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1 Introduction

Substantial progress has been made in the machine learning literature on quickly converting

text to data, generating real time information on social media content. Yet, there remains

substantial speculation on whether data created from online social media content provides

valuable insights.1 Two challenges persist that limit the use of this data in both financial

and macroeconomic forecasting exercises. First, from the prospective of a practitioner, the

potential value of social media content in forecasting stock market performance is likely

tied to our understanding of what information it may capture. Without this interpretation,

concerns regarding the generalizability of the social media measure may emerge. Second,

from an econometric perspective, how one should incorporate this new data which arrives

at different frequencies, asynchronously and may exhibit substantial parameter instability

due to the time-varying population of social media users in forecasting exercises remains an

open question.

In this study, we address these two challenges by exploring the benefits of incorporat-

ing an aggregate measure of social media sentiment, the Wall Street Journal-IHS Markit

U.S. Sentiment Index (USSI) in forecasting the conference board consumer confidence in-

dex (CCI).2 The CCI is reported regularly in the financial press and is a variable that has

been empirically found to have significant impacts on behavior of financial markets. The

likely importance of the CCI likely relates to one of the key arguments in behavioral finance

which postulates that change in sentiment can profoundly affect people’s behavior and de-

cision making. Until 2013, many Wall Street firms willingly paid an extra subscription fee

to Thomson Reuters to gain access to monthly consumer confidence data a full two seconds

earlier than the rest of its subscribers at 9:54:58 a.m., as opposed to 9:55:00 exactly. Thus,

this new information was clearly valuable and there is strong industry interest in improving

1A growing body of research makes claims that this data can improve the performance of high-frequency
trading algorithms. For example, Mishne and Glance (2006) proposed using Blogger sentiment to predict
movie sales; Bollen, Mao, and Zheng (2011) use data from only 19 days and reach the conclusion that
Twitter mood predicts the stock market; Karabulut (2013) showed that the stock market activity can also
be predicted by measures extracted from Facebook messages.

2Briefly, each hour the USSI uses a deep learning algorithm developed in Felbo, Mislove, ogaard, Rahwan,
and Lehmann (2017) to analyze a random sample of 10% of all Twitter messages to measure the national
real-time mood, as well as subgroups defined by state or gender. Further details are provided in Section 2.
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forecasts of the CCI.

Data timing presents a serious challenge in using hourly measures of the USSI to fore-

cast the monthly CCI, which is measured at a much lower frequency.3 To forecast the CCI

requires the analyst to convert hourly USSI measure to a monthly aggregate measure. To

develop such an aggregate measure Ghysels, Santa-Clara, and Valkanov (2004) propose a

data-driven process coined mixed-data sampling (MIDAS) and shows that it outperforms

simple averaging. The MIDAS technique computes a weighted average that generally places

a larger weight on the most recent observations. MIDAS was not developed for social media

sentiment measures such as the hourly USSI that differs from other financial and macroe-

conomic variables used to forecast CCI by displaying significant asymmetric response to

current events that cause large jumps in the sentiment levels that may have an important

impact on dynamics of consumer behavior.4

In this paper, we propose a new method to assign weights with MIDAS that allows

for heterogeneous effects (henceforth, H-MIDAS) of different high frequency observations

on the low frequency dependent variable. This flexibility in how weights are constructed

reduces concerns from using conventional MIDAS methods that struggle with parameter

instability that may reflect jumps, which can be problematic if the frequency mismatch is

severe. Further, we prove that the simple averaging estimator introduces asymptotic bias to

the coefficient compared with H-MIDAS.

Our empirical application uses both econometric strategies and machine learning algo-

rithms to ascertain whether incorporating an aggregated measure of very high-frequency

social media data can create a more lucrative forecast of the CCI.5 Our main finding is that

3Social media data can be collected and analyzed on a second by second basis. At very high frequencies
there is substantial temporal volatility in social media data. As such, we focus on the hourly USSI measure
that has social media sentiment appear as a highly persistent process with a long memory decay.

4The asymmetry arises in part since there are different populations posting Twitter messages during the
standard work-day versus late at night.

5In a highly cited paper, O’Connor et al. (2010) report that the correlation between Twitter sentiment
from the population and the Gallup Poll of consumer confidence is strong and approximately 0.8. This
study simply measures sentiment as the ratio positive versus negative messages on a day and then correlates
a moving average of these daily measures with a monthly measure of consumer confidence. Our study
presents a significant advance by i) using a lower frequency of social media data, ii) measuring sentiment
from social media, iii) flexibly handle mixed frequencies and iv) considering multivariate relationships with
both econometric and machine learning methods rather than reporting a bivariate correlation.
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incorporating social media sentiment can significantly improve forecast accuracy. This result

contributes to a rapidly growing empirical literature on the value of social media in financial

econometric applications,6 that we additionally contribute to by providing a new data driven

method to aggregate measures of high frequency social media data.

Further, we find that there are also significant improvement in forecasting accuracy once

our proposed H-MIDAS procedure is applied to other high frequency financial and macroe-

conomic variables that are incorporated in the forecasting model. This evidence is suggestive

that allowing for more general forms of heterogeneity in the weights used to undertake MI-

DAS that can vary across explanatory variables is empirically important.

This paper is organized as follows. In the next section, we describe the data used to

conduct forecasts as well as how both the consumer confidence index and social media sen-

timent are measured. Section 3 provides an overview of different strategies including our

proposed H-MIDAS that is designed to incorporate high frequency social media data in

forecast models for low frequency measures. Section 4 details the out of sample forecasting

exercise that evaluates alternative approaches to undertake MIDAS and contrasts economet-

ric estimators with machine learning algorithms. The empirical results are presented and

discussed in Section 5. We find that (i) including consumer sentiment measures from Twitter

greatly improves forecast accuracy; (ii) there are substantial gains from the new H-MIDAS

procedure relative to common alternatives; and (iii) improvements in forecast accuracy from

using machine learning approaches relative to econometric strategies. We conclude by dis-

cussing the merits and trade-offs researchers face when incorporating social media data in

forecasting models and suggesting directions for future research.

