∆ >> 0.

Moreover, one can show that the largest of the two positive real eigenvalues of A is

equal to µ̄−1 > 1, where µ̄ is the quantity introduced in (2.13). Then if µ < µ̄, one

finds that

zh → zRE << 0

as h → ∞, where zRE is the Markovian rational-expectations solution defined in

(2.14). Thus both yh and πh are positive in the case of short enough planning horizons,

while both are negative in the case of long enough horizons.

This is illustrated numerically in Figure 2. Here we plot yh and πh for each of

the different planning horizons, for each of several different assumptions about the

value of ρ (or alternatively, the mean planning horizon h̄); the values of the other

parameters are as in the calibration introduced in section 2.3.1. While in each case

the mean value of both yh and πh is equal to zero, this averages positive values for

short horizons and negative values for longer horizons. (Increasing h̄ increases both

yh and πh for all horizons, but this is consistent with the mean values continuing to

be the zero, because the distribution of weights shifts toward greater weight on the

longer horizons the larger is h̄.)

The figure underlines the fact that an equilibrium with yt = πt = 0 depends on

an understanding of the central bank’s policy that allows households and firms to
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Figure 2: Expenditure and rates of price increase during the crisis period, for house-

holds and firms with different planning horizons h, under a policy that fully stabilizes

aggregate output and inflation. Each line is for a distinct value of the mean planning

horizon h̄. Both h and h̄ are in quarters.

anticipate that inflation would be allowed to overshoot the long-run inflation target,

under some circumstances. Even though this does not occur in the equilibrium shown

in the figures, it is anticipated in the forward plans of both households and firms,

as shown in the figure. It is important to note that in this solution, it is not just

the households and firms with short planning horizons that must believe that such

overshooting would be allowed. A household or firm with some long planning horizon

h in period t (assumed to be a crisis period) anticipates that if the crisis persists until

period t + h − j, inflation will at that time equal πj — a positive quantity, for all

small enough j. Since this is expected to occur with positive probability (probability

µh−j), the equilibrium with full stabilization of yt and πt depends on all households

and firms believing that with positive probability a situation will be reached in which

the central bank will allow inflation to overshoot its long-run target, because of the

central bank’s commitment to accommodate the continuing fiscal stimulus.
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The situation would be quite different if, instead, the central bank were understood

to be committed to setting the interest rate required to achieve its inflation target,

unless constrained by the ZLB. In that case, there would be a maximum degree of

aggregate demand stimulus that could be achieved through fiscal transfers, no matter

how large the transfers might be. Under strict inflation targeting, (2.8) and (2.10)

imply

π0
t = −κσ(̂ı0t + ∆̂t) + κ(1− β)bt+1

= min{−κσ(̂ı+ ∆̂t) + κ(1− β)bt+1, 0}.

In the case of the assumed two-state Markov chain for the financial wedge, this implies

that as long as the crisis state persists, one will have

π0
t = π0 = κ min{(1− β)bt+1 − σ∆, 0}.

(The corresponding value of y0 is simply this quantity without the prefactor κ.) Thus

increases in the public debt are stimulative only up to the level

bmax ≡ σ∆

1− β
.

(In our numerical calibration, this amounts to 0.36 of annual GDP.37) For any level

bt+1 ≥ bmax, the model predicts that y0 = π0 = 0.

For any longer horizon h, we similarly will have zht = zh as long as the crisis state

persists, where crisis values {zh} can be computed recursively as follows. For any

j ≥ 1, (4.1) implies that in any crisis period,

πjt = [κ β + κσ]µzj−1 − κσ∆

if ı̂jt is expected to be at the lower bound. If both elements of zj−1 are non-positive,

this implies inflation below target, even with the interest rate at the lower bound.

Hence the ZLB will bind, and we must have

zj = µAzj−1 − σa∆ << 0. (4.3)

37Note that this does not mean that there would be no effect of increasing the public debt beyond

36 percent of GDP — a level that the US is already well past. It means that, under the assumptions

of our calibration, there would be no effect of an increase by more than 36 percent of GDP relative

to the normal steady-state level of public debt.
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Figure 3: Expenditure and rates of price increase during the crisis period, for house-

holds and firms with different planning horizons h (in quarters) when the central bank

follows a strict inflation targeting policy. The two lines correspond to the minimal

and maximal sizes of fiscal stimulus.

Under the assumption that bt+1 ≥ bmax for as long as the crisis state persists (the

most favorable assumption for a stimulative effect of fiscal policy), we have shown in

the previous paragraph that z0 = 0; we can then show recursively using (4.3) that

both elements of zj are non-positive for all j ≥ 0. It follows that the assumption used

to derive (4.3) is valid for all j ≥ 1.

Thus under the most expansive possible fiscal policy, we will have zht = zh as

long as the crisis state persists, where the sequence {zh} can be computed recursively

using (4.3), starting from the initial condition z0 = 0. This yields the solution

zh = −σ
h∑
j=1

(µA)j−1a∆ << 0

for each h ≥ 1. Both yht and πht remain below their target values for all horizons h > 0,

and more so the longer the horizon. (This is illustrated for our numerical example in
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Figure 3, which shows the values of zh both in the case of zero fiscal stimulus38 and

in the case of the maximum fiscal stimulus.) We see that fiscal stimulus can mitigate

the contractionary and disinflationary effects of the financial disturbance, but both

spending and the rate of price increase continue to fall, even with the maximum fiscal

stimulus, for all horizons h > 0; if planning horizons extend years into the future,

the fraction of the contractionary effect that can be offset using fiscal policy alone is

quite modest.

