Next Article in Journal
Optical Constants of Crystallized TiO2 Coatings Prepared by Sol-Gel Process
Next Article in Special Issue
Red, Green, and Blue Photoluminescence of Ba2SiO4:M (M = Eu3+, Eu2+, Sr2+) Nanophosphors
Previous Article in Journal
Amino Alcohol Oxidation with Gold Catalysts: The Effect of Amino Groups
Previous Article in Special Issue
Synthesis of New RE3+ Doped Li1+xTa1−xTixO3 (RE: Eu, Sm, Er, Tm, and Dy) Phosphors with Various Emission Colors
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Review

Persistent Luminescence in Non-Eu2+-Doped Compounds: A Review

by
Koen Van den Eeckhout
1,2,
Dirk Poelman
1,2 and
Philippe F. Smet
1,2,*
1
LumiLab, Department of Solid State Sciences, Ghent University, Krijgslaan 281-S1, 9000 Gent, Belgium
2
Center for Nano- and Biophotonics (NB-Photonics), Ghent University, 9000 Ghent, Belgium
*
Author to whom correspondence should be addressed.
Materials 2013, 6(7), 2789-2818; https://doi.org/10.3390/ma6072789
Submission received: 20 May 2013 / Revised: 18 June 2013 / Accepted: 3 July 2013 / Published: 12 July 2013
(This article belongs to the Special Issue Luminescent Materials 2013)

Abstract

:
During the past few decades, the research on persistent luminescent materials has focused mainly on Eu2+-doped compounds. However, the yearly number of publications on non-Eu2+-based materials has also increased steadily. By now, the number of known persistent phosphors has increased to over 200, of which over 80% are not based on Eu2+, but rather, on intrinsic host defects, transition metals (manganese, chromium, copper, etc.) or trivalent rare earths (cerium, terbium, dysprosium, etc.). In this review, we present an overview of these non-Eu2+-based persistent luminescent materials and their afterglow properties. We also take a closer look at some remaining challenges, such as the excitability with visible light and the possibility of energy transfer between multiple luminescent centers. Finally, we summarize the necessary elements for a complete description of a persistent luminescent material, in order to allow a more objective comparison of these phosphors.

1. Introduction

In most luminescent materials, the decay of the light emission lasts no longer than a few milliseconds after the end of the excitation. On the contrary, persistent phosphors can continue emitting light for minutes or hours. This phenomenon is used in safety signage, dials and displays and decoration [1], but also in less obvious applications, such as night-vision surveillance [2] or in vivo medical imaging [3].
Since the discovery of SrAl2O4:Eu2+, Dy3+ in 1996 [4], many researchers and publications on persistent luminescent materials have focused on divalent europium as the activating ion. An overview of these materials has been presented in an earlier issue of this journal [5]. However, the number of publications on non-Eu2+-doped compounds has also seen a steady increase during the past 15 years (Figure 1). In this way, the number of materials where persistent luminescence has been observed has grown continuously over time. By now, over 200 combinations of host materials and activating ions have been described, of which less than 20% is based on divalent europium. In this review article, we will present an overview of the non-Eu2+-doped persistent luminescent compounds and their properties.
Figure 1. Number of papers published on non-Eu2+-doped persistent luminescent compounds, according to the Web of Science.
Figure 1. Number of papers published on non-Eu2+-doped persistent luminescent compounds, according to the Web of Science.
Materials 06 02789 g001
The research on non-Eu2+-based persistent luminescent materials is mainly driven by the lack of efficient red persistent phosphors. The broadband emission of Eu2+ is strongly dependent on the host material, more precisely, on the nephelauxetic effect (or the centroid shift) and the strength of the crystal field acting on the ion [6]. The combination of both effects leads to the so-called red shift, and the value depends strongly on the composition of the host compound and the local coordination of the europium dopant ion. It is quite common to obtain a blue or green afterglow using oxide hosts, but it is much more difficult to find a suitable host material with sufficient red shift, in order to obtain red (persistent) luminescence. Although there are a number of red emitting Eu2+-doped persistent phosphors, such as CaS:Eu [7,8,9] and Ca2Si5N8:Eu [10,11], the choice is limited and the host lattices are chemically unstable or difficult to prepare. This is especially unfortunate, since red afterglow phosphors are strongly desired for several applications, such as safety signage, paints and, more recently, also, as tracer particles for in vivo medical imaging [3,12,13,14]. Therefore, many research groups have focused on different luminescent ions in order to obtain an efficient red-emitting persistent phosphor.
The most obvious and popular choice for long-wavelength luminescence is Mn2+, known for its typical yellow-to-red emission in octahedral sites [15]. In several compounds, an energy transfer from Eu2+ to Mn2+ has been observed, leading to a red afterglow color originating from Mn2+, but with a long afterglow time defined by Eu2+. Not only red-emitting activators are being explored. Other common choices are the different trivalent rare earth ions such as Ce3+ and Tb3+. An interesting case is Dy3+, which shows a white emission color, due to three different emissions around 480, 575 and 665 nm. Such a white emission is very difficult to obtain with only Eu2+ doping. Unfortunately, these ions often require a short (UV) excitation wavelength, making it impossible to charge these persistent phosphors using visible light. Finally, several compounds are known to exhibit an afterglow without the addition of (Co) dopants, purely based on the intrinsic luminescence of the host material.
Until 1996, the majority of persistent luminescent applications was based on ZnS doped with copper and cobalt [4,16]. This material emits a greenish broad-band spectrum centered around 540 nm (Figure 2), which remains visible for several hours after the end of the excitation. However, the afterglow of this material is relatively weak, and it was common to add small amounts of radioactive tritium or promethium in order to sustain the luminescence [16]. Since 1996, this ZnS-based phosphor has been rendered obsolete by Eu2+-doped strontium and calcium aluminates exhibiting a much brighter and long-lasting afterglow. Nevertheless, the research into non-Eu2+-doped persistent phosphors has continuously increased in the background. An extensive list of these phosphors is presented in the following section. The most important ones (with the largest number of publications) to mention at this point are CaTiO3:Pr3+ (red), Y2O2S:Eu3+, Ti4+, Mg2+ (red) and CaS:Bi3+ (blue).
Figure 2. (a) Green persistent luminescence in a Playmobil® ghost toy based on ZnS:Cu, Co. (b) Afterglow emission spectrum of ZnS:Cu, Co centered around 540 nm.
Figure 2. (a) Green persistent luminescence in a Playmobil® ghost toy based on ZnS:Cu, Co. (b) Afterglow emission spectrum of ZnS:Cu, Co centered around 540 nm.
Materials 06 02789 g002

2. Known Compounds

This section provides an overview of the compounds where persistent luminescence, not based on divalent europium, has been reported. For every combination of host compound and activator, relevant references are indicated in the last column. In the case of energy transfer between two different dopants or luminescent centers, both the sensitizer and the activator are indicated. We use the symbol “>>” for efficient energy transfer and “>” for partial energy transfer, as derived from the emission spectra. For clarity, the materials are divided into four groups: silicates, non-silicate oxides, non-oxides and glasses. If a property was not mentioned explicitly in the text of the reference, but inferred from it or from a figure, it is put between parentheses.
Only materials with an afterglow longer than a few seconds were taken into account, since only in this case, the effect can be termed persistent luminescence. Some publications on phosphors, often using trivalent rare earth elements as dopants, claim to describe persistent luminescence, but only show an effective decay time on the order of milliseconds. In these cases, probably only the intrinsic decay of the forbidden transition within the rare earth ion is observed. Hence, these compounds and publications are deliberately not included in the tables.
The afterglow durations were taken directly from the mentioned references. However, not all of these were measured in a single, clearly defined way. The most common criterion is the visibility by the naked, dark-adapted eye. Only a few authors use the threshold value of 0.32 mcd/m2 (which is about 100 times the sensitivity of the human eye and a value often used in the safety signage industry [17]). In some of the references, e.g., [2,18], the afterglow duration was defined as the time the afterglow was measurable with an IR-sensitive camera (in the case of near-IR emission, one could resort to radiometric units [2]). Therefore, the afterglow durations are only noted in the tables as an indication, for a detailed comparison, we refer to the mentioned references.
Furthermore, the exact excitation conditions (wavelength, duration) are not always clear, although 254 nm is a common excitation wavelength. For details on the excitation conditions, we refer to the mentioned references.

2.1. Silicates

Similarly, as in Eu2+-doped compounds, the silicates are used as the host crystal for a large part of the non-Eu2+-based persistent phosphors (Table 1). Especially, the alkaline earth aluminum and magnesium silicates have been studied extensively. Some of the longest afterglow times (>5 h) have been observed in rare-earth doped CdSiO3, although the role of host and self-trapped exciton (STE) luminescence remains the subject of discussion in this compound [19,20].
Table 1. Known non-Eu2+-based persistent luminescent silicates (STE = self-trapped exciton).
Table 1. Known non-Eu2+-based persistent luminescent silicates (STE = self-trapped exciton).
Host materialActivatorsEmission maximum (nm)Afterglow emissionAfterglow durationrefrence
Ca2Al2SiO7Ce3+400–417 (blue)identical>1 h[21,22,2324]
Ce3+ >> Mn2+550 (yellow)identical>10 h[25]
Ca0.5Sr1.5Al2SiO7Ce3+ > Tb3+386, 483 + 542 + 591 (white)bluish white>1 min[26]
Sr2Al2SiO7Ce3+400 (near UV)identical(>2 min)[27]
Ce3+ > Dy3+408, 491 + 573 (white)(identical)~1 h[28]
Ce3+ > Tb3+410, 482 + 543 + 588 (white)(identical)(>1 min)[29]
CaAl2Si2O8Eu2+ > Mn2+418, 580 (blue)identical>1 h[30]
Mn2+??~20 min[31]
CaMgSi2O6Dy3+480 + 575 + 667 (white)identical~2 h[32]
Eu2+ > Mn2+450, 580 + 680 (?)identical(~30 min)[33]
Mn2+580 + 680 (red)680 nm (red)>1 h[12,33,34,35,36]
SrMgSi2O6Dy3+455, 576 (blue)identical>5 min[37]
Mn2+455, 612 (pink)(identical)(~15 min)[37]
BaMg2Si2O7Ce3+ > Mn2+408, 680 (red)(identical)>2 h[38]
Eu2+ > Mn2+400, 630–680 (reddish)(identical)>2 min[39,40,41]
Mn2+630–680 nm (red)(identical)>30 min[38,42]
Ca2MgSi2O7Dy3+480 + 575 + 667 (white)identical>3 h[32,43]
Sr2MgSi2O7Dy3+441, 480 + 575 + 668 (white)only Dy3+~40 min[44]
Ca3MgSi2O8Dy3+480 + 575 + 667 (white)identical>5 min[32]
Sr3MgSi2O8Eu2+ > Mn2+457, 670 (?)identical>2 h[45]
SrMgAl2SiO7Ce3+402 (near UV)(identical)>2 min[27]
Ca3SnSi2O9defects426 (blue)(identical)(~10 min)[46]
Dy3+426, 484 + 572 + 670 (white)(identical)(~10 min)[46,47]
Pr3+426, 488 (greenish)(identical)(~10 min)[46]
Sm3+426, 565 + 600 + 650 (red)(identical)(~10 min)[46]
Tb3+426, 495 + 542 + 590 (green)(identical)(~10 min)[46]
Ca0.2Zn0.9Mg0.9Si2O6Eu2+ >> Mn2+450, 580 + 680 (near IR)identical~1 h[3,48]
CdSiO3intrinsic/STE380 + 467 + 560 (?)~420 (blue)~5 h[19,20]
Dy3+410, 486 + 580 (white)(identical)>5 h[49,50]
Eu3+, Mn2+587, 610 (orange)(identical)>1 h[51]
Mn2+575–587 (orange)identical~1–5 h[52,53,54,55]
Mn2+, Tb3+486 + 548, 587 (orange)(identical)>1 h[56]
Pb2+498 (green)identical>2 h[57]
STE > Dy3+420, 480 + 575 (white)identical~5 h[20]
STE > Eu3+420, 615 (red)identical~5 h[20]
STE > Pr3+420, 600 (red)identical~5 h[20,58]
STE > Sm3+420, 565 + 600 (pink)identical~5 h[20,59]
STE > Tb3+420, 485 + 540 (green)identical~5 h[20]
Tb3+495 + 545 + 590 (green)identical?[60]
Lu2SiO5Ce3+400 + 430 (blue)(identical)>3 h[61,62]
MgSiO3Eu2+ >> Mn2+(456), 660–665 (?)665 (red)~4 h[25,63]
Mg2SiO4Mn2+650 (red)(identical)~20 min[64]
SrSiO3Dy3+480 + 572 + 664 (white)identical~1 h[65]
Sr2SiO4Dy3+480 + 575 + 665 (white)identical>1 h[66]
Sr2ZnSi2O7Eu3+617 (red)identical>20 s[67]
Zn2SiO4Mn2+? (green)?(>5 min)[68,69]
BaZrSi3O9intrinsic/Ti4+460–470 (blue)identical>20 s[70,71]