6For example, Brown and Cliff (2004) present significant evidence of the importance of sentiment in
measuring U.S. stock market returns. Lemmon and Portniaguina (2006) discuss the connection between
consumer confidence and asset prices. Stambaugh, Yu, and Yuan (2012) and Stambaugh, Yu, and Yuan
(2014) study the predictive power of investor sentiment for anomaly returns. Baele, Bekaert, and Inghelbrecht
(2010) investigate sentiment and the time-series relationships between government bond and stock market
returns, while Baker and Wurgler (2012) reveal that sentiment connects the cross-section of stock returns
with government bonds. Other papers explore how sentiment affects general financing patterns including
Chan, Durand, Khuu, and Smales (2017), Garćıa (2013), Mclean and Zhao (2014) among others.
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2 Data Description

In this study, we forecast the Conference Board’s Consumer Confidence Index (CCI), ar-

guably the most well-known and followed measure of U. S. consumer confidence. The CCI is

considered to be a major predictor of stock market performance since it is hypothesized to

approximate the level confidence on future economy. Since 1967, the CCI has been calculated

monthly and is the average response to five specific questions contained within a broader

survey of consumer attitudes and expectations.7 Two of the questions focus on the present

labor market and the remaining three questions probe respondents about expected changes

in business conditions, job availability and respondents’ nominal income over the next six

months. Since social media data from Twitter is only recently available, we only use data

from January 2013 to March 2017.8

To forecast the CCI we consider standard predictors including macroeconomic variables,

financial variables, and the big data variables. The macroeconomic variables describes the

macro-level economic environment that economic theories often postulate would affect one’s

consumption behavior. Macroeconomic variables are usually reported on a monthly basis,

which is the same frequency as CCI. The financial variables measure the overall performance

of the financial markets from various perspectives. In finance studies, CCI is considered as

a major predictor that approximates the general public confidence on future economy. Our

forecasting models consider the inverse or this relationship and financial variables in the

current period are used to forecast future CCI values.

For the big data variables, we use Twitter data from 2013-01-01 to 2017-03-22 to calculate

consumer sentiment at both daily and the hourly level.9 We use the identical Felbo et al.

7The University of Michigan’s Consumer Sentiment Index is another well-known study that measures
consumer confidence using five slightly different questions. The surveys also differ in the sample size (CCI is
much larger) and how the responses are collected (phone vs. mail responses for the CCI). In this study, we
follow the practice of each of the four financial forecasters who use this sentiment index as an explanatory
variable to forecast the CCI; rather than the converse. This is likely due to the timing of the survey release
since the CCI is released on the last Tuesday of each month at 10am EST, whereas preliminary results from
the University of Michigan arrives in mid-month.

8Expanding the data may lead to challenges from the emergence of bots. That said, our results are robust
to smaller time periods within this sampling frame.

9Our focus is using the hourly measure since the daily measure is weighted by the volume of tweets average
of the hourly measure. We explore the robustness of our results to the daily measure in the Appendix.
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(2017) deep learning algorithm that Janys Analytics uses to construct the Wall Street Journal

- IHS U.S. Sentiment Index (USSI) introduced in Zumbrun (2017). In brief, every tweet from

a 10% random sample of all Twitter messages within the preceding hour is scored and then

these scores are averaged together. These are very large samples to undertake sentiment

analysis since in 2005, there was an average of 350,000 tweets sent per minute globally. The

number of tweets per hour generally varies between 120,000 to 200,000 tweets per hour in

our 10% random sample.

Social media users are not demographically representative of the population and prior

research has found they are more likely to reside in urban areas (Mislove et al., 2011) that

are wealthier with younger populations (Malik et al., 2015). The Twitter users themselves

tend to be younger and more educated than the general population (Greenwood, Perrin,

and Duggan, 2016). Yet, for consumer confidence, a predominately younger population may

be quite relevant for forecasts, given the standard hump shaped curve of how consumer

expenditures vary over the life-cycle.

Measuring sentiment in social media is a challenge in the field of natural language pro-

cessing. The algorithm we selected to analyze sentiment was trained on 124.6 million tweets

containing emojis. The algorithm does not score individual emotion words in a Twitter

message, but rather calculates a score based on the probability of each of 64 different emojis

capturing the sentiment in the full Twitter message taking the structure of the sentence

into consideration. Thus, each emoji has a fixed score and the sentiment of a message is

a weighted average of the type of mood being conveyed. Tests of the validity of the Felbo

et al. (2017) algorithm with samples drawn from Amazon mechanical turk, have found it to

be more accurate than competing sentiment algorithms.10 The USSI is a national measure

and includes both investors and non-investors that has recently used to forecast volatility

(Lehrer, Xie, and Zhang, 2019).11 In total, we have 37,008 observations for the USSI vari-

able at the hourly level as well as 1,543 observations for the USSI at the daily level. Last,

10This likely arises since it considers the ordering of all the words in a Twitter message rather than using
a binary indicator such as positive or not, to those based on scoring words via emotional valence.

11The prior algorithm used by Janys Analytics to measure social media sentiment was used in applications
to forecast revenue for the film industry (Lehrer and Xie, 2017, 2018).
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we created a monthly USSI variable, denoted as USSIa, by simple averaging of the hourly

measures.

Beyond social media data, we also account for macroeconomic and financial variables in

our forecast model. These explanatory variables are also collected at different frequencies.

Thus, for ease of exposition we use (M), (D), and (H) to indicate whether a specific data

series is reported on a monthly basis, daily basis, or hourly basis. The explanatory variables

that we control for in our forecasting models are listed and described in Table 1.

While the macroeconomic variables are measured at the same frequency (monthly) as

the CCI, both the financial and big data variables are measured at a higher frequency (daily

and hourly). In this paper, we focus on alternative conversions for the big data variables

and also convert all financial variables from daily to monthly using the conventional MIDAS

method that is described in the next section. We consider three alternative measures of the

USSI: (i) USSIa is the monthly basis USSI converted from hourly basis USSI using simple

weighted averaging;12 (ii) we denote the monthly USSI converted from hourly basis using

conventional MIDAS as USSIh; and (iii) USSInew is the USSI converted from hourly basis

using the newly proposed H-MIDAS method that we introduce in Section 3.1.