Summing over the different planning horizons (again assuming an exponential dis-

tribution of horizons), the net effect on both aggregate output and aggregate inflation

is necessarily contractionary. As long as (2.20) is satisfied,39 the weighted average of

the {zh} is a convergent sum, and equal to

z = (1− ρ)
∞∑
h=0

ρhzh = −ρσ [I − ρµA]−1 a∆ << 0.

It is not possible to fully stabilize either aggregate output or inflation; both necessarily

fall in the crisis state. Indeed, the effects on aggregate output and inflation are similar

to those obtained in the case of no fiscal response (see equation (2.21) above): they

are simply both reduced by a factor of ρ. This means that the contractionary effects

are reduced by less than half, in the case of any mean planning horizon h̄ greater

than one quarter.

Instead, it is possible to completely eliminate the contractionary effects of the

increased financial wedge on both output and inflation, if an expansionary fiscal pol-

icy (an increase in the real public debt through lump-sum transfers, in an amount

proportional to the excess financial wedge ∆) is combined with monetary accommo-

dation — a commitment to keep the nominal interest rate at its lower bound during

the period in which the financial wedge is large, even if this causes inflation to over-

shoot its long-run target. A coordinated change in both monetary and fiscal policy in

response to the financial disturbance can achieve more than either policy can on its

own. Thus while fiscal transfers have an important contribution to make, in the case

that planning horizons are finite, the availability of this additional instrument does

not make monetary stabilization policy irrelevant. Moreover, the important aspect of

38Note that the results for b = 0 repeat those shown in Figure 1 above.
39This is the condition required for both eigenvalues of ρµA to be less than 1, the same condition

required for convergence as in the case of zero fiscal stimulus considered in section 2.3.2.
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monetary policy is not what the central bank actually does during the period when

the financial wedge is large (since the ZLB binds during this period); rather, it is what

it leads people to believe that it would do, in the event that the ZLB were to cease

to bind. In this sense, commitments about the determinants of future interest-rate

policy remain a crucial dimension of policy, even when aggressive use of government

transfers is possible.

4.2 The Continuing Relevance of Forward Guidance

The example considered above not only shows that the use of fiscal transfers can im-

prove stabilization outcomes, relative to what monetary policy alone can accomplish;

the results obtained might seem to make the details of monetary policy unimportant,

given sufficient latitude in the way that fiscal policy can be used. If we assume a

conventional objective for stabilization policy, in which the aim is to minimize the

expected value of a discounted sum of squared target misses

E0

∞∑
t=0

βt[π2
t + λy2t ], (4.4)

then it is easy to characterize an optimal joint monetary-fiscal policy in the case of

an exponential distribution of planning horizons.

We have shown in this case that if (3.4) is satisfied at all times, we will have

yt = πt = 0 at all times, which obviously achieves the minimum possible value of

criterion (4.4). Moreover, it is possible to choose a state-contingent evolution {bt+1}
that satisfies (3.4) at all times, in the case of any assumed state-contingent evolution

for {ı̂t}, as long as ı̂t is a function only of the exogenous state, so that ı̂et = ı̂t.
40 For

example, it is not necessary for interest-rate policy to respond at all to increases in

the financial wedge in order for complete aggregate stabilization to be possible; we

could assume that ı̂t = 0 at all times, and make the fiscal authority solely responsible

for responding to variations in financial conditions.

The example suggests another strong conclusion as well: it would seem that there

is no need to contemplate any deviation from our baseline policy regime (strict in-

40It is necessary, however, that we assume that interest rates do not adjust endogenously in

response to changes in bt+1 in such a way as to keep (1 − ρ)(1 − β)bt+1 − σı̂et constant; this is

the problem with an expectation that the central bank is committed to whatever interest-rate

adjustments are needed to achieve a fixed inflation target.
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flation targeting and zero public debt) in periods when financial wedges are small

(small enough so that ∆̃t = 0), simply because there are transitory periods in which

the wedges are large. In the example discussed above, it is possible to achieve full sta-

bilization of aggregate variables even during a “crisis,” while conducting (and being

expected to conduct) policy in a completely orthodox way as soon as the economy

reverts to the “normal” state. Thus there is no need for forward guidance, in the

sense of a commitment to more stimulative than ordinary policy for a time even after

the financial wedge is again small, for the sake of improved stabilization during the

period when the wedge is large.

It would be wrong, however, to draw such conclusions. We should first note that,

even if minimizing the expected value of (4.4) is the sole objective of policy, the results

obtained above depend on the special assumption of an exponential distribution of

planning horizons. As a simple (but instructive) alternative case, suppose instead

that all households and firms have a common planning horizon. In this case, the level

of the nominal interest rate is not generally irrelevant; we can determine an optimal

state-contingent evolution for {ı̂t} even under the assumption that the path of the

public debt will be optimized for whatever monetary policy is chosen.

Moreover, it is not generally true that it will be optimal for either the public

debt or the nominal interest to return immediately to the values associated with the

long-run steady state as soon as the financial wedge becomes small again; instead,

stabilization during the crisis period (which is necessarily imperfect) can be improved

by a commitment to continue the anomalous policies of the crisis period for a time

even after it would be possible to achieve full stabilization of both inflation and the

output gap by immediately returning to policy “orthodoxy.” Thus forward guidance

(both with regard to interest-rate policy and the path of the public debt) has an

important role to play in improving outcomes during a crisis; indeed, we find that

the optimal use of forward guidance regarding interest-rate policy in a coordinated

monetary-fiscal response to the crisis is not too different than it would be if we ignored

the possibility of countercyclical government transfers.