2.2. Other Oxides

The oxides make up the majority of persistent luminescent compounds, but compared to the Eu2+-based materials, many more host compositions (also those in which Eu2+ cannot be stabilized) have been explored (Table 2). Besides the aluminates, also the stannates, titanates and germanates show some interesting properties. The longest afterglow durations have been reached in Ce3+-doped CaAl4O7, CaAl2O4, SrAl2O4 and BaAl2O4, all with a blue emission color. An exceptional case is the near-IR afterglow of Cr3+ in LiGa5O8 and Zn3Ga2Ge2O10 reported by Pan et al., which could be used for night-vision surveillance or in vivo bio-imaging [2,18,72]. Allix et al. found that the latter compound is a variant of the solid solution, Zn1+xGa2−2xGexO4:Cr3+, for x = 0.5. They report even better afterglow properties for the composition with x = 0.1 [73].
Pan et al. mention an afterglow of over 360 h (several weeks), but it should be noted that there is no agreed definition of the afterglow duration for wavelengths that cannot be detected by the human eye. This makes it difficult to compare the various reported afterglow durations.
Table 2. Other known non-Eu2+-based persistent luminescent oxides (STE = self-trapped exciton).
Table 2. Other known non-Eu2+-based persistent luminescent oxides (STE = self-trapped exciton).
Host materialActivatorsEmission maximum (nm)Afterglow emissionAfterglow durationreference
BaAl2O4Ce3+402 + 450 (blue)(identical)>10 h[74]
CaAl2O4Ce3+400 (blue)~413>10 h[75,76,77]
Ce3+ >> Mn2+525 (green)(identical)>10 h[25]
Ce3+ >> Tb3+543 (green)identical>10 h[75,76]
Dy3+477 + 491 + 577 + 668 (white)identical>30 min[78]
Eu2+ > Mn2+440, 545 (green)~440 (violet)(>3 h)[79]
Tb3+493 + 543 + 590 + 621 (green)identical~1 h[75,80]
MgAl2O4defects520 (green)identical~1 h[81]
Cr3+260, 520, 710 (?)520, 710 (?)(>2 h)[82]
Tb3+??~1 h[83]
SrAl2O4Ce3+375–385 + 427 (blue)only 385>10 h[84,85,86]
Ce3+ > Mn2+375, 515 (green)identical(~5 h)[86]
Eu2+ > Er3+525, 1530 (green/NIR)mainly 525~10 min[87]
Eu2+ > Nd3+515, 882 (green/NIR)mainly 515>15 min[88]
CaAl4O7Ce3+325, 420 (blue)only 420>10 h[84]
Sr4Al14O25Ce3+472 + 511 (blue/green)(identical)~10 min[89]
Eu2+ > Cr3+490, 693 (blue/red)mainly 490>2 h[90,91,92]
Tb3+542 (green)~380 (blue)?[93]
Y3Al5O12Ce3+525 (yellow)identical~2 min[94,95]
Mn2+580 (yellow-orange)585 (orange)~18 min[96]
intrinsic, Pr3+300–460, 490 + 610380, 490 + 610?[97]
CaYAl3O7Ce3+425 (blue)(identical)~min[21]
CaOEu3+594 + 616 (red)(orange)>2 h[98,99]
Tb3+550 (green)(identical)?[100]
Ga2O3Cr3+720 (near IR)identical>4 h[101]
HfO2intrinsic480 (bluish white)identical>1 min[102,103]
Lu2O3Eu3+611 (red)583 + 594 + 611>3 min[104]
Tb3+490 + 550 (green)identical~5–7 h[105,106,107,108]
SnO2Sm3+567 + 607 + 625 (red)identical~40 min[109]
SrOEu3+594 + 616 (orange)identical>1 h[99]
Pb2+390 (violet)identical>1 h[99]
Tb3+543 (green)(identical)?[100]
Y2O3Eu3+612 (red)(identical)~90 min[110,111]
(Zn,Mg)Ounknown520 (orange)(identical)~10 min[112,113]
ZrO2Sm3+570 + 614 (red)(identical)~15 min[114]
Ti4+ (?)(353+) 470–500 (blue)only 470–500~1 h[115,116,117,118,119]
Ba2SnO4Sm3+580 + 611 + 623 (red)(identical)~20 min[120,121]
Ca2SnO4Eu3+585 + 618 + 633 (red)(identical)~50 min[122,123]
STE410 + 466 (blue)(identical)~3 h[122]
STE >> Eu3+585 + 618 + 633 (red)(identical)~100 min[122]
Sm3+566 + 609 + 653 (red)identical>1–7 h[120,124,125,126]
Tb3+435, 483 + 545 (blue/green)483+545 (green)~3 h[127]
Mg2SnO4intrinsic490–495 (green)identical~5 h[128,129,130]
Mn2+500 (green)identical>5 h[131]
Sr2SnO4Sb3+550 (yellowish white)identical>2 min[132]
Sm3+582 + 624 + 672 (red)identical>1 h[120,133,134,135]
Tb3+542 (green)(identical)~8 min[136]
CaSnO3Pr3+488 + 541 + 620 + 653 (white)identical>3 h[137]
Sm3+566 + 601 + 649 + 716 (red)(identical)?[138]
Tb3+491 + 545 + 588 + 622 (green)identical~4 h[137,139,140]
Sr3Sn2O7Sm3+580 + 621 + 665 + 735 (red)identical>1 h[141]
Ca9Gd(PO4)7Mn2+602 + 628, 660 (red)only 660 (red)(>20 min)[142]
Ca9Lu(PO4)7Mn2+660 (red)identical(>20 min)[142]
Ca9Tb(PO4)7Tb3+490 + 545 (green)(identical)(>20 min)[142]
Ca3(PO4)2Mn2+645–660 (red)identical~1 h[143,144]
SrMg2(PO4)2Eu3+, Zr4+500, 588(white)(identical)~1.5 h[145]
SrZn2(PO4)2Eu2+ > Mn2+421, 547 (white)(identical)~1 min[146]
Mn2+547 (green)(identical)~1 min[146]
Zn3(PO4)2Hf4+470 (blue)identical>40 min[147]
Mn2+616 (red)identical>2 h[148,149,151]
Mn2+, Zr4−475, 616 (blue/red)mainly 616~3 h[152]
YPO4Pr3+600 + 620 (orange/red)(identical)>30 min[153]
Ca0.8Mg0.2TiO3Pr3+613 (red)(identical)?[154]
CaTiO3Pr3+612 (red)identical>2 h[155159]
(Ca,Zn)TiO3Pr3+612 (red)(identical)~20 min[160162]
Ca2Zn4Ti16O38Pr3+614 + 644 (red)mainly 614?[163,164]
La2Ti2O7Pr3+611 (red)identical>1 h[165]
Gd3Ga5O12Cr3+697 + 716 (red)(identical)?[166,167]
MgGa2O4Mn2+506 (green)(identical)?[168]
LiGa5O8Cr3+716 (near IR)identical>1000 h[18]
ZnGa2O4defects410 + 540 (white)identical~40 min[169]
Cr3+650–750 (red)identical>1 h[72,73]
Mn2+504 (green)(identical)>15 min[170]
(Zn,Mg)Ga2O4Mn2+505 (green)(identical)>15 min[170]
Cd2Ge7O16Mn2+585 (orange)identical>3 h[171]
Pb2+352 + 497 (blue)only 497~10 min[172]
MgGeO3Mn2+650–670 (red)identical~30 min[173,174]
Zn2GeO4Mn2+528 (green)(identical)>2 h[175]
CaZnGe2O6Dy3+(white)(identical)>3 h[176]
Mn2+648 (red)identical>3 h[177]
Tb3+488 + 552 + 583 + 622 (green)identical~4 h[178,179]
Cd3Al2Ge3O12intrinsic > Dy3+437, 485 + 580 (?)(identical)~1 h[180]
La3Ga5GeO14Cr3+785, 960–1030 (near IR)only 960–1030>1–8 h[181,182]
Zn3Ga2Ge2O10Cr3+696 + 713 (near IR)identical>360 h[2,73]
CaMoO4Eu3+616 (red)identical>5 min[183]
NaNbO3Pr3+620 (red)identical?[184]
YTaO4Tb3+492 + 543 + 590 + 624 (green)(identical)~2 h[185]
CaWO4intrinsic > Pr3+415, 490 + 650 (blue/white)identical>10 min[186]
Eu3+592 + 616 (red)identical~40 min[187,188,189]
Sm3+ >> Eu3+592 + 616 (red)(identical)>35 min[190]
Tb3+490 + 546 (green)identical(>10 min)[191]
BaZrO3defects (FA)408 (blue)identical~30 min[192]
Eu3+574 + 596 + 614 (red)(identical)(~10 min)[192]
Ti >> Eu3+574 + 596 + 614 (red)(identical)(~10 min)[193]

2.3. Other Compounds

The sulfides (Table 3) have the longest recorded history of all persistent luminescent compounds. In fact, the famous Bologna Stone, discovered by Vincenzo Casciarolo in 1602 [194], consisted mainly of copper-doped BaS [195]. Nowadays, the use of ZnS: Cu has much decreased in favor of SrAl2O4:Eu, Dy. The focus has mainly shifted to the oxysulfides, especially Y2O2S:Eu3+, Ti4+, Mg2+, which is currently one of the best red-emitting persistent phosphors. Nevertheless, its afterglow intensity is much weaker than the Eu2+-doped aluminates or silicates [196]. An interesting case of persistent luminescence is observed in undoped BCNO, where the emission wavelength can be shifted from blue to orange purely by changing the preparation conditions.
Table 3. Other known non-Eu2+-based persistent luminescent compounds.
Table 3. Other known non-Eu2+-based persistent luminescent compounds.
Host materialActivatorsEmission maximum (nm)Afterglow emissionAfterglow durationreference
BaSCu+610 (orange)(identical)>30 min[195]
CaSBi3+448 (blue)(identical)(~20 min)[8,197,198,199]
Ce3+508 + 568 (green)(identical)~5 min[200]
Sm3+569 (green)?(~3 h)[201]
(Ca,Sr)SBi3+453 (blue)(identical)(>15 min)[202]
SrSdefects517 (green)(identical)(~20 min)[203]
ZnSCu+530 (green)(identical)(>3 h)[16,69,204,205]
Gd2O2STi3+/defects590 (orange)identical~2 h[206,207]
Ti3+ > Er3+555 + 675 (green)555 + 675, 590>1 h[206,208]
Ti3+ >> Eu3+504 + 536 + 620 (red)identical(>5 min)[206,209,210]
Ti > Sm3+607 (red)590, 607?[206]
Ti > Tm3+513 + 800 (?)590, 800?[206]
La2O2SSm3+605 + 645 + 656 (red)(identical)(>1 min)[211]
Y2O2STi3+/defects540–594 (orange)identical>5 h[212,213,214,215216]
Eu3+590 + 614 + 627 + 710 (red)identical~3 h[217,218,219220]
Sm3+570 + 606 + 659 (red)(identical)>1 h[221,222,223]
Tb3+417 + 546 (green)(identical)>20 min[224]
Ti3+ > Eu3+616 + 625 (red)565, 616 + 625~10 min–5 h[225,226]
Tm3+495 + 545 + 588 (orange)identical~1 h[227]
BCNOintrinsic520 (green)identical>2 h[228,229]
Ba5(PO4)3ClCe3+ >> Eu2+350, 435 (blue)only 435(>5 min)[230]
KY3F10Sm3+558 + 597 + 651 (red)(identical)(>2 min)[231]
ZnSiN2Mn2+620 (red)(identical)~min[232]

2.4. Glasses

A final group of persistent luminescent compounds are the glasses (Table 4). Although it is sometimes difficult to accurately infer the composition of these glasses from the publications, some clear trends can be observed. Especially, the calcium aluminum silicate and zinc boron silicate glasses have a long afterglow of more than one hour.
Table 4. Known non-Eu2+-based persistent luminescent glasses.
Table 4. Known non-Eu2+-based persistent luminescent glasses.
Host materialActivatorsEmission maximum (nm)Afterglow emissionAfterglow durationreference
Ca4Al6Si3O19Ce3+? (blue)(identical)>1 h[233]
Pr3+? (red)(identical)>1 h[233]
Tb3+350–600 (green)identical>1 h[233]
Ca59Al54Si7Mg7O161Mn2+540 (yellow)(identical)>1 h[234]
Pr3+493 + 610 (red)(identical)>1 h[234]
Tb3+543 (green)(identical)>2 h[234,235,236]
GeO2intrinsic465 (blue)identical(~20 min)[237,238]
SiO2defects290 + 390 (blue)identical~1 h[239]
Na2AlB15O25Mn2+590 (reddish)identical~5 min[240]
Na4CaGa8Si3O21Tb3+542 (green)identical~1 h[241]
Na4CaSi7O17Cu+/Cu2+510 (blue green)identical>30 min[242]
Sr7B26O46Eu2+, Ce3+350, 430 (blue)mainly 430(>2 min)[243]
ZnGe3O7Mn2+534 (green)identical>1 h[244]
Zn2GeO4Mn2+540 (green)identical(>10 s)[245]
Zn3B2SiO8Pr3+495 + 603 (reddish)identical(>30 min)[246]
Tb3+542 (green)identical~1 h[247,248]
Zn11B8Si5O33Mn2+525–606 (green/yellow)identical~12 h[249]
Zn11B10Si4O34Mn2+590 (red)identical(~20 min)[250]
Mn2+, Sm3+600 (red)identical~10 h[251,252]
Mn2+, Yb3+605, 980 (red/IR)identical(~10 min)[253]
Zn60B40Si17Ge3Al4O160defects410 (blue)identical~2 h[254]

3. General Remarks

It is very difficult to draw general conclusions from the above tables. One of the most interesting activators is Cr3+, which is not commonly used, but shows some excellent afterglow properties as a red/near-IR luminescent center. This might be especially useful for in vivo medical imaging applications. Unfortunately, even though the excitation spectrum of Cr3+ for steady-state luminescence extends to about 650 nm, it is very difficult to fill the traps, which are necessary to obtain afterglow, using visible light (about 40 times less efficient compared to UV light) [2] (Figure 3).