Summary statistics for each data series included in the forecasting exercises are pre-

sented in Table 2. Note, that prior to including each series in this exercise, we perform the

augmented Dickey-Fuller test (ADF) test of the null hypothesis that a unit root is present

in each respective time series. The results suggest that the original series of nearly every

macroeconomic and financial variable is non-stationary; with the exception of the unem-

ployment rate. To construct a stationary data series for variable zt, we transform the data

by calculating the first difference ∆zt ≡ zt − zt−1. Applying the ADF-test to ∆zt we next

confirmed that each transformed data series is stationary. Notice in Table 2, that there is

a significant heterogeneity in both the CCI, MCSI and USSI measures. Among the alterna-

tive USSI measures we consider in the forecasting exercises, the USSI converted from hourly

basis using the newly proposed H-MIDAS method exhibits the lowest variability. Last, the

12The hourly USSI is accompanied with a hourly volume that measures the total number of tweets involved
in estimating the sentiment. The monthly basis USSIa is a simple weighted average of the hourly USSI using
volume as weights.
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variability in each of the financial variables appears small, but the range in the data appears

quite large relative to the other predictor variables.

Table 2: Summary Statistics

Variable Mean Median Minimum Maximum Std.Dev.
Panel A: Dependent Variable

∆CCI∗ 1.1549 1.5000 -8.8000 10.8000 5.0883

Panel B: Macroeconomic Variable
∆MCSI 0.4680 0.3500 -5.2000 8.1000 3.2773
∆LEI 0.3640 0.4000 -0.4000 1.3000 0.3973
UR† 5.9039 5.6000 4.6000 8.0000 1.0505
∆SR -0.1040 0.1000 -6.1000 0.6000 0.8905
∆CPI 0.2647 0.3610 -1.3770 1.3730 0.4860

Panel C: Financial Variable
∆SP500 2.1888 0.0200 -27.3900 72.9000 17.6210
∆VIX -0.0976 0.0616 -4.9285 2.8389 1.1653
∆USD 0.0475 0.0386 -0.8440 1.0179 0.3003
∆TS -0.0029 -0.0040 -0.0204 0.0191 0.0089

Panel D: Big Data Variable
USSIa 0.1067 0.3835 -6.5576 7.5495 2.3374
USSIh 0.1745 0.7438 -18.1427 12.9880 7.0689

USSInew 0.2560 0.3077 -10.8029 10.2103 5.3858

∗ The ∆ sign indicates the first-difference of the associated variable.
† Parameter UR is stationary, and hence does not require first-difference.

3 Data Sampling Techniques

Mixed-frequency problems are ubiquitous in many forecasting exercises for the banking and

finance industry. The CCI is not sampled at the same frequency as its potential predictors

listed in Table 2. Numerous solutions to this challenge have been proposed beginning with

simply averaging the high-frequency data (USSIa) as in Section 2 to MIDAS techniques

initially proposed in Ghysels et al. (2004) and subsequently in Ghysels et al. (2005, 2006 and

2007). Unlike simple averaging which equally weights all the data in the high frequency series,

MIDAS uses a pre-determined weighting function with a small number of hyperparameters

relative to the sampling rate of the higher-frequency variable. The hyperparameters are

estimated (usually as the unique solution with a specific optimization algorithm) and the

estimates are then used to compute the MIDAS weighted averaged predictors in the same

frequency as the dependent variable.

8



Formally, if Yt is a low frequency variable that is sampled at periods denoted by a time

index t for t = 1, ..., n. Consider a higher frequency (indicated by a superscript h throughout

the paper) predictor Xh
t that are sampled m times within the period of t:

Xh
t ≡

[
Xh

t , X
h
t− 1

m
, ..., Xh

t−m−1
m

]>
. (1)

A specific element among the high frequency observations in Xh
t is denoted by Xh

t− i
m

for

i = 0, ...,m − 1.13 Denoting Li/m as the lag operator, then Xh
t− i

m

can be reexpressed as

Xh
t− i

m

= Li/mXh
t for i = 0, ...,m− 1.

Since Xh
t on Yt are measured at different frequencies, data snooping may arise if re-

searchers choose which Xh
t− i

m

to include as an explanatory variable. Converting the higher-

frequency data to match the sampling rate of the lower-frequency data solves the problem

of mixed sampling frequencies. The simplest way to to estimate a low frequency Xt that

matches the frequency of Yt is a simple average of the high frequency observations Xh
t :

X̄t =
1

m

m−1∑
i=0

Li/mXh
t .

When Yt and X̄t are measured in the same time domain, a regression approach is simply

Yt = α + γX̄t + εt = α +
γ

m

m−1∑
i=0

Li/mXh
t + εt, (2)

where α is the intercept, γ is the slope coefficient on the time-averaged X̄t. This approach

assumes that each element in Xh
t has an identical effect on explaining Yt, since they share

the same coefficient γ.

These homogeneity assumptions may be quite strong in practice. For example, elements

of the high frequency variable may have a heterogeneous effect. One could assume that each

of the slope coefficients for each element in Xh
t is unique. Extending Model (2) to allow for

13In this case, the high frequency observation Xh
t at exact time period of t is included in estimating Yt. In

practice, this is possible when the low frequency Yt is observed after the period t, for example, GDP, GNP,
etc. For simplicity, we adopt this framework in the remainder of this paper.
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heterogeneous effects of the high frequency observations generates

Yt = α +
m−1∑
i=0

γiL
i/mXh

t + εt, (3)

where γi represents a set of slope coefficients for all high frequency observations Xh
t− i

m

.