Let the common planning horizon be h > 0, and let us restrict attention to

policies specified by exogenous state-contingent paths for both {ı̂t, bt+1}. While not

completely general, this family of possible specifications includes the kind of policy

that can achieve complete stabilization in the case considered above. It also allows

us to consider the possibility of returning immediately to complete stabilization of
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both inflation and output as soon as this is feasible, since a specification that ı̂t =

−∆̂t, bt+1 = 0 at all times as soon as the economy returns to the normal state (a state

in which it is expected that financial wedges will be small from then on) will suffice

to ensure this. Within this family of policies, our goal is to choose state-contingent

paths {ı̂t, bt+1} so as to minimize the expected value of (4.4), where yt = yht , πt = πht
at all times (because of the common planning horizon).

Let us begin by considering the optimal evolution of {bt+1}, taking as given the

state-contingent path of {ı̂t}. In the case of an arbitrary interest-rate policy, we

can use the same methods as above to show that zht will be given by (4.2), except

that in the more general case the variable ∆̃t defined in (3.7) must be replaced by

∆̌t ≡ ∆̂t + ı̂t. Since only the evolution of the variables {zht } for horizon h matters

for the stabilization objective, it follows from this solution that the choice of bt+h+1

for any exogenous state st+h in period t + h affects no variables relevant to the

stabilization objective other than zht in the state at period t in which it is possible

to reach the particular state st+h at date t + h. We can then reduce the problem of

choosing an optimal state-contingent evolution for {bt+1} to a sequence of independent

static problems: for any state st in period t, choose the level of bt+h+1 in the states

at date t + h that are possible conditional on being in state st so as to minimize

L(zht ) ≡ (πht )
2 + λ(yht )2, where zht is given by the generalized version of (4.2).

This is a convex minimization problem, with a unique interior solution character-

ized by a first-order condition. If we introduce the notation

Aja =

[
αj

γj

]

for each j ≥ 0, then the first-order condition is given by

γhπ
h
t + λαhy

h
t = 0.

Substituting the generalization of (4.2) into this yields a linear equation (with a

unique solution) for the expected public debt at the end of the planning horizon:

Etbt+h+1 =
σ

1− β

h∑
j=0

λαhαj + γhγj
λα2

h + γ2h
Et∆̌t+j. (4.5)

Substituting this solution into the generalization of (4.2) then yields an equation for
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zht in the case of an optimal transfer policy, but arbitary interest-rate policy,

zht = θt

[
−γh
λαh

]
, where θt ≡ σ

h−1∑
j=0

αjγh − αhγj
λα2

h + γ2h
Et∆̌t+j. (4.6)

It follows that the minimum achievable value of L(zht ), given interest-rate policy, will

be given by

Lt = λ(λα2
h + γ2h) θ

2
t ,

where θt is the function of financial wedges and interest rates defined in (4.6).

Given that these results obtain regardless of the assumed interest-rate policy, the

choice of an optimal interest-rate policy reduces to the choice of a state-contingent

evolution {ı̂t} subject to the lower bound (2.11) holding at all times, so as to minimize

the expected value of
∑∞

t=0 β
tθ2t , where θt is given by (4.6). If the ZLB never binds,

this problem will be solved by choosing ı̂t = −∆̂t each period, so that ∆̌t = 0 at all

times, implying that θt = 0 at all times. However, this will be possible if and only if

financial wedges are never large, i.e., ∆̃t = 0 at all times — the same condition as is

required for complete stabilization to be possible under the constraint that bt+1 = 0

at all times. While the availability of countercyclical fiscal transfers as an additional

policy instrument reduces the losses associated with a given process {∆̌t} for the

financial wedges not offset by contemporaneous interest-rate adjustments, it does not

change the fact that complete stabilization requires (except in the case where h = 0)

that one be able to ensure that ∆̌t = 0 at all times. As discussed in section 2.3, this

is sometimes precluded by the ZLB.

We can also see that in general, when complete stabilization is not possible, the

optimal second-best policy will involve committing to maintain bt+1 > 0 and/or ı̂t < 0

(that is, deviation from the policies associated with the long-run steady state) even in

some periods t after the financial wedge has again become small, so that an immediate

return to the long-run steady state would be possible. Suppose instead that one were

to have ı̂t = 0 (and hence ∆̌t = 0) for all t ≥ T, where T is the (possibly random)

date at which reversion to the “normal” state occurs, while ∆̌t is instead necessarily

positive (because of the ZLB) at all dates 0 ≤ t < T. It would then follow that at any

date t (and in any state of the world at that date) at which the financial wedge remains

large, ∆̌t > 0 and ∆̌t+j is also anticipated to be non-negative in all possible successor

states with j > 0; hence the right-hand side of (4.5) will necessarily be positive.41

41Here we use the fact that all elements of the vector a and the matrix A are positive, implying
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We can thus conclude that optimal policy would require that Etbt+h+1 > 0.

If we further suppose that t is a date such that the financial wedge remains large

at date t, but it is foreseen that it will necessarily be small at date t + h, then this

requires that bt+h+1 > 0 with positive probability even after reversion to the normal

state. Furthermore, on the assumption that the economy is already in the normal

state at date t + h, and hence that ı̂t+h = 0 in all possible states at that date, a

policy under which bt+h+1 > 0 in some state st+h will also have to involve π0
t+h > 0

in that state.42 Thus the optimal joint fiscal-monetary policy must also involve an

understanding that inflation would be allowed to overshoot its long-run target, even

in some periods t ≥ T. Stabilization outcomes during the period when the financial

wedge remains large (and the ZLB consequently binds) are improved by committing

to continue expansionary policies for a time beyond the date T at which it would be

possible to again achieve complete stabilization using orthodox (and purely forward-

looking) policies.