3.1. Excitation Difficulties

From Figure 3, it is immediately clear that the steady-state excitation spectrum and afterglow excitation spectrum are not always the same. In many persistent luminescent materials, it is much easier to fill traps using higher energy photons (i.e., using shorter excitation wavelengths) [2,255]. This implies that direct bandgap excitation is much more efficient to fill the traps than excitation of the luminescent centers. Even more problematic, the latter type of excitation might require a certain thermal activation barrier to be surpassed before traps can be filled [255], making the use of visible light even less favorable. Of course, it is also possible to fill the traps directly through tunneling from the activating ions, which does not require short wavelength excitation, but is clearly less efficient. These different trapping processes are shown on an energy level diagram in Figure 4.
This effect appears to be even more profound in non-Eu2+-based persistent phosphors, where, in general, only UV light is able to effectively fill the traps in the material. This implies that the role of the host compound is much larger than in Eu2+-based materials. While it has been shown that in Eu2+-based persistent phosphors, the activator is a main source of trapped electrons [256], in non-Eu2+-based compounds, the trapped charge carriers are created mainly after band gap excitation. The luminescent center is subsequently excited by energy transferred from the traps when the trapped electron and hole recombine. The same phenomenon is illustrated by the fact that the afterglow duration is influenced much more by the host compound than by the actual luminescent center. Indeed, by looking at the tables presented in Section 2, it is not uncommon to see certain host compounds with very similar afterglow durations irrespective of the activator being, e.g., Pr3+, Sm3+ or Tb3+.
The fact that UV excitation is required for efficient trap filling is especially unfortunate for persistent phosphors based on Dy3+. This could be an excellent activator for white persistent luminescence, e.g., in paints, signage and displays. However, since indoor lighting contains little to no UV wavelengths (especially with the advent of LED lighting [257]), these compounds are not suited for practical indoor applications.
Figure 3. (a) Excitation and emission spectrum of Zn3Ga2Ge2O10:0.5%Cr3+; (b) Effectiveness of excitation wavelength (energy) for persistent luminescence of Zn3Ga2Ge2O10:0.5%Cr3+. The afterglow intensity after 10 s is monitored as a function of the excitation wavelength (Reprinted with permission from [2]).
Figure 3. (a) Excitation and emission spectrum of Zn3Ga2Ge2O10:0.5%Cr3+; (b) Effectiveness of excitation wavelength (energy) for persistent luminescence of Zn3Ga2Ge2O10:0.5%Cr3+. The afterglow intensity after 10 s is monitored as a function of the excitation wavelength (Reprinted with permission from [2]).
Materials 06 02789 g003
Figure 4. Energy level diagram for CaAl2O4: Ce3+, showing the positions of the Ce3+ levels relative to the bandgap of the host and the proposed trapping mechanism. After excitation in the conduction band, trapping occurs through the conduction band. After excitation in the lower 5d levels, trapping occurs through tunneling (Reprinted with permission from [77]. Copyright 2003 The Electrochemical Society).
Figure 4. Energy level diagram for CaAl2O4: Ce3+, showing the positions of the Ce3+ levels relative to the bandgap of the host and the proposed trapping mechanism. After excitation in the conduction band, trapping occurs through the conduction band. After excitation in the lower 5d levels, trapping occurs through tunneling (Reprinted with permission from [77]. Copyright 2003 The Electrochemical Society).
Materials 06 02789 g004

3.2. Energy Transfer

In several persistent luminescent compounds, energy transfer has been reported. Two types of energy transfer can be distinguished in this case. The first type is the transfer of excitation energy between a sensitizer and an activator. However, we are more interested in the second type, where energy is transferred during the afterglow phase, after the end of the excitation. When the first activating ion recombines, instead of emitting a photon, it can transfer this recombination energy to a second activating ion. This makes it possible to see or extend the afterglow emission from activators that usually have little to no persistent luminescent properties. If the energy transfer is very efficient, only emission from the second activator, receiving the recombination energy, can be observed. In the other case, luminescence from both kinds of activators can be seen simultaneously in the afterglow spectrum.
It is not always immediately clear if energy transfer is present or not. The afterglow spectrum can consist of the emission of two different kinds of activators, even when no energy is transferred between them. It is therefore necessary to carefully inspect the decay behavior of both kinds of activators. If the decay rates of both are the same, this indicates that one of them is transferring its recombination energy to the other. If no energy transfer is present, it is likely that both kinds of activators will have a (slightly) different decay behavior, and the shape of the afterglow spectrum might change over time.

4. Tools for an Accurate Description of a Persistent Luminescent Material

There is no standard way to describe the properties of a given persistent luminescent material. The multitude of parameters, the uncertainties about the underlying mechanism and the lack of clear definitions make an accurate and complete description or comparison nearly impossible. Ideally, there are certain elements and experiments that should always be addressed in a publication on persistent phosphors. This allows for an easier interpretation of experimental results and simplifies the comparison between different persistent luminescent materials.
The emission and excitation spectrum during fluorescence should be given, in order to know which activators are taking part in the luminescent process. When multiple peaks or bands are present in the excitation or emission spectrum, the corresponding emission and excitation spectra for each peak should be measured. Ideally, an excitation-emission mapping is provided, offering a complete overview of the emission spectrum for every possible excitation wavelength. This can also unveil the presence of energy transfer during the excitation or emission process.
Not only the steady-state emission spectrum during excitation, but also the afterglow emission spectrum should be shown, since these can differ drastically from each other. In this way, it is clear which activators are taking part in the persistent luminescence and which don’t. If the afterglow emission spectrum changes over time, it might be valuable to show the spectrum at different time intervals after the excitation. For applications, it might be useful to mention both the fluorescence and the afterglow color. If multiple luminescent centers are present, a thermoluminescence (TL) experiment, where the emission spectrum is measured (TL-emission mapping, Figure 5), provides information about which traps are connected to which luminescent centers. For example, a certain activator might only emit at higher temperatures, indicating that it is only connected to deeper traps in the material.
Figure 5. Thermoluminescence (TL)-emission mapping: the emission spectrum is monitored during the thermoluminescence experiment, showing which traps are related to which activators. An example is shown for Mn2+-emission in CaMgSi2O6 (Reprinted with permission from [33]. Copyright 2010 Elsevier)
Figure 5. Thermoluminescence (TL)-emission mapping: the emission spectrum is monitored during the thermoluminescence experiment, showing which traps are related to which activators. An example is shown for Mn2+-emission in CaMgSi2O6 (Reprinted with permission from [33]. Copyright 2010 Elsevier)
Materials 06 02789 g005
If any TL measurements are made, it is advisable to perform an entire series instead of a single experiment, by varying a single parameter and keeping the other parameters constant. These parameters include the duration of the excitation, the excitation intensity, the heating rate and the delay between excitation and the start of the TL experiment (fading time). A TL-excitation mapping (Figure 6)—where the TL experiment is repeated for various excitation wavelengths—is especially useful, since it directly provides information on the trap filling probability of different wavelengths [258]; i.e., it shows which excitation wavelengths are suitable for inducing persistent luminescence. This can then be compared to the steady-state excitation spectrum to see which processes occur during fluorescence and during trap filling.
Figure 6. TL-excitation mapping: the TL measurement is repeated for different excitation wavelengths, showing which wavelengths are suited for trap filling. An example is shown for Cu+-emission in ZnS (presented earlier in [258]). It can be seen that different kinds of traps are being filled by short (<340 nm) and longer (>340 nm) wavelengths, where 340 nm corresponds to the band gap of the ZnS host compound.
Figure 6. TL-excitation mapping: the TL measurement is repeated for different excitation wavelengths, showing which wavelengths are suited for trap filling. An example is shown for Cu+-emission in ZnS (presented earlier in [258]). It can be seen that different kinds of traps are being filled by short (<340 nm) and longer (>340 nm) wavelengths, where 340 nm corresponds to the band gap of the ZnS host compound.
Materials 06 02789 g006
A further study of the trapping system can be done by performing TL experiments after excitation at different temperatures or by partial thermal emptying of the sample traps before the experiment. In this way, the depth of the various traps can be obtained or the presence of a trap depth distribution can be revealed [259]. Indeed, if such a distribution is present, exciting at higher temperatures or partial thermal cleaning will lead to only deeper traps being filled and shallower traps being emptied. Therefore, the estimated trap depth obtained from a TL experiment will become continuously deeper for higher excitation temperatures, which proves the existence of the trap depth distribution. Under the right conditions, it is even possible to derive the shape of this distribution (Gaussian, uniform, exponential, etc.) [260].
For further study of the defects, one can also turn to electron paramagnetic/spin resonance (EPR/ESR), which provides more information on the structural properties of the defects [24,261].
Finally, it is important to clearly state the exact experimental conditions, such as the dopant and codopant concentrations and the excitation wavelength and duration. If the duration of the afterglow decay is given, information should be given on how this was determined. According to DIN 67510-1, the sample should be excited for five minutes by 1000 lx light of an unfiltered Xe arc lamp. However, the emission spectrum of a Xe lamp is very broad and contains UV, visible, as well as infrared light. This makes it hard to draw conclusions on the excitability, based on such a measurement. It does not give a good prediction of how the persistent luminescent material will behave when excited by artificial light or sunlight. It might be more interesting to excite with monochromatic light at different wavelength and compare the afterglow in each situation.
The afterglow intensity decay should be measured in cd/m2, and the afterglow duration should be the time between the end of the excitation and the moment when the afterglow intensity drops below 0.32 mcd/m2, a value commonly used by the safety signage industry (about 100-times the sensitivity of the dark-adapted eye [17]). In this way, it would be very simple and straightforward to compare the performance of different persistent luminescent materials. However, this definition is not applicable for UV- or NIR-emitting persistent phosphors, where the luminous emission is zero by default and no clear definition exists for the afterglow duration. In that case, one can resort to radiometric units [2].
Furthermore, such absolute measurements of the afterglow decay could provide important information on the absolute concentration of activators, defects and trapped charge carriers.

5. Conclusions and Perspectives

A lot of research is going on in the field of non-Eu2+ persistent luminescent materials, and numerous material-dopant combinations have been and are being developed. However, up to now, the best Eu2+-based persistent phosphors are still without competition in terms of absolute luminance and afterglow time, apart from certain Cr3+-doped phosphors. Since the process of persistent luminescence is based on a delicate interplay between energy levels of dopants and co-dopants, intrinsic defects and energy bands of the host lattice and the possible physical proximity of dopants and co-dopants, small changes in composition, material purity and crystallinity and dopant concentration can have a strong effect on the afterglow properties. Most probably, the optimum material properties, especially the total amount of stored energy, have not been achieved yet, and most likely, some of the persistent phosphors listed in the tables of this review still have to show their real potential to shine.
While Eu2+-doped persistent phosphors are still unrivalled for blue and green emission, the use of other dopants allows one to extend the wavelength range that can be covered with persistent luminescence. Probably, the potential applications, especially in the red and near-infrared range, will be a driving force into further research and developments of new non-Eu2+-based materials.
In order to be able to compare experimental research obtained by different research groups on identical or different phosphor compositions, there is an urgent need for a more standardized way of measuring and defining persistent phosphor properties. The standard for measuring light output in cd/m2 is questionable, since the eye sensitivity shifts to shorter wavelengths at lower light levels [196,262,263]. In addition, the standard way of exciting persistent phosphors, using an unfiltered Xe-arc, containing large amounts of short wavelength ultraviolet radiation, is not a realistic approach and cannot be compared to solar or artificial indoor illumination. Finally, a new standard is needed for quantifying the performance of ultraviolet or infrared emitters: since the eye sensitivity is zero at these wavelengths, photopic units cannot be used and performance should be quoted in radiometric units or numbers of photons.

Acknowledgements

Koen Van den Eeckhout is supported by the Special Research Fund (BOF) of Ghent University. We kindly acknowledge Adrie J.J. Bos for valuable discussions and for providing us with the TL-excitation mapping data on ZnS:Cu+ for Figure 6.