Estimating γi can be problematic when m is a relatively large number.14

Thus, while the simple averaging model (2) is parsimonious, it discards information

related to the timing of innovations to higher-frequency data. In contrast, the heterogeneous

weighting model (3) preserves the timing information, although it may require the analyst

to estimate a potentially large number of parameters. To reduce the dimensionality of

the number of parameters while preserving some timing information, Ghysels et al. (2004)

proposed the following MIDAS model:

Yt = α + γ
m−1∑
i=0

Φ(i;θ)Li/mXh
t + εt, (4)

where the function Φ(i;θ) is a polynomial that determines the weights for temporal aggre-

gation based on the hyperparameter θ. The weighting function, Φ(i;θ), is not restricted

and can take a variety of functional forms. Researchers should select a Φ(i;θ) that is both

flexible and parsimonious. For example, Ghysels, Santa-Clara, and Valkanov (2005) suggest

using an exponential Almon specification:

Φ(i; θ1, θ2) =
exp(θ1i+ θ2i

2)∑m−1
j=0 exp(θ1j + θ2j2)

.

With this weighting function, simple time averaging is obtained when θ1 = θ2 = 0.15

14Problems with high-dimensional explanatory variables are a major feature of research involving big data.
Estimators such as the LASSO zero out many of the γi to satisfy a strong sparsity condition. We follow an
approach developed in the econometrics literature to develop a parsimonious specification.

15Another popular choice among forecasters for the weighting function is the beta formulation:

Φ(i; θ1, θ2) =
f( i+1

m , θ1, θ2)∑m−1
j=0 f( j+1

m , , θ1, θ2)

where f(x, θ1, θ2) = xθ1−1(1−x)θ2−1Γ(θ1+θ2)
Γ(θ1)Γ(θ2) with θ1 and θ2 being hyperparameters governing the shape of the

10



A nonlinear least squares (NLS) estimator is used to obtain the unknown coefficients θ

from MIDAS regression. We can reexpress the right-hand-side of equation (4) and define

X̂t ≡
m−1∑
i=0

Φ(i; θ̂)Li/mXh
t . (5)

Intuitively, this converts the higher frequency variable Xh
t− i

m

to the same frequency as Yt

with dynamic weights Φ(i; θ̂); such that X̂t has better explanatory power on Yt.

Using the conventional MIDAS method presented in equation (4), the hourly USSI is

aggregated to a monthly measure using the exponential Almon polynomial as the weight

function. Figure 1(a) illustrates the estimated weights for each high frequency group with

m = 650 observations. For brevity, we only present the first 100 Almon polynomial lags,

since weights after the first 20 periods are very close to 0.16 In the context of this study, the

evidence in the graph implies that only hourly measures of the USSI collected on the last

day of each month are used to construct the monthly USSI.

The extreme weights in Figure 1(a) arise from the choice of an exponential Almon poly-

nomial as the weight function.17 The exponential Almon polynomial gives near zero weight

to observations collected earlier in the data series based on the belief that more recent ob-

servations should have larger impacts on the dependent variable. The exponential Almon

performs well in settings where analysts convert monthly data to quarterly, or annual data,

which involves either 3 observations averaged to 1 or 12 observations averaged to 1.18 In our

application, however, we need to convert both daily data to monthly data as well as hourly

data to monthly data, that is approximately 650 observations averaged to 1 in the latter

example.

weighting function, and Γ(θ) =
∫∞

0
e−xxθ−1dx is the standard gamma function. Simple time averaging is

nested within and obtained when θ1 = θ2 = 1. In our forecasting exercise, we considered both specifications of
the weighting function and the results using the Almon specification strictly dominate the beta specification.
As such, we present results using the Almon specification in the main text. The full set of results that
utilized the beta specification are available from the corresponding author upon request.

16The exponential Almon polynomial only considers approximately 20 most recent observations in both
our application and earlier work including Ghysels, Santa-Clara, and Valkanov (2006). The 20 most recent
observations roughly corresponds to using data from a single day in a month.

17Note, the beta formulation leads to even more extreme weights.
18See Ghysels et al. (2004,2005) and Ghysels, Sinko, and Valkanov (2007) for more examples.
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Recall, the CCI is constructed from responses to survey questions that are received

throughout the month. This transformation places greater weight on most recent events

but if survey responses vary across the month and the completions are related to economic

conditions, this strategy ignores the potential timing. As such, we next consider a simple

modification to the conventional MIDAS procedure to allow for greater heterogeneity.

3.1 Heterogenous Mixed Data Sampling (H-MIDAS)

We modify the (conventional) MIDAS method described in Section 3 to a method that uses

a step function to allow for heterogeneous effects of different high frequency observations on

the low frequency dependent variable. We coin this new method as heterogeneous MIDAS,

or H-MIDAS for short.19

To demonstrate this H-MIDAS procedure, recall that Xh
t is defined as

Xh
t =

[
Xh

t , X
h
t− 1

m
, ..., Xh

t−m−1
m

]>
.

A low frequency X̄
(l)
t can be constructed following

X̄
(l)
t ≡

1

l

l−1∑
i=0

Li/mXh
t =

1

l

l−1∑
i=0

Xh
t− i

m
, (6)

where l is a pre-determined number and l ≤ m. Equation (6) implies that X̄
(l)
t is computed

by a simple average of the first l observations in Xh
t and ignore the remaining observations.

We consider different values of l and group all X̄
(l)
t into X̃ t such that

X̃ t =
[
X̄

(l1)
t , X̄

(l2)
t , . . . , X̄

(lp)
t

]
,

where we set l1 < l2 < · · · < lp. Consider a weight vector w = [w1, w2, . . . , wp]
>

with

19Our method is inspired by the heterogeneous autoregression (HAR) of Corsi (2009), who proposed an
additive cascade model of volatility components defined over different time periods that leads to a simple AR-
type model in the realized volatility with the feature of considering different volatility components realized
over different time horizons.
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∑p
j=1 wj = 1, we can construct regressor Xnew

t as Xnew
t = X̃ tw. The regression based on

our H-MIDAS estimator can be expressed in the same fashion as the conventional MIDAS

estimator of Ghysels et al. (2004) such that

Yt = βXnew
t + εt = β

p∑
s=1

p∑
j=s

wj

lj

ls−1∑
i=ls−1

Li/mXh
t + εt = β

p∑
s=1

ls−1∑
i=ls−1

w∗sL
i/mXh

t + εt. (7)

This specification nests the weights considered in conventional MIDAS when l0 = 0 and

w∗s =
∑p

j=s
wj

lj
. For ease of exposition, we ignore the intercept α in the H-MIDAS regression

(7). In empirical practice, one can demean Yt and X̃ t when estimating (7).