In fact, it will not generally be optimal for the central bank to set ı̂t = 0 for all

t ≥ T ; it can easily be optimal to set a lower level of interest rates, and even to

keep the nominal interest rate at its lower bound, in the early periods following the

reversion to the normal state. This is illustrated by a numerical example in Figure

4.43 In this example, all households and firms are assumed to have planning horizons

extending eight quarters into the future (h = 8), and the financial disturbance at date

t = 0 increases the financial wedge (to the extent assumed in the numerical calibration

proposed in section 2.3) for ten quarters. We furthermore assume for simplicity that

it is known from t = 0 onward that the financial wedge will be elevated for exactly

ten quarters (rather than assuming stochastic exit from the crisis state, as in the

two-state Markov case), so that T = 10 with certainty.

The several panels of the figure show the (deterministic) evolution of the finan-

cial wedge, output, inflation, the nominal interest rate, and the real public debt in

response to such a disturbance,44 under three possible assumptions about monetary

that αj , γj > 0 for all j ≥ 0.
42This follows from (4.2), given that γh > 0.
43We discuss further the calculations involved, and show how the results depend on the assumed

planning horizon, in Appendix B.
44Here the financial wedge, inflation and the nominal interest rate are reported in annualized

terms: ∆̂t = 0.05 means a safety premium of 5 percentage points per year (and is equivalent to the

value ∆̂ = 0.013 given in Table 1, where the value is for a quarterly model). Output is reported as
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Figure 4: Equilibrium trajectories in the case of an elevated financial wedge for 10

quarters (panel (a)), under three alternative assumptions about policy: (i) bt+1 = 0

at all times, and ı̂t = max{−∆̂t, ı̂}; (ii) bt+1 = 0 at all times, but the path {ı̂t}
is chosen optimally; or (iii) the paths of both {bt+1} and {ı̂t} are chosen optimally.

Planning horizons extend 8 quarters into the future, and t measures quarters since

the onset of the elevated financial wedge.

and fiscal policy, which is to say about the paths of {ı̂t} and {bt+1}. (Both of these

evolve deterministically under all of the policies considered, since no further uncer-

tainty is resolved after date t = 0.) In case (i), we assume that ı̂t tracks the variation

in the “natural rate of interest” (the interest rate required for stabilization of the

output gap, as specified in (3.5)), and that bt+1 = 0 (no response of fiscal policy to

the disturbance). These assumptions lead to the same outcomes as under the “ortho-

dox” policy discussed in section 2.3, though here we define the policies in a way that

a percentage deviation from the long-run steady state level of output, and real public debt in units

of years of long-run steady state real GDP.
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makes them a particular case of the class of policies studied in this section. As in

section 2.3, the consequence is output contraction and inflation below target during

the crisis period, but immediate stabilization of both output and inflation as soon as

the economy reverts to the normal state; the only difference from the results shown

in section 2.3 is that here, because the expected time to the reversion to the normal

state falls as time passes during the crisis state, the effects on output and inflation

are both largest at the onset of the financial disturbance.

In case (ii), we again assume that bt+1 = 0 at all times, but consider optimal

forward guidance with respect to the future evolution of the central bank’s nominal

interest-rate target {ı̂t}. In case (iii), we instead allow the paths of both {ı̂t} and

{bt+1} to be optimized. In the latter case, we see that the optimal joint fiscal-monetary

commitment involves promising to maintain both bt+1 > 0 and ı̂t < 0 for a time after

the reversion to the normal state in quarter 10. The figure (panel (e)) shows that

optimal policy requires an increase in the public debt (by an amount equal to nearly

two years’ GDP) by at least quarter 8,45 which must then be maintained in quarter

9. In quarter 10, when the financial wedge has returned to zero (see panel (a)), it

continues to be optimal to maintain a larger public debt than in the long-run steady

state (though not as large as the debt in quarters 8 and 9); and the optimal level of

the debt continues to be somewhat positive in quarters 11 and later, though much

smaller than the earlier levels of debt.

The optimal joint fiscal-monetary commitment also involves keeping the nominal

interest rate lower than its long-run steady-state level, for two quarters following the

reversion of the financial wedge to zero. Panel (d) of the figure shows that under policy

(iii), the nominal interest rate remains at the zero lower bound in quarter 10, even

though it would be possible at this time to return immediately to the long-run steady

state (and policy (i) would require ı̂t = 0 from t = 10 onward). The nominal interest

rate also remains well below its long-run steady-state level in quarter 11, though no

45Because all households and firms are assumed to have horizon h = 8 in these calculations, the

response of the public debt in quarters 0 through 7 in response to the shock has no consequences

for behavior. Thus the value of bt+1 under the optimal policy is indeterminate in these periods;

this is the meaning of the dotted line shown in the figure for those periods. (The figure shows the

public debt being immediately increased at the time that the financial wedge increases, since in the

periods for which there is a unique solution, the public debt should be maintained at a constant

level proportional to the increase in the financial wedge. But a more gradual increase in the public

debt between quarters 0 and 8 would have the same effect on equilibrium output and inflation.)
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longer at the lower bound. As in rational-expectations analyses of optimal forward

guidance, a commitment to keep the interest rate “low for longer” following the

reversion of the financial wedge to zero improves stabilization during earlier periods

when the financial wedge is large (and the ZLB precludes complete stabilization as a

result). (Even though planning horizons extend only eight quarters into the future,

in this example, it remains true that expectations regarding ı̂10 affect the values of θt

in quarters t = 3 through 9.)