References and Notes

  1. Smet, P.F.; Poelman, D.; Hehlen, M.P. Focus Issue Introduction: Persistent Phosphors. Opt. Mater. Express 2012, 2, 452–454. [Google Scholar] [CrossRef]
  2. Pan, Z.; Lu, Y.Y.; Liu, F. Sunlight-Activated Long-Persistent Luminescence in the Near-Infrared from Cr3+-Doped Zinc Gallogermanates. Nat. Mater. 2012, 11, 58–63. [Google Scholar] [CrossRef]
  3. Le Masne de Chermont, Q.; Chanéac, C.; Seguin, J.; Pellé, F.; Maîtrejean, S.; Jolivet, J.P.; Gourier, D.; Bessodes, M.; Scherman, D. Nanoprobes with Near-Infrared Persistent Luminescence for in vivo Imaging. Proc. Natl. Acad. Sci. USA 2007, 104, 9266–9271. [Google Scholar] [CrossRef] [PubMed]
  4. Matsuzawa, T.; Aoki, Y.; Takeuchi, N.; Murayama, Y. A New Long Phosphorescent Phosphor with High Brightness, SrAl2O4:Eu2+, Dy3+. J. Electrochem. Soc. 1996, 143, 2670–2673. [Google Scholar] [CrossRef]
  5. Van den Eeckhout, K.; Smet, P.F.; Poelman, D. Persistent Luminescence in Eu2+-Doped Compounds: A Review. Mater. 2010, 3, 2536–2566. [Google Scholar] [CrossRef] [Green Version]
  6. Dorenbos, P. Energy of the First 4f7→4f65d Transition of Eu2+ in Inorganic Compounds. J. Lumin. 2003, 104, 239–260. [Google Scholar] [CrossRef]
  7. Jia, D.; Jia, W.; Evans, D.R.; Dennis, W.M.; Liu, H.; Zhu, J.; Yen, W.M. Trapping Processes in CaS:Eu2+, Tm3+. J. Appl. Phys. 2000, 88, 3402–3407. [Google Scholar] [CrossRef]
  8. Jia, D.; Zhu, J.; Wu, B. Trapping Centers in CaS:Bi3+ and CaS:Eu2+, Tm3+. J. Electrochem. Soc. 2000, 147, 386–389. [Google Scholar] [CrossRef]
  9. Jia, D. Enhancement of Long-Persistence by Ce Co-Doping in CaS:Eu2+, Tm3+ Red Phosphor. J. Electrochem. Soc. 2006, 153, H198–H201. [Google Scholar] [CrossRef]
  10. Miyamoto, Y.; Kato, H.; Honna, Y.; Yamamoto, H.; Ohmi, K. An Orange-Emitting, Long-Persistent Phosphor, Ca2Si5N8:Eu2+, Tm3+. J. Electrochem. Soc. 2009, 156, J235–J241. [Google Scholar] [CrossRef]
  11. Van den Eeckhout, K.; Smet, P.F.; Poelman, D. Persistent Luminescence in Rare-Earth Codoped Ca2Si5N8:Eu2+. J. Lumin. 2009, 129, 1140–1143. [Google Scholar]
  12. Maldiney, T.; Lecointre, A.; Viana, B.; Bessière, A.; Bessodes, M.; Gourier, D.; Richard, C.; Scherman, D. Controlling Electron Trap Depth to Enhance Optical Properties of Persistent Luminescence Nanoparticles for in vivo Imaging. J. Am. Chem. Soc. 2011, 133, 11810–11815. [Google Scholar] [CrossRef] [PubMed]
  13. Maldiney, T.; Richard, C.; Seguin, J.; Wattier, N.; Bessodes, M.; Scherman, D. Effect of Core Diameter, Surface Coating, and PEG Chain Length on the Biodistribution of Persistent Luminescence Nanoparticles in Mice. ACS Nano 2011, 5, 854–862. [Google Scholar] [CrossRef] [PubMed]
  14. Maldiney, T.; Sraiki, G.; Viana, B.; Gourier, D.; Richard, C.; Scherman, D.; Bessodes, M.; Van den Eeckhout, K.; Poelman, D.; Smet, P.F. In vivo Optical Imaging with Rare Earth Doped Ca2Si5N8 Persistent Luminescence Nanoparticles. Opt. Mater. Express 2012, 2, 261–268. [Google Scholar] [CrossRef]
  15. Yen, W.M.; Shionoya, S.; Yamamoto, H. Section 3.2.5, Mn2+ Phosphors (3d5). In Phosphor Handbook, 2nd ed.; CRC Press: Boca Raton, FL, USA, 2007. [Google Scholar]
  16. Yen, W.M.; Shionoya, S.; Yamamoto, H. Section 12.3.1, History of Long Persistent Phosphors. In Phosphor Handbook, 2nd ed.; CRC Press: Boca Raton, FL, USA, 2007. [Google Scholar]
  17. Clabau, F.; Rocquefelte, X.; Jobic, S.; Deniard, P.; Whangbo, M.H.; Garcia, A.; Le Mercier, T. On the Phosphorescence Mechanism in SrAl2O4:Eu2+ and Its Codoped Derivatives. Solid State Sci. 2007, 9, 608–612. [Google Scholar] [CrossRef]
  18. Liu, F.; Yan, W.; Chuang, Y.J.; Zhen, Z.; Xie, J.; Pan, Z. Photostimulated Near-Infrared Persistent Luminescence as a New Optical Read-Out from Cr3+-Doped LiGa5O8. Sci. Rep. 2013, 3, 1554:1–1554:9. [Google Scholar]
  19. Kuang, J.Y.; Liu, Y.L. Trapping effects in CdSiO3:In3+ Long Afterglow Phosphor. Chin. Phys. Lett. 2006, 23, 204–206. [Google Scholar] [CrossRef]
  20. Liu, Y.; Kuang, J.; Lei, B.; Shi, C. Color-Control of Long-Lasting Phosphorescence (LLP) Through Rare Earth Ion-Doped Cadmium Metasilicate Phosphors. J. Mater. Chem. 2005, 15, 4025–4031. [Google Scholar] [CrossRef]
  21. Kodama, N.; Takahashi, T.; Yamaga, M.; Tanii, Y.; Qiu, J.; Hirao, K. Long-Lasting Phosphorescence in Ce3+-Doped Ca2Al2SiO7 and CaYAl3O7 Crystals. Appl. Phys. Lett. 1999, 75, 1715–1717. [Google Scholar] [CrossRef]
  22. Kodama, N.; Tanii, Y.; Yamaga, M. Optical Properties of Long-Lasting Phosphorescent Crystals Ce3+-Doped Ca2Al2SiO7 and CaYAl3O7. J. Lumin. 2000, 87–89, 1076–1078. [Google Scholar] [CrossRef]
  23. Wu, H.; Hu, Y.; Ju, G.; Chen, L.; Wang, X.; Yang, Z. Photoluminescence and Thermoluminescence of Ce3+ and Eu2+ in Ca2Al2SiO7 Matrix. J. Lumin. 2011, 131, 2441–2445. [Google Scholar] [CrossRef]
  24. Yamaga, M.; Tanii, Y.; Kodama, N.; Takahashi, T.; Honda, M. Mechanism of Long-Lasting Phosphorescence Process of Ce3+-Doped Ca2Al2SiO7 Melilite Crystals. Phys. Rev. B 2002, 65, 235108:1–235108:11. [Google Scholar] [CrossRef]
  25. Wang, X.J.; Jia, D.; Yen, W.M. Mn2+ Activated Green, Yellow, and Red Long Persistent Phosphors. J. Lumin. 2003, 102–103, 34–37. [Google Scholar] [CrossRef]
  26. Ito, Y.; Komeno, A.; Uematsu, K.; Toda, K.; Sato, M. Luminescence Properties of Long-Persistence Silicate Phosphors. J. Alloy. Compd. 2006, 408–412, 907–910. [Google Scholar] [CrossRef]
  27. Gutiérrez-Martín, F.; Fernández-Martinez, F.; Díaz, P.; Colón, C.; Alonso-Medina, A. Persistent UV Phosphors for Application in Photo catalysis. J. Alloys Compd. 2010, 501, 193–197. [Google Scholar] [CrossRef]
  28. Gong, Y.; Wang, Y.; Li, Y.; Xu, X. Ce3+, Dy3+ Co-Doped White-Light Long-Lasting Phosphor: Sr2Al2SiO7 Through Energy Transfer. J. Electrochem. Soc. 2010, 157, J208–J211. [Google Scholar] [CrossRef]
  29. Pan, W.; Ning, G.; Lin, Y.; Yang, X. Sol-Gel Processed Ce3+, Tb3+ Codoped White Emitting Phosphors in Sr2Al2SiO7. J. Rare Earths 2008, 26, 207–210. [Google Scholar] [CrossRef]
  30. Zhang, J.; Chen, B.; Sun, J.; Li, X.; Cheng, L.; Zhong, H. White Long-Lasting Phosphorescence Generation in a CaAl2Si2O8:Eu2+, Mn2+, Dy3+ System Through Persistent Energy Transfer. J. Phys. D: Appl. Phys. 2012, 45. [Google Scholar] [CrossRef]
  31. Chen, B.S.; Zheng, Z.S.; Lin, Y.M.; Chen, G.L.; Zhou, L.; Guo, H.X.; Huang, L.F. Preparation of a Novel Red Long Lasting Phosphorescent Material CaAl2Si2O8:Mn2+ and Investigation of Its Luminescent Properties. Appl. Mech. Mater. 2011, 71–78, 3151–3155. [Google Scholar] [CrossRef]
  32. Chen, Y.; Cheng, X.; Liu, M.; Qi, Z.; Shi, C. Comparison Study of the Luminescent Properties of the White-Light Long Afterglow Phosphors: CaxMgSi2O5+x:Dy3+ (x = 1, 2, 3). J. Lumin. 2009, 129, 531–535. [Google Scholar] [CrossRef]
  33. Lecointre, A.; Bessière, A.; Viana, B.; Gourier, D. Red Persistent Luminescent Silicate Nanoparticles. Radiat. Meas. 2010, 45, 497–499. [Google Scholar] [CrossRef]
  34. Bessière, A.; Lecointre, A.; Priolkar, K.R.; Gourier, D. Role of Crystal Defects in Red Long-Lasting Phosphorescence of CaMgSi2O6:Mn Diopsides. J. Mater. Chem. 2012, 22, 19039–19046. [Google Scholar] [CrossRef]
  35. Maldiney, T.; Lecointre, A.; Viana, B.; Bessiere, A.; Gourier, D.; Bessodes, M.; Richard, C.; Scherman, D. Trap Depth Optimization to Improve Optical Properties of Diopside-Based Nanophosphors for Medical Imaging. In Proceedings of Oxide-Based Materials and Devices III, San Francisco, CA, USA, 21 January 2012.
  36. Lecointre, A.; Bessière, A.; Priolkar, K.R.; Gourier, D.; Wallez, G.; Viana, B. Role of Manganese in Red Long-Lasting Phosphorescence of Manganese-Doped Diopside for in vivo Imaging. Mater. Res. Bull. 2013, 48, 1898–1905. [Google Scholar] [CrossRef]
  37. He, Z.; Wang, X.J.; Yen, W.M. Behavior of Mn2+ Ions in the Trapping Process of SrMg(SiO3)2:Mn, Dy. J. Lumin. 2007, 122–123, 381–384. [Google Scholar] [CrossRef]
  38. Gong, Y.; Xu, X.H.; Zeng, W.; Wu, C.J.; Wang, Y.H. Ce3+, Mn2+ Co-Doped Red-Light Long-Lasting Phosphor: BaMg2Si2O7 Through Energy Transfer. Phys. Proced. 2012, 29, 86–90. [Google Scholar] [CrossRef]
  39. Abe, S.; Uematsu, K.; Toda, K.; Sato, M. Luminescent Properties of Red Long Persistence Phosphors, BaMg2Si2O7:Eu2+, Mn2+. J. Alloys Compd. 2006, 408, 911–914. [Google Scholar] [CrossRef]
  40. Aitasalo, T.; Hietikko, A.; Hreniak, D.; Hölsä, J.; Lastusaari, M.; Niittykoski, J.; Stręk, W. Luminescence Properties of BaMg2Si2O7:Eu2+, Mn2+. J. Alloys Compd. 2008, 451, 229–231. [Google Scholar] [CrossRef]
  41. Ye, S.; Zhang, J.; Zhang, X.; Lu, S.; Ren, X.; Wang, X.J. Mn2+ Activated Red Phosphorescence in BaMg2Si2O7:Mn2+, Eu2+, Dy3+ Through Persistent Energy Transfer. J. Appl. Phys. 2007, 101, 063545:1–063545:3. [Google Scholar]
  42. Ye, S.; Zhang, J.; Zhang, X.; Wang, X. Mn2+ Activated Red Long Persistent Phosphors in BaMg2Si2O7. J. Lumin. 2007, 122–123, 914–916. [Google Scholar] [CrossRef]
  43. Lin, L.; Zhao, Z.; Zhang, W.; Zheng, Z.; Yin, M. Photo-Luminescence Properties and Thermo-Luminescence Curve Analysis of a New White Long-Lasting Phosphor:Ca2MgSi2O7:Dy3+. J. Rare Earths 2009, 27, 749–752. [Google Scholar] [CrossRef]
  44. Liu, B.; Kong, L.; Shi, C. White-Light Long-Lasting Phosphor Sr2MgSi2O7:Dy3+. J. Lumin. 2007, 122–123, 121–124. [Google Scholar] [CrossRef]
  45. Gong, Y.; Wang, Y.; Xu, X.; Li, Y.; Xin, S.; Shi, L. The Persistent Energy Transfer of Eu2+ and Mn2+ and the Thermoluminescence Properties of Long-Lasting Phosphor Sr3MgSi2O8:Eu2+, Mn2+, Dy3+. Opt. Mater. 2011, 33, 1781–1785. [Google Scholar] [CrossRef]
  46. Xu, X.; Wang, Y.; Zeng, W.; Gong, Y.; Liu, B. Luminescent Properties of the Multicolor Afterglow Phosphors Ca3SnSi2O9:Re3+ (Re = Pr, Tb, Sm). J. Am. Ceram. Soc. 2011, 94, 3632–3635. [Google Scholar] [CrossRef]