The weights w play a crucial role in this procedure. We first estimate β̂w following

β̂w = arg min
w∈W

∥∥∥Yt − X̃ t · βw
∥∥∥2

by any appropriate econometric method necessary, where W is some predetermined weights

set. Once β̂w is obtained, we estimate the weight vector ŵ by rescaling

ŵ =
β̂w

Mean(β̂w)
,

since the coefficient β is a scalar. In this paper, we use OLS to estimate β̂w and then

calculate the converted X̂new
t = X̃ t · ŵ.

Figure 1: Estimated Weights for USSI Using Various MIDAS Methods
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(a) MIDAS on Hourly USSI
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(b) H-MIDAS on Hourly USSI
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(c) H-MIDAS on Daily USSI
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Figure 1(b) illustrates the estimated weights for H-MIDAS when we convert the hourly

USSI to monthly using [1, 12, 24, 120, 240, 650] as the lag index to mimic the 1-hour, 1/2-

day, 1-day, 1-week, 2-week, and 1-month effects. The estimated weights for H-MIDAS are

not as smooth as conventional MIDAS demonstrated in Figure 1(a) and place significantly

less weight on the USSI measured in the last few hours. We denote the USSI converted by

H-MIDAS as USSInew. Overall, contrasting the first two panels of figure 1 illustrates the

benefits that may accrue from relaxing the functional form assumptions embedded in the

choice of weighting functions using the conventional MIDAS.

Figure 1(c) displays the estimated weights for H-MIDAS that convert the daily USSI to

monthly using [1, 7, 14, 21, 28] as the lag index to mimic the 1-day, 1-week, 2-week, 3-week,

and 1-month effects. Notice that the step function has a very heterogeneous pattern placing

larger weight on the most recent and least recent days in the month. Thus, the last panels

of Figure 1 illustrate that the H-MIDAS procedure does not restrict the pattern across dates

to take a specific shape. The time-varying pattern that is observed in this panel, may arise

since we control for the MCSI that may do a tremendous job of capturing similar information

as measures of the USSI collected between 8-22 days earlier.

To further understand the properties of the H-MIDAS estimator, we derive the asymptotic

properties of the H-MIDAS estimator in the Appendix A. These properties permit us to state

the following (dial-down version) lemma:

Lemma 1 Let the variable Xh
t− i

m

follow an AR(1) process. Then, compared to the H-MIDAS

method, the simple averaging estimator introduces asymptotic bias to the coefficient β.

See Appendix A for an extended statement and a detailed proof. This lemma extends

Proposition 4.3 of Andreou, Ghysels, and Kourtellos (2010) that derived conditions under

which the simple averaging estimator can introduce asymptotic bias to the coefficient relative

to the conventional MIDAS techniques. The above finding can now be applied to a broader

set of MIDAS techniques including the H-MIDAS method.
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4 Forecasting Techniques

Researchers interested in forecasting with social media data are faced with a decision re-

garding on how to construct aggregate measures from high frequency social media data and

also which estimator to apply to the forecasting model. Since time series forecasting can

be framed as a supervised learning problem, there is growing evidence (see e.g. Lehrer and

Xie, 2018) that standard linear and nonlinear machine learning algorithms display improved

performance.20 To help provide an evidence base to assist future researchers and finance

practitioners, we examine the relative prediction efficiency of different estimators with dif-

ferent ways of accounting for social media data using the following experiment.

We contrast a suite of popular approaches from the econometrics literature with those

from machine learning. Specifically, the econometric approaches include

(i) OLS using all of the available regressors in a general unrestricted model (GUM);

(ii) Model selection using the Akaike information criterion (AIC) of Akaike (1973);

(iii) Model averaging allowing for model uncertainty where the weights are chosen using the

prediction model averaging of Xie (2015) (PMA).

Among machine learning algorithms, we first consider four methods that use algorithms

that partition the characteristic space into a series of hyper-cubes. A local constant model

is estimated in each partition to approximate the underlying data generation process. The

methods considered include

(iv) Regression trees proposed by Breiman, Friedman, and Stone (1984) (RT);

(v) Bootstrap aggregation (BAG) tree technique developed in Breiman (1996);

(vi) Random forest (RF) of Breiman (2001);

20For example, Bajari, Nekipelov, Ryan, and Yang (2015) analyzed the advantages of using machine
learning methods for demand estimation, Mullainathan and Spiess (2017) provided a up-to-date overview on
machine learning methods in economics, while Athey and Imbens (2017) demonstrated how machine learning
methods can improve the performance of the standard econometric methods.
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(vii) A simple least squares boosting (LSB) tree of RT ensembles (BOOST).

We also consider penalized regression methods from the machine learning literature

(viii) Support vector regression (SVR) machines proposed in by Drucker et al. (1996) using

linear and nonlinear kernels

With both the bootstrap aggregation tree and random forest algorithms, we estimate

100 trees in the ensemble and additionally account for an important feature of our data

consisting of dependent observations.21 We consider SVRs with different penalty functions

to control which observations are given weight in the objective function of the estimator.

We consider both linear (denoted as SVR1) and two different nonlinear kernels (denoted as

SVR2 for a Gaussian kernel and SVR3 for a local polynomial kernel). Further details on the

implementation and theory underlying each of these estimators is provided in Appendix B.

5 Empirical Results

A rolling window exercise that fixes the window length at 36 (3 years) is conducted. For each

forecasting strategy, the mean squared forecast error (MSFE) and mean absolute forecast

error (MAFE) from a one-step-ahead forecast is computed. To assess how to extract the

most value from social media content in forecasting economic outcomes, we consider five

alternative methods of including the USSI as a predictor variable:

(i) M0: data without any USSI variables;

(ii) Ma: data with USSIa (simple average);

21We try two specific bootstrap methods for time series data in our implementation. Specifically, we
consider Kulperger and Prakasa Rao (1989) Markov bootstrap method as well as Künsch (1989) moving
block bootstrap (MBB) method. These methods respectively rely on either assuming a specific structural
form for a stationary and weakly dependent time series or a weaker restriction that only preserves the
dependence structure of the random variable at short lag distances, although these more computationally
intensive bootstrap methods only marginally improve the forecasting performance. See Kreiss and Lahiri
(2012) for a detailed literature review as well as Appendix B for more details on our implementation.
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(iii) Mm: data with USSIm (conventional MIDAS, hourly);

(iv) Mnew: data with USSInew (H-MIDAS, hourly).