Indeed, the degree to which it is optimal to commit to keep interest rates low

beyond date T = 10 is similar in the case when fiscal transfers are used optimally

(case (iii)) as in the case where fiscal transfers cannot be used (case (ii)). The most

important difference in the nature of optimal policy (and in stabilization outcomes)

when fiscal policy can respond to the financial disturbance is that increasing public

debt outstanding at the ends of quarters 8 and 9 can increase aggregate demand in

quarters 0 and 1 — points in time at which a commitment to lower interest rates in

quarter 10 or later can have no effect, because planning horizons extend only eight

quarters into the future. A somewhat greater degree of stabilization in quarter 2 is

also possible when fiscal transfers are used, because even though the commitment

to lower interest rates in quarter 10 affects aggregate demand, the extent to which

interest-rate policy can be used is limited, as the ZLB continues to bind in quarter

10. Instead, the equilibrium paths of both inflation and output are similar from t = 3

onward under cases (ii) and (iii). Stabilization is also superior in quarters 3 through

8 under these policies (relative to case (i)); but most of the improvement is already

achieved by the use of interest-rate forward guidance alone (case (ii)).

It is also important to recognize that the superior stabilization outcomes shown

in case (iii) of Figure 4 depend on people’s understanding that under this policy, the

central bank is committed to maintaining low interest rates even if inflation and/or

output overshoot their long-run target values, and even if such overshooting occurs at

date T = 10 or later (which is to say, after complete stabilization has again become

feasible). We first note that panel (c) of Figure 4 shows that under the optimal fiscal-

monetary commitment, inflation is allowed to overshoot its long-run target value in

quarters 0 through 8; this is because over this period, this degree of demand stimulus

remains insufficient to raise output to its target level — some degree of over-shooting

of inflation is tolerated in order not to have even greater under-shooting of output.

But we further observe that this degree of stabilization depends on allowing people to
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Figure 5: Dashed lines show the expected paths of output (yhτ |t) and inflation (πhτ |t)

for dates t ≤ τ ≤ t + h, under the plans calculated by households and firms with

horizon h = 8 at successive dates t, in the case that both monetary and fiscal policy

commitments are optimal (case (iii) from Figure 4). The solid lines show the predicted

actual paths of output (yht|t) and inflation (πht|t). Both t and τ indicate quarters since

the onset of the disturbance (again shown in panel (a)).

believe that (under circumstances that are actually counter-factual) monetary policy

would allow both output and inflation to over-shoot their targets simultaneously.

Figure 5 shows the paths of output and inflation that are anticipated in the

forward plans of households and firms, in the case (iii) equilibrium of Figure 4. Here

the assumed path of the financial wedge is shown again in panel (a) — because this is

an exogenous variable, actual and anticipated paths coincide. In the other two panels,

the paths of output and inflation that are anticipated looking forward from each date

are shown. If we let yτ |t (respectively, πτ |t) denote the level of output (inflation) in

period τ that is anticipated during forward planning in period t, then the figure shows

the paths {yτ |t} and {πτ |t} for dates t ≤ τ ≤ t + 8, looking forward from each of a

succession of dates t. The solid line in each panel shows the actually realized path of

the variable (the paths of yt = yt|t and πt = πt|t as functions of t); the dashed lines

instead show the paths of yτ |t and πτ |t as functions of τ , with a separate dashed line
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for each value of t.

Note that these anticipated paths involve greater over-shooting of long-run targets

than the actually realized paths do. Furthermore, the over-shooting is anticipated

to extend into the period t ≥ 10 in which complete stabilization would be possible.

For example, both inflation and output are anticipated to over-shoot their long-run

targets simultaneously in quarter 10, in the forward plans of people looking forward

from quarters t = 2 through 7; both are anticipated to over-shoot simultaneously

in quarter 11, by people looking forward from quarters t = 3 through 6. Thus not

only does the optimal forward guidance express an intention to keep interest rates

below their long-run level in these quarters, but it requires people to believe that the

central bank will do so even though (in the calculations of people considering this

period several quarters earlier) this is expected to lead to over-shooting of the long-

run targets for both inflation and output. Despite the optimal use of counter-cyclical

transfer policy, it remains valuable for the central bank to communicate that it will

not quickly return to pursuit of its normal targets following a period in which the

financial wedge has been so elevated as to cause the ZLB to bind.

It might be thought that these conclusions depend on our having assumed that all

households and firms have planning horizons of exactly the same length, while forward

guidance about policy after the financial wedge reverts to a normal level would be

unnecessary in the case of a heterogeneous distribution of planning horizons of the

kind assumed in section 3. But the results in section 3 show only that in the case of an

exponential distribution of planning horizons, a relatively simple policy commitment

suffices to completely stabilize both an overall price index (or inflation rate) and

aggregate output. This implies that the loss function (4.4) can be minimized by

such a policy; yet the proposed policy does not really eliminate all distortions in the

allocation of resources.

In a representative-household model, a loss function of the form (4.4) can be justi-

fied as a quadratic approximation to the level of expected utility of the representative

household, under conditions discussed by Woodford (2003) and Benigno and Wood-

ford (2005). However, those derivations apply to a model in which the aggregate

output measure Yt (or rather, Yt − Gt, where Gt is the quantity of the composite

good consumed by the government) represents the quantity of the composite good

consumed by each household, and in which all firms that reconsider their price in pe-

riod t choose the same (optimal) new price, so that the only reason for the prices of
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different goods to be mis-aligned is that different firms adjust their prices at different

dates.

In the model considered here, instead, if the planning horizons of different house-

holds and firms are heterogeneous, then households with different planning horizons

will generally consume different amounts at a given point in time (as illustrated by

panel (a) of Figure 2), and firms with different planning horizons will generally set

different prices even when they adjust their prices at the same point in time (as

illustrated by panel (b) of that same figure). This creates additional sources of ineffi-

ciency in the allocation of resources: non-uniform allocation of the goods produced at

a given date to the different households reduces average utility (and hence reduces the

representative household’s ex ante expected utility, since households do not know ex

ante which planning horizon they will have), and dispersion in the prices of the goods

supplied by different firms (even though the aggregate inflation rate never varies)

means that the composite good will be obtained in a way that uses more resources

than necessary (because the quantities supplied of the different differentiated goods

will not be uniform).