  47. Wei, R.P.; Ju, Z.H.; Ma, J.X.; Zhang, D.; Zang, Z.P.; Liu, W.S. A Novel White Afterglow Phosphorescent Phosphor Ca3SnSi2O9:Dy3+. J. Alloys Compd. 2009, 486, L17–L20. [Google Scholar] [CrossRef]
  48. Lecointre, A.; Viana, B.; LeMasne, Q.; Bessière, A.; Chanéac, C.; Gourier, D. Red Long-Lasting Luminescence in Clinoenstatite. J. Lumin. 2009, 129, 1527–1530. [Google Scholar] [CrossRef]
  49. Lei, B.F.; Liu, Y.L.; Ye, Z.R.; Shi, C.S. A Novel White Light Emitting Long-Lasting Phosphor. Chin. Chem. Lett. 2004, 15, 335–338. [Google Scholar]
  50. Liu, Y.L.; Lei, B.; Shi, C.H. Luminescent Properties of a White Afterglow Phosphor CdSiO3:Dy3+. Chem. Mater. 2005, 17, 2108–2113. [Google Scholar] [CrossRef]
  51. Qu, X.; Cao, L.; Liu, W.; Su, G.; Wang, P. Luminescence Properties of CdSiO3:Mn2+, RE3+ (RE = Sm, Dy, Eu) Phosphors. J. Alloys Compd. 2009, 487, 387–390. [Google Scholar] [CrossRef]
  52. Kuang, J.; Liu, Y.; Lei, B. Effect of RE3+ as a Co-Dopant in Long-Lasting Phosphorescence CdSiO3:Mn2+ (RE = Y, La, Gd, Lu). J. Lumin. 2006, 118, 33–38. [Google Scholar] [CrossRef]
  53. Lei, B.; Liu, Y.; Ye, Z.; Shi, C. Luminescence Properties of CdSiO3:Mn2+ Phosphor. J. Lumin. 2004, 109, 215–219. [Google Scholar] [CrossRef]
  54. Qu, X.; Cao, L.; Liu, W.; Su, G.; Xu, C.; Wang, P. Preparation and Properties of CdSiO3:Mn2+, Dy3+ Phosphor. J. Alloys Compd. 2010, 494, 196–198. [Google Scholar] [CrossRef]
  55. Qu, X.F.; Cao, L.X.; Liu, W.; Su, G. Sol-Gel Synthesis and Luminescence Properties of CdSiO3: Mn2+, Eu3+ Phosphor. J. Alloys Compd. 2012, 533, 83–87. [Google Scholar] [CrossRef]
  56. Qu, X.; Cao, L.; Liu, W.; Su, G. Preparation and Properties of CdSiO3:Mn2+, Tb3+ Phosphor. Ceram. Int. 2012, 38, 1765–1769. [Google Scholar] [CrossRef]
  57. Kuang, J.; Liu, Y. Luminescence Properties of a Pb2+ Activated Long-Afterglow Phosphor. J. Electrochem. Soc. 2006, 153, G245–G247. [Google Scholar] [CrossRef]
  58. Kuang, J.; Liu, Y. Observation of Energy Transfer from Host to Rare Earth Ions in Pr3+-Doped CdSiO3 Long-Lasting Phosphor. Chem. Phys. Lett. 2006, 424, 58–62. [Google Scholar] [CrossRef]
  59. Lei, B.; Liu, Y.; Liu, J.; Ye, Z.; Shi, C. Pink Light Emitting Long-Lasting Phosphorescence in Sm3+-Doped CdSiO3. J. Solid State Chem. 2004, 177, 1333–1337. [Google Scholar] [CrossRef]
  60. Rodrigues, L.C.V.; Brito, H.F.; Hölsä, J.; Stefani, R.; Felinto, M.C.F.C.; Lastusaari, M.; Laamanen, T.; Nunes, L.A.O. Discovery of the Persistent Luminescence Mechanism of CdSiO3:Tb3+. J. Phys. Chem. C 2012, 116, 11232–11240. [Google Scholar] [CrossRef]
  61. Dorenbos, P.; Vaneijk, C.W.E.; Bos, A.J.J.; Melcher, C.L. Afterglow and Thermoluminescence Properties of Lu2SiO5:Ce Scintillation Crystals. J. Phys. Condens. Matter 1994, 6, 4167–4180. [Google Scholar] [CrossRef]
  62. Yamaga, M.; Ohsumi, Y.; Nakayama, T.; Han, T.P.J. Persistent Phosphorescence in Ce-Doped Lu2SiO5. Opt. Mater. Express 2012, 2, 413–419. [Google Scholar] [CrossRef]
  63. Lin, L.; Shi, C.; Wang, Z.; Zhang, W.; Yin, M. A Kinetics Model of Red Long-Lasting Phosphorescence in MgSiO3:Eu2+, Dy3+, Mn2+. J. Alloys Compd. 2008, 466, 546–550. [Google Scholar] [CrossRef]
  64. Lin, L.; Yin, M.; Shi, C.; Zhang, W. Luminescence Properties of A New Red Long-Lasting Phosphor:Mg2SiO4:Dy3+, Mn2+. J. Alloys Compd. 2008, 455, 327–330. [Google Scholar] [CrossRef]
  65. Kuang, J.; Liu, Y.; Zhang, J. White-Light-Emitting Long-Lasting Phosphorescence in Dy3+-Doped SrSiO3. J. Solid State Chem. 2006, 179, 266–269. [Google Scholar] [CrossRef]
  66. Kuang, J.; Liu, Y. White-Emitting Long-Lasting Phosphor Sr2SiO4:Dy3+. Chem. Lett. 2005, 34, 598–599. [Google Scholar] [CrossRef]
  67. Lin, H.; Xu, A.X.; Chen, G.L.; Zheng, Z.S.; Lin, H.; Chen, B.S.; Huang, L.F.; Guo, H.X.; Xu, Y. Synthesis of a New Red Long Persistent Phosphor Sr2ZnSi2O7:Eu3+, Lu3+ via Sol-Gel Method and Investigation of Its Luminescence. Adv. Mater. Res. 2012, 393–395, 362–365. [Google Scholar]
  68. Avouris, P.; Morgan, T.N. A Tunneling Model for the Decay of Luminescence in Inorganic Phosphors: The Case of Zn2SiO4:Mn. J. Chem. Phys. 1981, 74, 4347–4355. [Google Scholar] [CrossRef]
  69. Garlick, G.F.J.; Gibson, A.F. The Electron Trap Mechanism of Luminescence in Sulphide and Silicate Phosphors. Proc. Phys. Soc. 1948, 60, 574–590. [Google Scholar] [CrossRef]
  70. Iwasaki, K.; Takahashi, Y.; Masai, H.; Fujiwara, T. Blue Photoluminescence, Greenish-Blue Afterglow and Their Ti-Concentration Dependence in Rare Earth-Free Bazirite-Type BaZr1−xTixSi3O9. Opt. Express 2009, 17, 18054–18062. [Google Scholar] [CrossRef] [PubMed]
  71. Takahashi, Y.; Masai, H.; Fujiwara, T.; Kitamura, K.; Inoue, S. Afterglow in Synthetic Bazirite, BaZrSi3O9. J. Ceram. Soc. Jpn. 2008, 116, 357–360. [Google Scholar] [CrossRef]
  72. Bessière, A.; Jacquart, S.; Priolkar, K.; Lecointre, A.; Viana, B.; Gourier, D. ZnGa2O4:Cr3+: A New Red Long-Lasting Phosphor with High Brightness. Opt. Express 2011, 19, 10131–10137. [Google Scholar] [CrossRef] [PubMed]
  73. Allix, M.; Chenu, S.; Véron, E.; Poumeyrol, T.; Kouadri-Boudjelthia, E.A.; Alahraché, S.; Porcher, F.; Massiot, D.; Fayon, F. Considerable Improvement of Long-Persistent Luminescence in Germanium and Tin Substituted ZnGa2O4. Chem. Mater. 2013, 25, 1600–1606. [Google Scholar] [CrossRef]
  74. Jia, D.; Wang, X.J.; van der Kolk, E.; Yen, W.M. Site Dependent Thermoluminescence of Long Persistent Phosphorescence of BaAl2O4:Ce3+. Opt. Commun. 2002, 204, 247–251. [Google Scholar] [CrossRef]
  75. Jia, D.; Meltzer, R.S.; Yen, W.M.; Jia, W.; Wang, X. Green Phosphorescence of CaAl2O4:Tb3+, Ce3+ Through Persistence Energy Transfer. Appl. Phys. Lett. 2002, 80, 1535:1–1535:3. [Google Scholar]
  76. Jia, D.; Wang, X.J.; Jia, W.; Yen, W.M. Persistent Energy Transfer in CaAl2O4:Tb3+, Ce3+. J. Appl. Phys. 2003, 93, 148–152. [Google Scholar] [CrossRef]
  77. Jia, D.; Yen, W.M. Trapping Mechanism Associated with Electron Delocalization and Tunneling of CaAl2O4:Ce3+, a Persistent Phosphor. J. Electrochem. Soc. 2003, 150, H61–H65. [Google Scholar] [CrossRef]
  78. Liu, B.; Shi, C.; Qi, Z. Potential White-Light Long-Lasting Phosphor:Dy3+-Doped Aluminate. Appl. Phys. Lett. 2005, 86, 191111:1–191111:3. [Google Scholar]
  79. Xu, X.; Wang, Y.; Li, Y.; Gong, Y. Energy Transfer Between Eu2+ and Mn2+ in Long-Afterglow Phosphor CaAl2O4:Eu2+, Nd3+, and Mn2+. J. Appl. Phys. 2009, 105, 083502:1–083502:4. [Google Scholar]
  80. Jia, D.; Wang, X.J.; Yen, W.M. Electron Traps in Tb3+-Doped CaAl2O4. Chem. Phys. Lett. 2002, 363, 241–244. [Google Scholar] [CrossRef]
  81. Jia, D.; Yen, W.M. Enhanced VK3+ Center Afterglow in MgAl2O4 by Doping with Ce3+. J. Lumin. 2003, 101, 115–121. [Google Scholar] [CrossRef]
  82. Lorincz, A.; Puma, M.; James, F.J.; Crawford, J.H.J. Thermally Stimulated Processes Involving Defects in Y and X Irradiated Spinel (MgAl2O4). J. Appl. Phys. 1982, 53, 927–932. [Google Scholar] [CrossRef]
  83. Nakagawa, H.; Ebisu, K.; Zhang, M.; Kitaura, M. Luminescence Properties and Afterglow in Spinel Crystals Doped with Trivalent Tb Ions. J. Lumin. 2003, 102–103, 590–596. [Google Scholar] [CrossRef]
  84. Jia, D. Relocalization of Ce3+ 5d Electrons from Host Conduction Band. J. Lumin. 2006, 117, 170–178. [Google Scholar] [CrossRef]
  85. Jia, D.; Wang, X.j.; Jia, W.; Yen, W.M. Trapping Processes of 5d Electrons in Ce3+ Doped SrAl2O4. J. Lumin. 2007, 122–123, 311–314. [Google Scholar] [CrossRef]
  86. Xu, X.; Wang, Y.; Yu, X.; Li, Y.; Gong, Y. Investigation of Ce-Mn Energy Transfer in SrAl2O4: Ce3+, Mn2+. J. Am. Ceram. Soc. 2011, 94, 160–163. [Google Scholar] [CrossRef]
  87. Yu, N.; Liu, F.; Li, X.; Pan, Z. Near Infrared Long-Persistent Phosphorescence in SrAl2O4:Eu2+, Dy3+, Er3+ Phosphors Based on Persistent Energy Transfer. Appl. Phys. Lett. 2009, 95, 231110:1–231110:3. [Google Scholar]
  88. Teng, Y.; Zhou, J.; Ma, Z.; Smedskjaer, M.M.; Qiu, J. Persistent Near Infrared Phosphorescence from Rare Earth Ions Co-Doped Strontium Aluminate Phosphors. J. Electrochem. Soc. 2011, 158, K17–K19. [Google Scholar] [CrossRef]
  89. Sharma, S.K.; Pitale, S.S.; Manzar Malik, M.; Dubey, R.N.; Qureshi, M.S. Luminescence Studies on the Blue-Green Emitting Sr4Al14O25:Ce3+ Phosphor Synthesized Through Solution Combustion route. J. Lumin. 2009, 129, 140–147. [Google Scholar] [CrossRef]
  90. Luitel, H.N.; Watari, T.; Torikai, T.; Yada, M. Luminescent Properties of Cr3+ Doped Sr4Al14O25:Eu/Dy Blue-Green and Red Phosphor. Opt. Mater. 2009, 31, 1200–1204. [Google Scholar] [CrossRef]
  91. Zhong, R.; Zhang, J.; Zhang, X.; Lu, S.; Wang, X.J. Red Phosphorescence in Sr4Al14O25:Cr3+, Eu2+, Dy3+ Through Persistent Energy Transfer. Appl. Phys. Lett. 2006, 88, 201916:1–201916:3. [Google Scholar]
  92. Zhong, R.; Zhang, J.; Zhang, X.; Lu, S.; Wang, X.J. Energy Transfer and Red Phosphorescence in Strontium Aluminates Co-Doped with Cr3+, Eu2+ and Dy3+. J. Lumin. 2006, 119–120, 327–331. [Google Scholar] [CrossRef]
  93. Zhang, S.; Pang, R.; Li, C.; Su, Q. Green Photoluminescence, But Blue Afterglow of Tb3+ Activated Sr4Al14O25. J. Lumin. 2010, 130, 2223–2225. [Google Scholar] [CrossRef]
  94. Mu, Z.F.; Wang, Y.H.; Hu, Y.H.; Wu, H.Y.; Deng, L.Y.; Xie, W.; Fu, C.J.; Liao, C.X. The Afterglow and Thermoluminescence Properties of Y3Al5O12:Ce3+. Acta Phys. Sin. 2011, 60, 182–187. [Google Scholar]
  95. Zhang, S.; Li, C.; Pang, R.; Jiang, L.; Shi, L.; Su, Q. Long-Lasting Phosphorescence Study on Y3Al5O12 Doped with Different Concentrations of Ce3+. J. Rare Earths 2011, 29, 426–430. [Google Scholar] [CrossRef]