(v) Mall: data with all three versions of USSI variables.

Table 3 reports the median MSFE and MAFE from the relative one month ahead predic-

tion efficiency experiment for each of the 10 forecasting methods (columns) described in the

preceding section with the above alternative methods of including the USSI across the rows

of Table 3. To ease interpretation, we place the lowest MSFE and MAFE in bold, for each

row of Table 3. The linear support vector machines for regression demonstrates improved

performance relative to the other estimators considered, unless we include three versions of

the USSI in the model.

Table 3: One-step-ahead Forecasting Results Measured by MSFE and MAFE

GUM AIC PMA RT BAG RF BOOST SVR1 SVR2 SVR3

Panel A: Mean Squared Forecast Error (MSFE)
M0 18.8061 17.7036 17.9470 27.7313 18.6351 18.8577 67.6181 13.1063 19.5763 31.0816
Ma 19.4375 26.4169 20.8762 27.7313 17.5063 17.5503 66.9525 16.3424 19.6363 33.2165
Mm 17.0214 19.6263 16.9666 12.4811 13.2995 14.3669 35.9071 12.2262 19.5361 28.7186
Mnew 14.1906 15.1128 13.2115 18.7820 12.9198 13.8692 18.5529 10.3148� 19.6891 24.8384
Mall 17.6537 14.8215 13.1496 13.2403 11.3241 11.8710 18.5307 13.1863 19.7090 32.5857

Panel B: Mean Absolute Forecast Error (MAFE)
M0 3.5614 3.4078 3.3684 3.8111 3.3645 3.3721 6.4182 3.0216 3.7057 4.3819
Ma 3.5083 4.0982 3.7362 3.8111 3.3317 3.2610 6.6775 3.2611 3.7403 4.7417
Mm 3.1777 3.4367 3.0940 2.9261 2.7873 2.9146 4.4979 2.6859 3.7023 4.5727
Mnew 2.7981 2.7415 2.6811 3.0674 2.6245 2.8316 3.4075 2.5013� 3.7456 3.7854
Mall 3.0771 2.6835 2.6163 3.0374 2.5985 2.6084 3.2112 2.7085 3.7323 4.4751

Note: numbers with � indicate the best performing methods in each panel.

There are several findings in Table 3 worth stressing. First, when comparing the results

across rows of the Table, irrespective of the estimator, we see that the prediction efficiency

increases by more than 25% using MSFE as criterion when we include social media data

measured by USSInew. This result provides the first piece of evidence demonstrating the

importance of using social media data in this forecasting exercise.

Second, the results in Table 3 demonstrate the general improvements in forecasting from a

machine learning algorithm relative to an econometric approach presented in any of the first

three columns of the Table. Gains from machine learning algorithms arise since variables are
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added to the forecasting model in a more flexible manner than econometric strategies, since in

a tree structure every cut-point in each independent variable is considered allowing for highly

nonlinear models with potentially complex interactions. In our application, support vector

machines for regressions demonstrate the strongest performance in terms of either MSFE or

MAFE for most of the cases, but bagging and random forests also have lower MSFE and

MAFE so long as a measure of the USSI is included. Regression trees and boosting do not

perform as well (nor the non-linear SVR2 and SVR3) as the SVR1 estimator, which may

reflect the small sample size in this forecasting exercise.

Third, the results also suggest the importance of considering model uncertainty when

comparing GUM (no model uncertainty) to PMA. The prediction efficiency is improved by

34% when using Mall. Interestingly, the model selection (AIC) method in our exercise do

not yield better forecasts than GUM, with Ma, Mm, and Mnew.

To examine if there are more general benefits from using H-MIDAS in place of conven-

tional MIDAS, we next convert the daily financial variables in Mh
s using H-MIDAS. We

replicate the analysis presented in Table 3 where now each of the four financial variables

used as predictors is transformed via H-MIDAS. To undertake this transformation, we set

the lag index in H-MIDAS as 1 to 22 in a bid to mimic the 1-day to 1-month averages.22 In

other words, the results presented in Table 4 repeats the same forecasting experiment where

now every high frequency data is converted by the H-MIDAS procedure.

The rows of in Table 4 continue to explore alternative methods to include the USSI in

the forecasting exercise, with input groups, denoted by Mh
s , which is identical to Ms for

s = 0, a,m, new, all with the exception that we in contrast to the conventional MIDAS

method used inMnew. Exploring each cell of the forecasting results presented in Table 4, we

observe improved results indicating improved forecasting performance than those in Table

3. This implies the superiority of our H-MIDAS method over the conventional MIDAS even

in the case of converting daily frequency to monthly frequency.

The main result from Table 4 is a clear demonstration of the potentially large benefits

from adopting MIDAS methods that allow for more flexible weights and not restrict them

22The choice of optimal lag index is beyond the scope of this paper and leave for future research.
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Table 4: One-step-ahead Forecasting Results where All Financial and Macroeconomic
Variables Are Transformed by H-MIDAS