We leave a full analysis of welfare-optimal policy in the case of a heterogeneous

distribution of planning horizons for future work, but one general point can be noted

here. Once one recognizes that there are many different distortions each period (as-

sociated with the separate pricing and expenditure decisions of agents with different

planning horizons) that must all be set to zero in order to achieve the first-best al-

location of resources, it is evident that a first-best outcome will not generally be

achievable, even when both fiscal transfer policy and interest-rate policy are available

as instruments (assuming that neither can be separately targeted to households or

firms depending on their planning horizon).

And the fact that the first-best allocation is not achievable makes it implausible

that it will be optimal to fully stabilize both inflation and output as soon as the

financial wedge reverts to its normal level (at some random date T ), even though this

would be optimal if one only cared about outcomes from date T onward. The reason is

that changing anticipated outcomes after date T can change the allocation of resources

prior to date T (when stabilization is incomplete, even under the second-best optimal

policy), and it will be optimal to choose at least some degree of distortion after date

T for the sake of reducing the much larger distortions before date T , just as in the

RE analysis of Eggertsson and Woodford (2003). Hence we should expect in general
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that forward guidance regarding policy after date T will be useful in mitigating the

distortions created by the large financial wedge of the crisis period.

5 Concluding Remarks

In this paper, we reconsider the nature of effective stabilization policy when the zero

lower bound is a relevant constraint on the effectiveness of conventional monetary pol-

icy, by relaxing the unrealistic assumption that people should be able to deductively

reason about the economy’s future evolution under a novel policy regime arbitrarily

far into the future. We examine the robustness of conclusions about the consequences

of particular combined monetary-fiscal regimes to changes in the assumed degree of

decision makers’ foresight in the economy. We find that when planning horizons are

finite, the contractionary effects of a financial disturbance are less dramatic than

in the rational-expectations analysis. But, as long as there is some degree of fore-

sight, even a relatively modest financial wedge can substantially impact stabilization

goals, if additional tools of stabilization policy beyond those needed under normal

circumstances are not available.

Given that Ricardian equivalence does not hold when people have finite horizons,

we consider in particular the extent to which pure variation in the government’s

budget balance, i.e., changes in the size of lump-sum transfers, can serve as a tool of

stabilization policy. We show that fiscal transfers can be a powerful tool to reduce

the contractionary impact of a financial disturbance, and can even make possible a

complete stabilization of both aggregate output and inflation, despite the binding

ZLB constraint. But the power of fiscal transfers relies on the degree of monetary

accommodation of such transfers.

Moreover, neither the availability of transfer policy nor the fact that the length of

planning horizons is bounded makes commitments about interest-rate policy beyond

the date at which the financial disturbance has dissipated, of the kind argued for

in the rational-expectations analysis of Eggertsson and Woodford (2003), no longer

relevant. We show that the use of such forward guidance along with fiscal policy

achieves better stabilization outcomes than fiscal policy alone would achieve under

an understanding that the central bank will return to pursuit of its usual inflation

target once the financial wedge is again modest in size. In a numerical example that

we present, the degree to which it is optimal to commit to a continuation of looser
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monetary policy beyond the time at which fundamentals have reverted to normal is

roughly the same in the case of an optimal state-contingent transfer policy as in the

case of no response of fiscal transfers to the disturbance at all. Thus while the rational-

expectations analysis exaggerates the quantitative effects of forward guidance policies

as a response to the kind of financial disturbance considered here,46 a commitment

to keeping interest rates “lower for longer” following a crisis that causes the ZLB to

become a binding constraint continues to be desirable in the framework for policy

analysis proposed here.

46This has been noted by a number of authors, including Andrade et al. (2019), Angeletos and

Lian (2018), Del Negro et al. (2015), Farhi and Werning (2019), Gabaix (2019), Garćıa-Schmidt

and Woodford (2019), Gust et al., (2018), and Woodford (2019).
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A Output and Inflation Stabilization with an

Exponential Distribution of Planning Horizons

Here we demonstrate that the combination of a monetary policy specified by (3.5) and

a fiscal policy specified by (3.6) each period imply complete stabilization of aggregate

output and inflation at all times, in the case of an exponential distribution of planning

horizons, ωh = (1 − ρ)ρh for all h ≥ 0. In the text, we have already shown that this

monetary rule implies that the spending and price-increase decisions of households

and firms with an arbitrary planning horizon h are given by equation (4.2). This is a

well-defined, unique solution, independent of any assumption about the distribution

of planning horizons in the economy. There will therefore exist a well-defined, unique

solution in the case of an exponential distribution of planning horizons if and only if

the infinite sums

zt = (1− ρ)
∞∑
h=0

ρhzht (A.1)

converge, where zht is given by (4.2). This is the issue that remains to be addressed.

Let us first consider the partial sum that aggregates the decisions of only the part

of the population with horizons less than or equal to k periods,

z
(k)
t = (1− ρ)

k∑
h=0

ρhzht

for some finite k. This finite sum is obviously well-defined; it remains to be determined

whether the sequence {z(k)t } converges as k is made large.

Substituting (4.2) into this definition yields

z
(k)
t = −σ(1− ρ)

k∑
h=0

ρh
h∑
j=0

[Aja] Et∆̃t+j + (1− β)(1− ρ)
k∑

h=0

ρh[Aha] Etbt+h+1

= −σ(1− ρ)
k∑

h=0

k∑
j=h

ρj[Aha] Et∆̃t+h + (1− β)(1− ρ)
k∑

h=0

ρh[Aha] Etbt+h+1

=
k∑

h=0

[Aha]Et[(1− β)(1− ρ)ρhbt+h+1 − σ(ρh − ρk+1)∆̃t+h].