  96. Mu, Z.; Hu, Y.; Wang, Y.; Wu, H.; Fu, C.; Kang, F. The Structure and Luminescence Properties of Long Afterglow Phosphor Y3−xMnxAl5−xSixO12. J. Lumin. 2011, 131, 676–681. [Google Scholar] [CrossRef]
  97. Zhang, S.; Li, C.; Pang, R.; Jiang, L.; Shi, L.; Su, Q. Energy Transfer and Excitation Wavelength Dependent Long-Lasting Phosphorescence in Pr3+ Activated Y3Al5O12. J. Lumin. 2011, 131, 2730–2734. [Google Scholar] [CrossRef]
  98. Fu, J. Orange and Red Emitting Long-Lasting Phosphors MO:Eu3+ (M = Ca, Sr, Ba). Electrochem. Solid-State Lett. 2000, 3, 350–351. [Google Scholar] [CrossRef]
  99. Fu, J. Orange-and violet-emitting long-lasting phosphors. J. Am. Ceram. Soc. 2002, 85, 255–257. [Google Scholar] [CrossRef]
  100. Kuang, J.Y.; Liu, Y.L.; Zhang, J.X.; Yuan, D.S.; Huang, L.H.; Rong, J.H. Long-Lasting Phosphorescence of Tb3+ Doped MO (M = Ca,Sr). Chin. J. Inorg. Chem. 2005, 21, 1383–1385. [Google Scholar]
  101. Lu, Y.Y.; Liu, F.; Gu, Z.; Pan, Z. Long-Lasting Near-Infrared Persistent Luminescence from β-Ga2O3:Cr3+ Nanowire Assemblies. J. Lumin. 2011, 131, 2784–2787. [Google Scholar] [CrossRef]
  102. Pejakovic, D.A. Studies of the Phosphorescence of Polycrystalline Hafnia. J. Lumin. 2010, 130, 1048–1054. [Google Scholar] [CrossRef]
  103. Wiatrowska, A.; Zych, E.; Kepinski, L. Monoclinic HfO2:Eu X-Ray Phosphor. Radiat. Meas. 2010, 45, 493–496. [Google Scholar] [CrossRef]
  104. Zych, E.; Trojan-Piegza, J. Anomalous Activity of Eu3+ in S6 Site of Lu2O3 in Persistent Luminescence. J. Lumin. 2007, 122–123, 335–338. [Google Scholar] [CrossRef]
  105. Chen, S.; Yang, Y.; Zhou, G.; Wu, Y.; Liu, P.; Zhang, F.; Wang, S.; Trojan-Piegza, J.; Zych, E. Characterization of Afterglow-Related Spectroscopic Effects in Vacuum Sintered Tb3+, Sr2+ Co-Doped Lu2O3 Ceramics. Opt. Mater. 2012, 35, 240–243. [Google Scholar] [CrossRef]
  106. Trojan-Piegza, J.; Niittykoski, J.; Hölsä, J.; Zych, E. Thermoluminescence and Kinetics of Persistent Luminescence of Vacuum-Sintered Tb3+-Doped and Tb3+, Ca2+-Codoped Lu2O3 Materials. Chem. Mater. 2008, 20, 2252–2261. [Google Scholar] [CrossRef]
  107. Zych, E.; Trojan-Piegza, J.; Hreniak, D.; Strek, W. Properties of Tb-Doped Vacuum-Sintered Lu2O3 Storage Phosphor. J. Appl. Phys. 2003, 94, 1318–1324. [Google Scholar] [CrossRef]
  108. Trojan-Piegza, J.; Zych, E.; Hölsä, J.; Niittykoski, J. Spectroscopic Properties of Persistent Luminescence Phosphors: Lu2O3:Tb3+, M2+ (M = Ca, Sr, Ba). J. Phys. Chem. C 2009, 113, 20493–20498. [Google Scholar] [CrossRef]
  109. Zhang, J.; Ma, X.; Qin, Q.; Shi, L.; Sun, J.; Zhou, M.; Liu, B.; Wang, Y. The Synthesis and Sfterglow Luminescence Properties of a Novel Red Afterglow Phosphor:SnO2:Sm3+, Zr4+. Mater. Chem. Phys. 2012, 136, 320–324. [Google Scholar] [CrossRef]
  110. Lin, Y.; Nan, C.W.; Cai, N.; Zhou, X.; Wang, H.; Chen, D. Anomalous Afterglow from Y2O3-Based Phosphor. J. Alloys Compd. 2003, 361, 92–95. [Google Scholar] [CrossRef]
  111. Xie, W.; Wang, Y.H.; Hu, Y.H.; Luo, L.; Wu, H.Y.; Deng, L.Y. Preparation and Red Long-Afterglow Luminescence of Y2O3:Eu, Dy. Acta Phys. Sin. 2010, 59, 3344–3349. [Google Scholar]
  112. Zhang, J.; Pan, F.; Hao, W.; Wang, T. Effect of MgO Doping on the Luminescent Properties of ZnO. Mater. Sci. Eng. B 2006, 129, 93–95. [Google Scholar] [CrossRef]
  113. Zhang, J.; Zhang, Z.; Wang, T. A New Luminescent Phenomenon of ZnO Due to the Precipitate Trapping Effect of MgO. Chem. Mater. 2004, 16, 768–770. [Google Scholar] [CrossRef]
  114. Zhao, Z.; Wang, Y. The Synthesis and Afterglow Luminescence Properties of a Novel Red Afterglow Phosphor:ZrO2:Sm3+, Sn4+. J. Lumin. 2012, 132, 2842–2846. [Google Scholar] [CrossRef]
  115. Carvalho, J.M.; Rodrigues, L.C.V.; Hölsä, J.; Lastusaari, M.; Nunes, L.A.O.; Felinto, M.C.F.C.; Malta, O.L.; Brito, H.F. Influence of Titanium and Lutetium on the Persistent Luminescence of ZrO2. Opt. Mater. Express 2012, 2, 331–340. [Google Scholar] [CrossRef]
  116. Cong, Y.; Li, B.; Lei, B.; Li, W. Long Lasting Phosphorescent Properties of Ti Doped ZrO2. J. Lumin. 2007, 126, 822–826. [Google Scholar] [CrossRef]
  117. Cong, Y.; Li, B.; Wang, X.J.; Lei, B.; Li, W. Synthesis and Optical Property Studies of Nanocrystalline ZrO2:Ti Long-Lasting Phosphors. J. Electrochem. Soc. 2008, 155, K195–K198. [Google Scholar] [CrossRef]
  118. Liu, Y.H.; Li, B.; Cong, Y. Synthesis and Optical Property Studies of Long-Lasting Phosphor ZrO2:Ti Electrospinning Fibers. Spectrosc. Spectr. Anal. 2010, 30, 887–891. [Google Scholar]
  119. Wang, Z.; Zhang, J.; Zheng, G.; Liu, Y.; Zhao, Y. The Unusual Variations of Photoluminescence and Afterglow Properties in Monoclinic ZrO2 by Annealing. J. Lumin. 2012, 132, 2817–2821. [Google Scholar] [CrossRef]
  120. Xu, X.; Wang, Y.; Zeng, W.; Gong, Y. Luminescence and Storage Properties of Sm-Doped Alkaline-Earth Atannates. J. Electrochem. Soc. 2011, 158, J305–J309. [Google Scholar] [CrossRef]
  121. Zhang, J.; Hu, R.; Qin, Q.; Wang, D.; Liu, B.; Wen, Y.; Zhou, M.; Wang, Y. The Origin of Two Quenching Concentrations and Unusual Afterglow Behaviors of Ba2SnO4:Sm3+ Phosphor. J. Lumin. 2012, 132, 2590–2594. [Google Scholar] [CrossRef]
  122. Gao, X.; Zhang, Z.; Wang, C.; Xu, J.; Ju, Z.; An, Y.; Liu, W. The Persistent Energy Transfer and Effect of Oxygen Vacancies on Red Long-Persistent Phosphorescence Phosphors Ca2SnO4:Gd3+, Eu3+. J. Electrochem. Soc. 2011, 158, J405–J408. [Google Scholar] [CrossRef]
  123. Lei, B.F.; Man, S.Q.; Liu, Y.L.; Yue, S. Luminescence Properties of Ca2SnO4:Eu3+ Red-Light Emitting Afterglow Phosphor. Chin. J. Inorg. Chem. 2010, 26, 1259–1263. [Google Scholar]
  124. Ju, Z.H.; Wei, R.P.; Zheng, J.R.; Gao, X.P.; Zhang, S.H.; Liu, W.S. Synthesis and Phosphorescence Mechanism of a Reddish Orange Emissive Long Afterglow Phosphor Sm3+-Doped Ca2SnO4. Appl. Phys. Lett. 2011, 98, 121906:1–121906:3. [Google Scholar] [CrossRef]
  125. Ju, Z.H.; Zhang, S.H.; Gao, X.P.; Tang, X.L.; Liu, W.S. Reddish Orange Long Afterglow Phosphor Ca2SnO4:Sm3+ Prepared by Sol-Gel Method. J. Alloys Compd. 2011, 509, 8082–8087. [Google Scholar] [CrossRef]
  126. Lei, B.; Zhang, H.; Mai, W.; Yue, S.; Liu, Y.; Man, S.Q. Luminescent Properties of Orange-Emitting Long-Lasting Phosphorescence Phosphor Ca2SnO4:Sm3+. Solid State Sci. 2011, 13, 525–528. [Google Scholar] [CrossRef]
  127. Jin, Y.; Hu, Y.; Chen, L.; Wang, X.; Ju, G.; Mu, Z. Luminescent Properties of Tb3+-Doped Ca2SnO4 Phosphor. J. Lumin. 2013, 138, 83–88. [Google Scholar] [CrossRef]
  128. Jiachi, Z.; Minghui, Y.; Qingsong, Q.; Hongliang, Z.; Meijiao, Z.; Xuhui, X.; Yuhua, W. The Persistent Luminescence and Up Conversion Photostimulated Luminescence Properties of Nondoped Mg2SnO4 Material. J. Appl. Phys. 2010, 108, 123518:1–123518:7. [Google Scholar]
  129. Zhang, J.; Qin, Q.; Yu, M.; Zhou, M.; Wang, Y. The photoluminescence, Afterglow and Up Conversion Photostimulated Luminescence of Eu3+ Doped Mg2SnO4 Phosphors. J. Lumin. 2012, 132, 23–26. [Google Scholar] [CrossRef]
  130. Zhang, J.C.; Qin, Q.S.; Yu, M.H.; Zhou, H.L.; Zhou, M.J. Photoluminescence and Persistent Luminescence Properties of Non-Doped and Ti4+-Doped Mg2SnO4 Phosphors. Chin. Phys. B 2011, 20, 094211:1–094211:5. [Google Scholar]
  131. Lei, B.; Li, B.; Wang, X.; Li, W. Green Emitting Long Lasting Phosphorescence (LLP) Properties of Mg2SnO4:Mn2+ Phosphor. J. Lumin. 2006, 118, 173–178. [Google Scholar] [CrossRef]
  132. Wang, Z.L.; Zheng, G.S.; Wang, S.Q.; Qin, Q.S.; Zhou, H.L.; Zhang, J.C. The Luminescence Properties of a Novel Electron Trapped Material Sr2SnO4:Sb3+ for Optical Storage. Acta Phys. Sin. 2012, 61, 127805:1–127805:6. [Google Scholar]
  133. Lei, B.F.; Yue, S.; Zhang, Y.Z.; Liu, Y.L. Luminescence Properties of Sr2SnO4:Sm3+ Afterglow Phosphor. Chin. Phys. Lett. 2010, 27. [Google Scholar] [CrossRef]
  134. Xu, X.; Wang, Y.; Gong, Y.; Zeng, W.; Li, Y. Effect of Oxygen Vacancies on the Red Phosphorescence of Sr2SnO4:Sm3+ Phosphor. Opt. Express. 2010, 18, 16989–16994. [Google Scholar] [CrossRef] [PubMed]
  135. Yu, X.; Xu, X.; Qiu, J. Enhanced Long Persistence of Sr2SnO4:Sm3+ Red Phosphor by Co-Doping with Dy3+. Mater. Res. Bull. 2011, 46, 627–629. [Google Scholar] [CrossRef]
  136. Qin, Q.S.; Ma, X.L.; Shao, Y.; Yang, X.Y.; Sheng, H.F.; Yang, J.Z.; Yin, Y.; Zhang, J.C. Synthesis and Infrared Up-Conversion Photostimulated Luminescence Properties of a Novel Optical Storage Material Sr2SnO4:Tb3+, Li+. Acta Phys. Sin. 2012, 61, 097804. [Google Scholar]
  137. Lei, B.; Li, B.; Zhang, H.; Zhang, L.; Cong, Y.; Li, W. Synthesis and Luminescence Properties of Cube-Structured CaSnO3/RE3+ (RE = Pr and Tb) Long-Lasting Phosphors. J. Electrochem. Soc. 2007, 154, H623–H630. [Google Scholar] [CrossRef]
  138. Lei, B.; Li, B.; Zhang, H.; Li, W. Preparation and Luminescence Properties of CaSnO3:Sm3+ Phosphor Emitting in the Reddish Orange Region. Opt. Mater. 2007, 29, 1491–1494. [Google Scholar] [CrossRef]
  139. Liang, Z.; Zhang, J.; Sun, J.; Li, X.; Cheng, L.; Zhong, H.; Fu, S.; Tian, Y.; Chen, B. Enhancement of Green Long Lasting Phosphorescence in CaSnO3:Tb3+ by Addition of Alkali Ions. Phys. B Condens. Matter 2013, 412, 36–40. [Google Scholar] [CrossRef]
  140. Liu, Z.; Liu, Y. Synthesis and Luminescent Properties of a New Green Afterglow Phosphor CaSnO3:Tb. Mater. Chem. Phys. 2005, 93, 129–132. [Google Scholar] [CrossRef]
  141. Lei, B.; Man, S.Q.; Liu, Y.; Yue, S. Luminescence Properties of Sm3+-Doped Sr3Sn2O7 Phosphor. Mater. Chem. Phys. 2010, 124, 912–915. [Google Scholar] [CrossRef]