GUM AIC PMA RT BAG RF BOOST SVR1 SVR2 SVR3

Panel A: Mean Squared Forecast Error (MSFE)
Mh

0 11.1230 10.2568 11.6820 14.6906 13.1275 12.5885 14.4684 9.9275 19.4999 15.6654
Mh

a 10.2857 10.0643 11.1280 14.6906 12.6923 12.4064 13.5092 9.8319 19.8121 15.3893
Mh

m 11.6393 10.2568 11.6820 16.0860 12.7677 12.3043 16.7293 10.7433 19.4000 23.2848
Mh

new 8.7328 9.3175 8.7556 13.3832 11.8608 11.5446 12.5212 8.1934� 19.6947 9.0957
Mh

all 10.6760 9.3175 8.7556 13.3832 11.6948 11.4150 8.3833 8.2355 19.7648 17.6720

Panel B: Mean Absolute Forecast Error (MAFE)
Mh

0 2.7011 2.6499 2.8140 3.3228 2.9433 2.8488 3.1374 2.5853 3.6667 3.4733
Mh

a 2.5891 2.5993 2.6907 3.3228 2.8446 2.8743 3.2356 2.4945 3.7491 3.1214
Mh

m 2.7688 2.6499 2.8140 3.4833 2.9018 2.8205 3.5549 2.6759 3.6548 4.0463
Mh

new 2.4821 2.6057 2.4140 3.0051 2.7590 2.7249 2.7532 2.3691 3.7330 2.5448
Mh

all 2.6533 2.6057 2.4140 3.0051 2.7336 2.6774 2.4616 2.3561� 3.7337 3.4592

Note: numbers with � indicate the best performing methods in each panel.

to be constant across predictors or to follow a specific functional form. While the H-MIDAS

approach was initially developed for social media data, in part since online opinion can shift

rapidly in unpredictable directions,23 our empirical investigation finds that it be beneficial

to use with other high frequency variables whose measurements vary significantly within

the low frequency period. Moreover, the results in Table 4 reinforce our earlier finding of

the importance of using social media data in this forecasting exercise, since the prediction

efficiency increases by more than 20% judged by the MSFE. Further, the performance of

SVR1 continues to dominate other estimators in Table 4.

To provide a visual understanding of whyMnew yields the lowest MSFE with SVR1, we

present the forecasting results forMa,Mm,Mnew, andMall we account for the USSI in the

panels of Figure 2. The solid line represents the actual data and the dashed line represents

23As an extreme example of the challenge in incorporating social media data, tweets from U.S. President
Donald Trump on economic policies often lead to both large swings in aggregate Twitter sentiment measures
and can have large impacts upon intraday volatilities facing futures, equities, and FOREX markets. A related
but more concrete and specific example of how aggregate Twitter sentiment moves with financial indicators
such as equity prices consider that following the removal of Ivanka Trump’s fashion line from their stores,
President Trump issued a statement via Twitter:

My daughter Ivanka has been treated so unfairly by @Nordstom. She is a great person – always
pushing me to do the right thing! Terrible!

The general public response to this Tweet was to disagree with President Trump’s stance on Nordstrom so
aggregate Twitter sentiment measures rose and the immediate negative effects from the Tweet on Nordstrom
stock of a decline of 1% in the minute following the tweet were fleeting since the stock closed the session
posting a gain of 4.1%. See http://www.marketwatch.com/story/nordstrom-recovers-from-trumps-terrible-
tweet-in-just-4-minutes-2017-02-08 for more details on this episode.
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forecasting results from the SVR1 method. Monthly date ticks are labeled in the horizontal

axis. Notice that bothMa andMm struggle with forecasts in August and September 2016.

Both Mnew and Mall generally tracks the temporal pattern and Mnew does experience

smaller deviations from the actual line in most months. The results with Mall perform

quite well until the US election when they overshoot the negative sentiment associated with

Donald Trump’s victory relative to sentiment associated with consumer confidence. This

result does stress that understanding what twitter sentiment is capturing is important to

using it as an explanatory factor in forecasting models.

Figure 2: Forecasting Performance of SVR1 Using Various Input Data
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The panels in Figure 3 conduct the same graphical evidence of the forecasting performance

of the 10 different estimators considered for the Mnew. The three econometric approaches

(GUM, AIC and PMA) as well as boosting tend to forecast too low values for the CCI in most

periods. Both random forests and SVR2 appear to do a poor job at capturing the monthly

fluctuations in the CCI. The similar performance of random forests relative to regression

tree is striking since the latter should capture more heterogeneity by averaging across trees.

Among potential empirical strategies, support vector machines for regression with linearity
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appears to perform well overall, as well as exhibit the closest forecasts in most every month.

SVR1 ranks highest in forecast accuracy among the 10 estimators 28.57% of the time; and

ranks second and third highest 35.71% and 14.29% of the time. In summary, our results

suggest that not only does social media data matter for forecasts, but so does how it is

aggregated.

In Appendix C, we repeat the above exercises in Section 5 using a daily USSI in place of

the hourly USSI data. The daily USSI is a simple weighted average of the hourly USSI, where

the weights reflect the hourly volume of Tweets divided by the total volume per day. Similarly

to investigate robustness, Appendix D presents results of forecasting CCI two months ahead

and unsurprisingly forecast accuracy declines with dynamic forecasts since they involve more

than one step ahead. Yet, the analysis in both of these exercises demonstrate the robustness

of our results that find (i) incorporating USSI in forecasting the CCI is empirically important,

and (ii) the superior performance with the H-MIDAS estimator.

5.1 Additional Evidence of Benefits from Including Social Media

Data

To further illustrate the benefits of including an appropriately transformed USSI measure

as an explanatory variable when forecasting ∆CCIt, consider OLS estimates of the GUM

specification

∆CCIt = β0 + β1∆MCSIt−1 + β2∆LEIt−1 + β3URt−1 + β4∆SRt−1 + β5∆CPIt−1

+β6∆SP500t−1 + β7∆VIXt−1 + β8∆USDt−1 + β9∆TSt−1 + β10USSIs,t−1 + εt. (8)

Table 5 compares OLS estimates across nested specifications that either impose restrictions

on some of the coefficients (i.e. all financial variables equal 0, etc.) or utilize different

aggregations of the USSI. Specifically, the subscript s = a,m, or new that respectively

represent the USSI converted by simple averaging, conventional MIDAS, and our proposed

H-MIDAS method. Panels A to C of Table 5 present the estimated coefficient and associated

standard error (in parenthesis) for each variable with variable names list on the first column.