If we further substitute the fiscal rule (3.6) into this, we obtain

z
(k)
t = σρk+1

k∑
h=0

[Aha] Et∆̃t+h. (A.2)
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Thus the condition required for a well-defined solution is convergence of the sequence

defined by the right-hand side of (A.2) as k becomes large.

The existence of a well-defined limit depends on the asymptotic rate of growth

of the expected future excess financial wedge Et∆̃t+h. A sufficient condition for the

existence of a well-defined solution is that ∆̃t = 0 with probability one beyond some

finite future date T . In this case, for all k ≥ T − t, z(k)t is a constant multiple of ρk,

and hence converges to zero as k is made large (regardless of the value of ρ < 1).

But this is not necessary: a weaker sufficient condition is that there exists a finite

constant C > 0 such that Et∆̃t+h ≤ C · µh for all h, where µ ≥ 0 is a growth factor

satisfying (2.20). As discussed in the text, this bound implies that both eigenvalues

of A are less than ρ−1µ−1. The partial sum
∑k

h=0[A
ha] is therefore positive, increases

in k, and grows asymptotically with a growth factor less than ρ−1µ−1. Hence the

right-hand side of (A.2) is necessarily non-negative (since (3.7) implies that ∆̃ ≥ 0

at all times), and bounded above by a positive sequence that converges to zero at an

exponential rate as k is made large.

Hence under this condition, the infinite sum in (A.1) is well-defined, and equal to

zt = lim
k→∞

z
(k)
t = 0.

Thus the specified joint fiscal-monetary regime implies the existence of a well-defined

unique equilibrium, in which yt = πt = 0 at all times, as stated in the text. Among

the cases in which a well-defined equilibrium exists is the two-state Markov process

for the financial wedge introduced in section 2.3, under the assumption that the

probability µ of continuation of the crisis state satisfies (2.20), the condition already

discussed in section 2.3.2 for the existence of a well-defined equilibrium in the case of

a balanced-budget policy and strict inflation targeting.

B Optimal Fiscal-Monetary Policy Coordination:

Numerical Methods

In this section, we propose a numerical method to compute the solutions for optimal

exogenous state-contingent fiscal transfer policy and interest rate policy. Assume

all the agents have the same planning horizon, and the path of financial wedge is

perfectly predictable, i.e., ∆̂t = −ı̂+ ∆ for 0 ≤ t < T − 1, where ∆ > 0 is the excess
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financial wedge that cannot be offset by a reduction in nominal interest rate, and

∆̂ = 0 for all t ≥ T . We consider the following class of policies: the fiscal policy is

specified by an exogenous path of the real public debt bt+1, and the monetary policy

is specified by an exogenous path of the nominal interest rate ı̂t consistent with the

ZLB constraint (2.11).

The structural equations (2.7) and (2.9) can be written as

zjt = Azjt+1 − σa(̂ıt + ∆̂t)

for all j ≥ 1, while (2.8) and (2.10) can be written as

z0t = −σa(̂ıt + ∆̂t) + (1− β)abt+1,

where zjt = [yjt π
j
t ]
′ and the matrices A and a are defined as in (2.12).

Since the path of ∆̂t is exogenously given, the policy variables {ı̂t, bt+1} can be

equivalently described by the sequences of {∆̌t, bt+1}, where ∆̌t = ı̂t + ∆̂t. The

problem of solving optimal monetary and fiscal policy is then to choose {∆̌t, bt+1} for

all t ≥ 0, subject to the constraints that ∆̌t ≥ ∆ > 0 for all 0 ≤ t < T and ∆̌t ≥ ı̂

for all t ≥ T , so as to minimize the welfare loss (4.4).

Now we characterize the solution to such an optimal fiscal and monetary policy

problem. Let us first take the sequence of {∆̌t} as given, and derive the optimal

choice of the sequence {bt+1}, which is a sequence of independent static optimization

problems. More specifically, for any period t ≥ 0, we choose bt+h+1 to minimize

(πht )
2 + λ(yht )2 , where {yht , πht } are given by

zht = −σΣh
j=0[A

ja]∆̌t+j + (1− β)[Aha]bt+h+1. (B.3)

Denote [Aja] = [αj γj]
′ for each j ≥ 0, and then the F.O.C.s of the problem for

optimal fiscal transfer policy are given by[
λαh γh

]
zht = 0,

which yields the unique solution of bt+h+1 to be

bt+h+1 =
σΣh

j=0(λαhαj + γhγj)∆̌t+j

(1− β)(λα2
h + γ2h)

. (B.4)

By substituting the expression of bt+h+1 into (B.3), the output and inflation under

the optimal fiscal transfer policy conditional on a given state-contingent interest rate
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policy are thus given by

zht = −σΣh−1
j=0{[Aja]−

(λαhαj + γhγj)

λα2
h + γ2h

[Aha]}∆̌t+j

= [−σΣh−1
j=0θj∆̌t+j]

[
γh
−λαh

]
,

where θj =
αjγh−αhγj
λα2

h+γ
2
h

for each 0 ≤ j ≤ h− 1. It follows that the minimized value of

the objective function Lt ≡ (πht )
2 + λ(yht )2 is equal to

Lt = [σΣh−1
j=0θj∆̌t+j]

2λ(λα2
h + γ2h).