  142. Bessière, A.; Benhamou, R.A.; Wallez, G.; Lecointre, A.; Viana, B. Site Occupancy and Mechanisms of Thermally Stimulated Luminescence in Ca9Ln(PO4)7 (Ln = lanthanide). Acta Mater. 2012, 60, 6641–6649. [Google Scholar] [CrossRef]
  143. Bessière, A.; Lecointre, A.; Benhamou, R.A.; Suard, E.; Wallez, G.; Viana, B. How to Induce Red Persistent Luminescence in Biocompatible Ca3(PO4)2. J. Mater. Chem. C 2013, 1, 1252–1259. [Google Scholar] [CrossRef]
  144. Lecointre, A.; Ait benhamou, R.; Bessiére, A.; Wallez, G.; Elaatmani, M.; Viana, B. Red Long-Lasting Phosphorescence (LLP) in β-TCP type Ca9.5Mn(PO4)7 Compounds. Opt. Mater. 2011, 34, 376–380. [Google Scholar] [CrossRef]
  145. Wang, X.; Du, F.; Wei, D.; Huang, Y.; Seo, H.J. A New Long-Lasting Phosphor Zr4+ and Eu3+ Co-Doped SrMg2(PO4)2. Sens. Actuators B Chem. 2011, 158, 171–175. [Google Scholar] [CrossRef]
  146. Jeong, J.; Jayasimhadri, M.; Lee, H.S.; Jang, K.; Yi, S.S.; Jeong, J.H.; Kim, C. Photoluminescence and Phosphorescence Properties of Sr1−xZn2−y(PO4)2:Eu2+x, Mn2+y Phosphor for UV-Based White-LEDs. Phys. B Condens. Matter 2009, 404, 2016–2019. [Google Scholar] [CrossRef]
  147. Peng, Z.; Xu, Z.; Luo, C.; Yu, J.; Zhang, G. Synthesis and Luminescent Properties of a Novel Bluish-White Afterglow Phosphor, b-Zn3(PO4)2:Hf4+. Lumin. 2008, 23, 14–16. [Google Scholar] [CrossRef]
  148. Song, Y.H.; Zou, H.F.; Gan, S.C.; Deng, Y.F.; Hong, G.Y.; Meng, J. Phase Conversion and Spectral Properties of Long Lasting Phosphor Zn3(PO4)2:Mn2+, Ga3+. J. Mater. Sci. 2007, 42, 4899–4904. [Google Scholar] [CrossRef]
  149. Wang, J.; Su, Q.; Wang, S.B. A Novel Red Long Lasting Phosphorescent (LLP) Material β-Zn3(PO4)2:Mn2+, Sm3+. Mater. Res. Bull. 2005, 40, 590–598. [Google Scholar] [CrossRef]
  150. Wang, J.; Wang, S.; Su, Q. The Role of Excess Zn2+ Ions in Improvement of Red Long Lasting Phosphorescence (LLP) Performance of β-Zn3(PO4)2:Mn Phosphor. J. Solid State Chem. 2004, 177, 895–900. [Google Scholar] [CrossRef]
  151. Wang, J.; Wang, S.B.; Su, Q. Synthesis, Photoluminescence and Thermostimulated-Luminescence Properties of Novel Red Long-Lasting Phosphorescent Materials β-Zn3(PO4)2:Mn2+, M3+ (M = Al and Ga). J. Mater. Chem. 2004, 14, 2569–2574. [Google Scholar] [CrossRef]
  152. Wang, J.; Su, Q.; Wang, S.B. Blue and Red Long Lasting Phosphorescence (LLP) in β-Zn3(PO4)2:Mn2+, Zr4+. J. Phys. Chem. Solids 2005, 66, 1171–1176. [Google Scholar] [CrossRef]
  153. Lecointre, A.; Bessière, A.; Bos, A.J.J.; Dorenbos, P.; Viana, B.; Jacquart, S. Designing a Red Persistent Luminescence Phosphor: The Example of YPO4:Pr3+, Ln3+ (Ln = Nd, Er, Ho, Dy). J. Phys. Chem. C 2011, 115, 4217–4227. [Google Scholar] [CrossRef]
  154. Zhang, X.Y.; Cheng, G.; Mi, X.Y.; Xiao, Z.Y.; Jiang, W.W.; Hu, J.J. Preparation and Long Persistence Red Luminescence of M0.2Ca0.8TiO3:Pr3+ (M = Mg2+, Sr2+, Ba2+, Zn2+). J. Rare Earths 2004, 22, 137–139. [Google Scholar]
  155. Boutinaud, P.; Sarakha, L.; Cavalli, E.; Bettinelli, M.; Dorenbos, P.; Mahiou, R. About Red Afterglow in Pr3+ Doped Titanate Perovskites. J. Phys. D Appl. Phys. 2009, 42, 045106:1–045106:7. [Google Scholar] [CrossRef]
  156. Jia, W.; Jia, D.; Rodriguez, T.; Evans, D.R.; Meltzer, R.S.; Yen, W.M. UV Excitation and Trapping Centers in CaTiO3:Pr3+. J. Lumin. 2006, 119–120, 13–18. [Google Scholar] [CrossRef]
  157. Pan, Y.X.; Su, Q.; Xu, H.F.; Chen, T.H.; Ge, W.K.; Yang, C.L.; Wu, M.M. Synthesis and Red Luminescence of Pr3+-Doped CaTiO3 Nanophosphor from Polymer Precursor. J. Solid State Chem. 2003, 174, 69–73. [Google Scholar] [CrossRef]
  158. Zhang, X.; Zhang, J.; Nie, Z.; Wang, M.; Ren, X.; Wang, X.j. Enhanced Red Phosphorescence in Nanosized CaTiO3:Pr3+ Phosphors. Appl. Phys. Lett. 2007, 90, 151911–151913. [Google Scholar] [CrossRef]
  159. Zhang, X.; Zhang, J.; Zhang, X.; Chen, L.; Lu, S.; Wang, X.J. Enhancement of Red Fluorescence and Afterglow in CaTiO3:Pr3+ by Addition of Lu2O3. J. Lumin. 2007, 122–123, 958–960. [Google Scholar] [CrossRef]
  160. Haranath, D.; Khan, A.F.; Chander, H. Bright Red Luminescence and Energy Transfer of Pr3+-Doped (Ca, Zn) TiO3 Phosphor for Long Decay Applications. J. Phys. D Appl. Phys. 2006, 39, 4956–4960. [Google Scholar] [CrossRef]
  161. Wanjun, T.; Donghua, C. Photoluminescent Properties of (Ca,Zn)TiO3:Pr, B Particles Synthesized by the Peroxide-Based Route Method. J. Am. Ceram. Soc. 2007, 90, 3156–3159. [Google Scholar] [CrossRef]
  162. Yuan, X.; Shi, X.; Shen, M.; Wang, W.; Fang, L.; Zheng, F.; Wu, X. Luminescent Properties of Pr3+ Doped (Ca, Zn)TiO3: Powders and Films. J. Alloys Compd. 2009, 485, 831–836. [Google Scholar] [CrossRef]
  163. Lian, S.X.; Qi, Y.; Rong, C.Y.; Yu, L.P.; Zhu, A.L.; Yin, D.L.; Liu, S.B. Effectively Leveraging Solar Energy Through Persistent Dual Red Phosphorescence: Preparation, Characterization, and Density Functional Theory Study of Ca2Zn4Ti16O38:Pr3+. J. Phys. Chem. C 2010, 114, 7196–7204. [Google Scholar] [CrossRef]
  164. Qi, Y.; Lian, S.X.; Yu, L.P.; Zhou, W.; Yin, D.L. Synthesis and Red Persistent Properties of Phosphor Ca2Zn4Ti16O38:Pr3+, Na+. Chin. J. Inorg. Chem. 2009, 25, 218–222. [Google Scholar]
  165. Chu, M.H.; Jiang, D.P.; Zhao, C.J.; Li, B. Long-Lasting Phosphorescence Properties of Pyrochlore La2Ti2O7:Pr3+ Phosphor. Chin. Phys. Lett. 2010, 27, 047203:1–047203:4. [Google Scholar]
  166. Blasse, G.; Grabmaier, B.C.; Ostertag, M. The Afterglow Mechanism of Chromium-Doped Gadolinium Gallium garnet. J. Alloys Compd. 1993, 200, 17–18. [Google Scholar] [CrossRef]
  167. Kostyk, L.; Luchechko, A.; Zakharko, Y.; Tsvetkova, O.; Kukliński, B. Cr-Related Centers in Gd3Ga5O12 Polycrystals. J. Lumin. 2009, 129, 312–316. [Google Scholar] [CrossRef]
  168. Matsui, H.; Xu, C.N.; Akiyama, M.; Watanabe, T. Strong Mechanoluminescence from UV-Irradiated Spinels of ZnGa2O4:Mn and MgGa2O4:Mn. Jpn. J. Appl. Phys. 2000, 39, 6582–6586. [Google Scholar] [CrossRef]
  169. Zhuang, Y.; Ueda, J.; Tanabe, S. Photochromism and White Long-Lasting Persistent Luminescence in Bi3+-Doped ZnGa2O4 Ceramics. Opt. Mater. Express 2012, 2, 1378–1383. [Google Scholar] [CrossRef]
  170. Uheda, K.; Maruyama, T.; Takizawa, H.; Endo, T. Synthesis and Long-Period Phosphorescence of ZnGa2O4:Mn2+ Spinel. J. Alloys Compd. 1997, 262–263, 60–64. [Google Scholar] [CrossRef]
  171. Che, G.; Li, X.; Liu, C.; Wang, H.; Liu, Y.; Xu, Z. Long-Lasting Phosphorescence Properties of Mn2+-Doped Cd2Ge7O16 Orange Light-Emitting Phosphor. Physica Status Solidi A 2008, 205, 194–198. [Google Scholar] [CrossRef]
  172. Yi, S.J.; Liu, Y.L.; Zhang, J.X.; Yuan, D.S. Long Phosphorescence Persistence Property of Cd2Ge7O16:Pb2+. Chem. J. Chin. Univ. 2004, 25, 1400–1402. [Google Scholar]
  173. Cong, Y.; Li, B.; Yue, S.; Zhang, L.; Li, W.; Wang, X.J. Enhanced Red Phosphorescence in MgGeO3:Mn2+ by Addition of Yb3+ Ions. J. Electrochem. Soc. 2009, 156, H272–H275. [Google Scholar] [CrossRef]
  174. Iwasaki, M.; Kim, D.N.; Tanaka, K.; Murata, T.; Morinaga, K. Red Phosphorescence Properties of Mn Ions in MgO-GeO2 Compounds. Sci. Technol. Adv. Mater. 2003, 4, 137–142. [Google Scholar] [CrossRef]
  175. Sun, Z.X. Enhanced Green-Light-Emitting Afterglow in Zn2GeO4: Mn2+ Phosphor by Yb3+ Codoping. Chin. J. Inorg. Chem. 2012, 28, 1229–1233. [Google Scholar]
  176. Che, G.B.; Liu, C.B.; Wang, Q.W.; Xu, Z.L. White-Light-Emission Afterglow Phosphor CaZnGe2O6:Dy3+. Chem. Lett. 2008, 37, 136–137. [Google Scholar] [CrossRef]
  177. Che, G.; Liu, C.; Li, X.; Xu, Z.; Liu, Y.; Wang, H. Luminescence Properties of a New Mn2+-Activated Red Long-Afterglow Phosphor. J. Phys. Chem. Solids 2008, 69, 2091–2095. [Google Scholar] [CrossRef]
  178. Liu, C.; Che, G.; Xu, Z.; Wang, Q. Luminescence Properties of a Tb3+ Activated Long-Afterglow Phosphor. J. Alloys Compd. 2009, 474, 250–253. [Google Scholar] [CrossRef]
  179. Woo, B.K.; Luo, Z.; Li, Y.; Singh, S.P.; Joly, A.G.; Hossu, M.; Liu, Z.; Chen, W. Luminescence Enhancement of CaZnGe2O6:Tb3+ Afterglow Phosphors Synthesized Using ZnO Nanopowders. Opt. Mater. 2011, 33, 1283–1290. [Google Scholar] [CrossRef]
  180. Liu, Z.; Liu, Y. Afterglow Energy Transfer in Cd3Al2Ge3O12:Dy. Phys. Stat. Sol. A 2005, 202, 1814–1817. [Google Scholar] [CrossRef]
  181. Jia, D.; Lewis, L.A.; Wang, X.J. Cr3+-Doped Lanthanum Gallogermanate Phosphors with Long Persistent IR Emission. Electrochem. Solid-State Lett. 2010, 13, J32–J34. [Google Scholar] [CrossRef]
  182. Yan, W.; Liu, F.; Lu, Y.Y.; Wang, X.J.; Yin, M.; Pan, Z. Near Infrared Long-Persistent Phosphorescence in La3Ga5GeO14:Cr3+ Phosphor. Opt. Express 2010, 18, 20215–20221. [Google Scholar] [CrossRef] [PubMed]
  183. Kang, F.W.; Hu, Y.H.; Wu, H.Y.; Ju, G.F. Red Afterglow Properties of Eu3+ in CaMoO4 Phosphor. Chin. Phys. Lett. 2011, 28, 107201:1–107201:10. [Google Scholar]
  184. Boutinaud, P.; Sarakha, L.; Mahiou, R. NaNbO3:Pr3+: A New Red Phosphor Showing Persistent Luminescence. J. Phys. Condens. Matter 2009, 21, 025901:1–025901:2. [Google Scholar] [CrossRef]
  185. Takayama, T.; Katsumata, T.; Komuro, S.; Morikawa, T. Growth and Characteristics of a New Long Afterglow Phosphorescent Yttrium Tantalate Crystal. J. Cryst. Growth 2005, 275, e2013–e2017. [Google Scholar] [CrossRef]
  186. Wu, H.; Hu, Y.; Kang, F.; Li, N.; Ju, G.; Mu, Z.; Yang, Z. Luminescent Properties of Praseodymium in CaWO4 Matrix. J. Am. Ceram. Soc. 2012, 95, 3214–3219. [Google Scholar] [CrossRef]
  187. Kang, F.; Hu, Y.; Chen, L.; Wang, X.; Mu, Z.; Wu, H.; Ju, G. Eu3+ Doped CaWO4: A Potential Red Long Afterglow Phosphor. Appl. Phys. B 2012, 107, 833–837. [Google Scholar] [CrossRef]
  188. Liu, Z.W.; Liu, Y.L.; Yuan, D.S.; Zhang, J.X.; Rong, J.H.; Huang, L.H. Long-Lasting Phosphorescence in Eu3+-Doped CaWO4. Chin. J. Inorg. Chem. 2004, 20, 1433–1436. [Google Scholar]