Panel D reports the centered R2 and adjusted R2 for each model.
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The first two columns of Table 5 exclude the USSI. None of the macroeconomic and

financial variables are statistically significant, with the sole exception of USD. Yet, an F -

test of Model (1) is unable to reject the joint insignificance of all macroeconomic variables

at the 10% level. This likely arises since for forecasting to be valid we must use a one-month

lag of the macroeconomic variables. In contrast, the set of financial variables (transformed

via conventional MIDAS) in Model (2) are jointly significant with a p-value 0.0008.24

Models (3) to (5) consider the sole inclusion of a single alternative USSI measure. In

each specification, the respective USSI enters in a statistically significant manner but there

are large differences across the columns in the magnitude of the effect. By comparing the

associated R2
c and R̄2 values, we notice that the regression model containing the USSI created

by H-MIDAS explains the most variation in the data.25 GUM estimates with alternative

USSI measures are presented in columns (6) to (8) of Table 5. Surprisingly, given the

large marginal effect in Model (3), USSIa variable is statistically insignificant when one also

conditions on macroeconomic and financial variables. This result is suggestive of high degrees

of collinearity between the simple averaging USSIa and subsets of the macroeconomic and

financial variables. The estimates in Models (7) and (8) demonstrate that there is unique

variation in USSIm and USSInew and each of them enter in a statistically significant manner.

Further, the coefficients in Models (7) and (8) do not differ markedly from those in Models

(4) to (5), which increases our confidence that this is explaining variation in the CCI that was

not captured by traditional variables. Finally, the lack of gains when moving from allowing

model uncertainty (comparing GUM to PMA columns) in Table 2 may arise from the absence

of multiple significant regressors when the USSInew is not included as a regressor.

Last, Models (9) to (12) explore if there is additional value from including multiple USSI

measures. Contrasting the estimates across these four columns suggests that there is unique

24The conference board releases CCI on the last Tuesday of each month at 10am. Since the macroeco-
nomic variables are on the same frequency of CCI, we use one-month lags to avoid simultaneity and have a
valid forecasting model. This information is reported approximately one month before the CCI is release.
The financial variables, on the other hand, contain information up to one day before the release and such
information can be preserved by the conventional MIDAS method to a higher degree than H-MIDAS which
would give larger weight to more distant observations in the series. The difference in timing likely explains
why financial variables have better forecasting performance than the macroeconomic variables.

25It should also be noted that Model (5) yields the highest R̄2 values among all 12 models.
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explanatory power in USSInew relative to the other metrics. USSInew always enters in a

statistically significant manner.26

Overall, the results in Table 5 reinforce the importance of incorporating big data variables

on forecasting CCI. The big data series contains information up to one hour prior to the

release of the CCI. The series generate significant explanatory power on CCI as the values

of R2
c increase sharply when big data variables are included. Most importantly, the results

in Models (7) and (8) demonstrate the necessity of converting higher frequency data to

low frequency with sophisticated econometric techniques like MIDAS. When comparing the

performance of models that either include the USSIm, USSInew, or the simple USSIa variables,

we find that valuable information contained in specific increment of the higher frequency

interval can be diluted by simple averaging.

Further, the improved forecast accuracy observed in Table 4 relative to Table 3 across

all metrics and estimators points out that allowing for more flexible weights can capture the

unsystematic manner by which time-varying conditions underlying these financial and social

media measures truly impact consumer confidence. This provides additional intuition for

the potential wider applicability of the H-MIDAS estimator since it is not restricted by a

functional form assumption. In summary, extracting useful information lurking in the higher

frequency data is challenging, but by imposing weaker assumptions when aggregating high

frequency data can lead to large rewards in forecast accuracy.

6 Conclusion

Petabytes of new text data are created every second on social media and it remains an open

question if measures extracted from anonymized social media data can help improve our

ability to predict future values of the economic indicators ahead of the release of statistical

data. However, an additional challenge may arise since social media data differs sharply

from other macroeconomic and financial time series in manners beyond simply being text.

To incorporate the high frequency part of social media data we propose a new MIDAS

26The analysis also indicates a high degree of correlation between USSIm and USSId.

25



strategy that allows for greater heterogeneity in the weights across time, thereby allowing

for a more gradual depreciation relative to the common implementation of the mixed data

sampling approach. Using both forecasting models from the econometrics and machine

learning literature, we provide evidence that incorporating sentiment measures from Twitter

greatly improves forecast accuracy of the CCI.

Further, we find major improvements from using our proposed H-MIDAS strategy over

other approaches to collapse high frequency data to a single measure. While developed for

social media data, our forecasting exercise also shows that there are substantial benefits to

using the H-MIDAS on financial variables. An additional advantage of the H-MIDAS esti-

mator is that it allows for a unrestricted step-function to choose weights on elements within

a series of the high frequency predictor variables, thereby not imposing arbitrary functional

form assumptions that are implicitly embedded with conventional MIDAS strategies. We

believe this method can offer substantial benefits in other forecasting exercises within the

banking and finance industry.

For practitioners, the evidence in this study suggests that exploiting social media data

may provide individuals and firms across numerous industries including banking and finance

an advantage to enhance their forecasting capabilities. That said, future research needs to

consider developing new tools that may help forecasters gain further advantage as well as

investigate forecasting financial measures that are measured at a higher frequency level. On

the former, one could consider as an alternative to using a statistical approach to weight

Twitter sentiment across periods as in H-MIDAS, it may be interesting to examine how

weights derived from either Twitter volume or from the historical timing of survey responses

perform in forecasts of consumer confidence. That is, if 8% of surveys used to construct the

CCI are historically mailed by survey respondents 11 days prior to the release of CCI, we

could assign a weight of 8% to Twitter sentiment measured 11 days prior.

Further, future researchers could consider treat social sentiment as multidimensional

rather than a single sentiment score. For example, one could measure mood from subset of

tweets based on subgroups characterized by age or occupation or even whether the Twitter

message has a positive or negative orientation. By unpacking the USSI in to its components,

26



one could understand what type of emotions conveyed in individual tweets is associated with

consumer confidence. In summary, this paper illustrates how in the big data era, many new

innovations in the forecasters’ toolbox will need to emerge to extract the full potential of

these data new sources to improve forecasts of variable of interest to the banking and finance

industry.
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