We now consider the optimal monetary policy {∆̌t} so as to minimize Σ∞t=0β
tLt,

subject to the constraint ∆̌t ≥ ∆ > 0 for all 0 ≤ t < T and ∆̌t ≥ ı̂ for all t ≥ T . The

F.O.C.s of the optimal choice of ∆̌t for any t ≥ h− 1 are given by

Σh−1
j=0β

−j[Σh−1
l=0 θl∆̌t−j+l]θj ≥ 0, ∆̌t ≥ ∆̌t, (B.5)

where at least one of these inequalities must hold with equality, and ∆̌t = ∆ for all

0 ≤ t < T and ∆̌t = ı̂ for all t ≥ T . Instead, for any 0 ≤ t < h− 1, the F.O.C.s are

given by

Σt
j=0β

−j[Σh−1
l=0 θl∆̌t−j+l]θj ≥ 0, ∆̌t ≥ ∆̌t. (B.6)

We conjecture that the solution of {∆̌t} to (B.5) and (B.6) has the following form:

there exists a T ∗ such that the ZLB binds in every period up to some date T ∗ ≥ 0,

and then the ZLB never binds for any dates t ≥ T ∗, i.e., for any 0 ≤ t < T ∗, ∆̌t = ∆̌t,

while Σjβ
−j[Σh−1

l=0 θl∆̌t−j+l]θj = 0 for all t ≥ T ∗, and ∆̌t → 0 as t→∞.

Under this conjecture, for numerical purpose, we assume that there exists a large

enough Tmax such that ∆̌t = 0 for any date t > Tmax.47 Then (B.5) and (B.6) give

a total number of Tmax − T ∗ + 1 linear equations for the periods T ∗ ≤ t ≤ Tmax

in which the ZLB is not binding, with the unknown variables {∆̌t}T
max

t=T ∗ . This linear

system yields a unique solution if there exists one. Thus we can start with T ∗ = 0

and increase the possible values of T ∗ until we find a value of T ∗ satisfying all the

inequality conditions. In other words, for a given guess of T ∗, we have a system of

linear equations to solve with a unique solution {∆̌t}; then we check whether the

solution satisfies a sequence of inequalities (in which case it is the desired solution).

47In the numerical exercise, we take Tmax = 200.
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Once we get the solution of T ∗ and the sequence of {∆̌t}, the optimal fiscal transfer

policy is accordingly pinned down by (B.4). With the solution of optimal fiscal and

monetary policy, the realized paths of output and inflation are then given by (B.3),

while the expected path of output and inflation are given by (2.7)-(2.10).

Figure B.6 and B.7 show the equilibrium dynamics of output, inflation, interest

rate, and public debt with different common planning horizons under the optimal

fiscal transfer policy and monetary policy. In these figures, the economy enters the

crisis state at time t = 0 and reverts to the normal state after 10 quarters (T = 10).

All the variables are reported in annualized terms. Moreover, Figure B.8 illustrates

the expected and realized paths of output and inflation under the optimal combined

fiscal-monetary policy with a common planning horizon h = 20. The dashed lines in

the figure indicate the expected paths of output and inflation in the agents’ forward

planning exercise, while the solid lines indicate the realized paths of output and

inflation.

So far, we have shown the numerical methods for the solution of optimal com-

bined fiscal transfer policy and interest rate policy. In order to highlight the role of

fiscal transfer policy, we now consider the case of optimal exogenous state-contingent

interest rate policy but with bt+1 = 0 at all times (as included in Figure 4). In this

case, the dynamics of output and inflation (B.3) are instead given by

zht = −σΣh
j=0[A

ja]∆̌t+j.

Then, the minimized value of the objective function Lt ≡ (πht )
2 + λ(yht )2 is equal to

Lt = [σΣh
j=0γj∆̌t+j]

2 + λ[σΣh
j=0αj∆̌t+j]

2.

The F.O.C.s for the optimal monetary policy with bt+1 = 0 for any t are thus

given by

Σh
j=0β

−j[(Σh
l=0γl∆̌t−j+l)γj + λ(Σh

l=0αl∆̌t−j+l)αj] ≥ 0, ∆̌t ≥ ∆̌t,

for any t ≥ h, while for any 0 ≤ t < h, the F.O.C.s are given by

Σt
j=0β

−j[(Σh
l=0γl∆̌t−j+l)γj + λ(Σh

l=0αl∆̌t−j+l)αj] ≥ 0, ∆̌t ≥ ∆̌t.

We similarly conjecture that there exists a T ∗ such that the ZLB binds in every

period up to some date T ∗ ≥ 0, and then the ZLB never binds for any dates t ≥ T ∗.
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Figure B.6: Equilibrium trajectories in the case of an elevated financial wedge for 10

quarters, for households and firms with relatively short common planning horizons,

under the paths of both {bt+1} and {ı̂t} being chosen optimally. The planning horizon

h is in quarters, and t measures quarters since the onset of the elevated financial

wedge.

With the same numerical method as in solving the optimal combined fiscal-monetary

policy problem, we can similarly solve for the optimal monetary policy of {∆̌t} under

the assumption of bt+1 = 0 at all times.
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Figure B.7: Equilibrium trajectories in the case of an elevated financial wedge for 10

quarters, for households and firms with relatively long common planning horizons,

under the paths of both {bt+1} and {ı̂t} being chosen optimally. The planning horizon

h is in quarters, and t measures quarters since the onset of the elevated financial

wedge.
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Figure B.8: Dashed lines show the expected paths of output (yhτ |t) and inflation (πhτ |t)

for dates t ≤ τ ≤ t + h, under the plans calculated by households and firms with

horizon h = 20 at successive dates t, in the case that both monetary and fiscal

policy commitments are optimal. The solid lines show the predicted actual paths of

output (yht|t) and inflation (πht|t). Both t and τ indicate quarters since the onset of the

disturbance.
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