  189. Wu, H.Y.; Hu, Y.H.; Kang, F.W.; Li, N.N. Enhancement on Afterglow Properties of Eu3+ by Ti4+, Mg2+ Incorporation in CaWO4 Matrix. J. Mater. Res. 2012, 27, 959–964. [Google Scholar]
  190. Kang, F.; Hu, Y.; Wu, H.; Mu, Z.; Ju, G.; Fu, C.; Li, N. Luminescence and Red Long Afterglow Investigation of Eu3+-Sm3+ Co-Doped CaWO4 Phosphor. J. Lumin. 2012, 132, 887–894. [Google Scholar] [CrossRef]
  191. Wu, H.; Hu, Y.; Kang, F.; Chen, L.; Wang, X.; Ju, G.; Mu, Z. Observation on Long Afterglow of Tb3+ in CaWO4. Mater. Res. Bull. 2011, 46, 2489–2493. [Google Scholar] [CrossRef]
  192. Moon, C.; Nishi, M.; Miura, K.; Hirao, K. Blue Long-Lasting Phosphorescence of Ti-Doped BaZrO3 Perovskites. J. Lumin. 2009, 129, 817–819. [Google Scholar] [CrossRef]
  193. Sun, D.; Li, D.; Zhu, Z.; Xiao, J.; Tao, Z.; Liu, W. Photoluminescence Properties of Europium and Titanium Co-Doped BaZrO3 Phosphors Powders Synthesized by the Solid-State Reaction Method. Opt. Mater. 2012, 34, 1890–1896. [Google Scholar] [CrossRef]
  194. Harvey, E.N. A History of Luminescence from the Earliest Times Until 1900; American Philosophical Society: Philadelphia, PA, USA, 1957. [Google Scholar]
  195. Lastusaari, M.; Laamanen, T.; Malkamäki, M.; Eskola, K.O.; Kotlov, A.; Carlson, S.; Welter, E.; Brito, H.F.; Bettinelli, M.; Jungner, H.; Hölsä, J. The Bologna Stone: History’s First Persistent Luminescent Material. Eur. J. Mineral. 2012, 24, 885–890. [Google Scholar] [CrossRef]
  196. Poelman, D.; Avci, N.; Smet, P.F. Measured Luminance and Visual Appearance of Multi-Color Persistent Phosphors. Opt. Express 2009, 17, 358–364. [Google Scholar] [CrossRef] [PubMed]
  197. Garlick, G.F.J.; Mason, D.E. Electron Traps and Infrared Stimulation of Phosphors. J. Electrochem. Soc. 1949, 96, 90–113. [Google Scholar] [CrossRef]
  198. Lawangar, R.D.; Shalgaonkar, C.S.; Pawar, S.H.; Narlikar, A.V. Thermally Stimulated Luminescence of CaS: Bi, Pd Phosphors. Solid State Commun. 1972, 10, 1241–1246. [Google Scholar] [CrossRef]
  199. Pawar, S.H.; Narlikar, A.V. Mechanism of Luminescence in CaS: Bi Phosphor. Mater. Res. Bull. 1976, 11, 821–826. [Google Scholar] [CrossRef]
  200. Jia, D.; Meltzer, R.S.; Yen, W.M. Ce3+ Energy Levels Relative to the Band Structure in CaS: Evidence from Photoionization and Electron Trapping. J. Lumin. 2002, 99, 1–6. [Google Scholar] [CrossRef]
  201. Paulose, P.I.; Joseph, J.; Rudra Warrier, M.K.; Jose, G.; Unnikrishnan, N.V. Relaxation Kinetics of Sm:Ce-Doped CaS Phosphors. J. Lumin. 2007, 127, 583–588. [Google Scholar] [CrossRef]
  202. Jia, D.; Zhu, J.; Wu, B. Improvement of Persistent Phosphorescence of Ca0.9Sr0.1S:Bi3+ by Codoping Tm3+. J. Lumin. 2000, 91, 59–65. [Google Scholar] [CrossRef]
  203. Pitale, S.S.; Sharma, S.K.; Dubey, R.N.; Qureshi, M.S.; Malik, M.M. TL and PL Studies on Defect-Assisted Green Luminescence from Doped Strontium Sulfide Phosphor. J. Lumin. 2008, 128, 1587–1594. [Google Scholar] [CrossRef]
  204. Clabau, F.; Rocquefelte, X.; Le Mercier, T.; Deniard, P.; Jobic, S.; Whangbo, M.H. Formulation of Phosphorescence Mechanisms in Inorganic Solids Based on a New Model of Defect Conglomeration. Chem. Mater. 2006, 18, 3212–3220. [Google Scholar] [CrossRef]
  205. Ma, L.; Chen, W. Enhancement of Afterglow in ZnS: Cu, Co Water-Soluble Nanoparticles by Aging. J. Phys. Chem. C 2011, 115, 8940–8944. [Google Scholar] [CrossRef]
  206. Lei, B.; Liu, Y.; Zhang, J.; Meng, J.; Man, S.; Tan, S. Persistent Luminescence in Rare Earth Ion-Doped Gadolinium Oxysulfide Phosphors. J. Alloys Compd. 2010, 495, 247–253. [Google Scholar] [CrossRef]
  207. Zhang, J.W.; Liu, Y.L.; Zhang, J.X.; Yuan, D.S.; Rong, J.H.; Huang, L.H. Long Afterglow Property and Mechanism on Gd2O2S:Ti. Rare Metal. Mater. Eng. 2006, 35, 766–769. [Google Scholar]
  208. Zhang, J.; Liu, Y.L.; Man, S.Q. Afterglow Phenomenon in Erbium and Titanium Codoped Gd2O2S Phosphors. J. Lumin. 2006, 117, 141–146. [Google Scholar] [CrossRef]
  209. Hang, T.; Liu, Q.; Mao, D.; Chang, C. Long Lasting Behavior of Gd2O2S:Eu3+ Phosphor Synthesized by Hydrothermal Routine. Mater. Chem. Phys. 2008, 107, 142–147. [Google Scholar] [CrossRef]
  210. Mao, S.; Liu, Q.; Gu, M.; Mao, D.; Chang, C. Long Lasting Phosphorescence of Gd2O2S:Eu, Ti, Mg Nanorods via a Hydrothermal Routine. J. Alloys Compd. 2008, 465, 367–374. [Google Scholar] [CrossRef]
  211. Liu, G.; Zhang, Q.; Wang, H.; Li, Y. A Reddish La2O2S-Based Long-Afterglow Phosphor with Effective Absorption in the Visible Light Region. Mater. Sci. Eng. B 2012, 177, 316–320. [Google Scholar] [CrossRef]
  212. Kang, C.C.; Liu, R.S.; Chang, J.C.; Lee, B.J. Synthesis and Luminescent Properties of a New Yellowish-Orange Afterglow Phosphor Y2O2S:Ti, Mg. Chem. Mater. 2003, 15, 3966–3968. [Google Scholar] [CrossRef]
  213. Liu, C.B.; Che, G.B. Observation of Enhanced Long-Lasting Phosphorescence in Y2O2S:RE3+ (RE = Lu, Gd) Phosphors. Physica Status Solidi A 2006, 203, 558–564. [Google Scholar] [CrossRef]
  214. Wang, L.; Zhang, L.; Huang, Y.; Jia, D.; Lu, J. Effects of Gd3+ and Lu3+ Co-Doping on the Long Afterglow Properties of Yellowish-Orange Phosphor Y2O2S:Ti4+, Mg2+. J. Lumin. 2009, 129, 1032–1035. [Google Scholar] [CrossRef]
  215. Zhang, P.; Hong, Z.; Wang, M.; Fang, X.; Qian, G.; Wang, Z. Luminescence Characterization of a New Long Afterglow Phosphor of Single Ti-Doped Y2O2S. J. Lumin. 2005, 113, 89–93. [Google Scholar] [CrossRef]
  216. Zhang, P.Y.; Wang, M.Q.; Hong, Z.L.; Fang, X.P.; Qian, G.D.; Wang, Z.Y. A New Yellow Long Lasting Phosphor Y2O2S:Ti. J. Rare Earths 2004, 22, 75–78. [Google Scholar]
  217. Wang, X.; Zhang, Z.; Tang, Z.; Lin, Y. Characterization and Properties of a Red and Orange Y2O2S-Based Long Afterglow Phosphor. Mater. Chem. Phys. 2003, 80, 1–5. [Google Scholar] [CrossRef]
  218. Wang, Y.H.; Wang, Z.L. Characterization of Y2O2S:Eu3+, Mg2+, Ti4+ Long-Lasting Phosphor Synthesized by Flux Method. J. Rare Earths 2006, 24, 25–28. [Google Scholar] [CrossRef]
  219. Yuan, S.; Yang, Y.; Fang, B.; Chen, G. Effects of Doping Ions on Afterglow Properties of Y2O2S:Eu Phosphors. Opt. Mater. 2007, 30, 535–538. [Google Scholar] [CrossRef]
  220. Zhang, J.Y.; Zhang, Z.T.; Tang, Z.L.; Wang, T.M. A New Method to Synthesize Long Afterglow Red Phosphor. Ceram. Int. 2004, 30, 225–228. [Google Scholar] [CrossRef]
  221. Lei, B.; Liu, Y.; Tang, G.; Ye, Z.; Shi, C. Spectra and Long-Lasting Properties of Sm3+-Doped Yttrium Oxysulfide Phosphor. Mater. Chem. Phys. 2004, 87, 227–232. [Google Scholar] [CrossRef]
  222. Lei, B.F.; Liu, Y.L.; Tang, G.B.; Ye, Z.R.; Shi, C.S. A New Orange-Red Long-Lasting Phosphor Material Y2O2S:Sm3+. Chem. J. Chin. Univ. 2003, 24, 208–210. [Google Scholar]
  223. Yao, K.; Wang, M.; Liu, S.; Zhang, L.; Li, W. Effects of Host Doping on Spectral and Long-Lasting Properties of Sm3+-Doped Y2O2S. J. Rare Earths 2006, 24, 524–528. [Google Scholar] [CrossRef]
  224. Liu, B.; Shi, C.; Qi, Z. White-Light Long-Lasting Phosphorescence from Tb3+-Activated Y2O2S Phosphor. J. Phys. Chem. Solids 2006, 67, 1674–1677. [Google Scholar] [CrossRef]
  225. Hölsä, J.; Laamanen, T.; Lastusaari, M.; Malkamäki, M.; Niittykoski, J.; Zych, E. Effect of Mg2+ and TiIV Doping on the Luminescence of Y2O2S:Eu3+. Opt. Mater. 2009, 31, 1791–1793. [Google Scholar] [CrossRef]
  226. Hong, Z.; Zhang, P.; Fan, X.; Wang, M. Eu3+ Red Long Afterglow in Y2O2S:Ti, Eu Phosphor Through Afterglow Energy Transfer. J. Lumin. 2007, 124, 127–132. [Google Scholar] [CrossRef]
  227. Lei, B.F.; Liu, Y.L.; Tang, G.B.; Ye, Z.R.; Shi, C.S. Unusual Afterglow Properties of Tm3+ Doped Yttrium Oxysulfide. Chem. J. Chin. Univ. 2003, 24, 782–784. [Google Scholar]
  228. Liu, X.; Qiao, Y.; Dong, G.; Ye, S.; Zhu, B.; Zhuang, Y.; Qiu, J. BCNO-Based Long-Persistent Phosphor. J. Electrochem. Soc. 2009, 156, P81–P84. [Google Scholar] [CrossRef]
  229. Wang, W.N.; Ogi, T.; Kaihatsu, Y.; Iskandar, F.; Okuyama, K. Novel Rare-Earth-Free Tunable-Color-Emitting BCNO Phosphors. J. Mater. Chem. 2011, 21, 5183–5189. [Google Scholar] [CrossRef]
  230. Ju, G.; Hu, Y.; Chen, L.; Wang, X. Persistent Luminescence and Its Mechanism of Ba5(PO4)3Cl:Ce3+, Eu2+. J. Appl. Phys. 2012, 111, 113508:1–113508:6. [Google Scholar] [CrossRef]
  231. Zhang, J.S.; Zhong, H.Y.; Sun, J.S.; Cheng, L.H.; Li, X.P.; Chen, B.J. Reddish Orange Long-Lasting Phosphorescence in KY3F10:Sm3+ for X-Ray or Cathode Ray Tubes. Chin. Phys. Lett. 2012, 29. [Google Scholar] [CrossRef]
  232. Uheda, K.; Takizawa, H.; Endo, T.; Miura, C.; Shimomura, Y.; Kijima, N.; Shimada, M. Photo- and Thermo-Luminescence of Zinc Silicon Nitride Doped with Divalent Manganese. J. Mater. Sci. Lett. 2001, 20, 1753–1755. [Google Scholar] [CrossRef]
  233. Qiu, J.; Miura, K.; Inouye, H.; Kondo, Y.; Mitsuyu, T.; Hirao, K. Femtosecond Laser-Induced Three-Dimensional Bright and Long-Lasting Phosphorescence Inside Calcium Aluminosilicate Glasses Doped with Rare Earth Ions. Appl. Phys. Lett. 1998, 73, 1763–1765. [Google Scholar] [CrossRef]
  234. Kinoshita, T.; Hosono, H. Materials Design and Example of Long Lasting Phosphorescent Glasses Utilizing Electron Trapped Centers. J. Non-Cryst. Solids 2000, 274, 257–263. [Google Scholar] [CrossRef]
  235. Hosono, H.; Kinoshita, T.; Kawazoe, H.; Yamazaki, M.; Yamamoto, Y.; Sawanobori, N. Long Lasting Phosphorescence Properties of Tb3+-Activated Reduced Calcium Aluminate Glasses. J. Phys. Condens. Matter 1998, 10, 9541–9547. [Google Scholar] [CrossRef]
  236. Kinoshita, T.; Yamazaki, M. Long Lasting Phosphorescence and Photostimulated Luminescence in Tb-Ion-Activated Reduced Calcium. J. Appl. Phys. 1999, 86, 3729–3733. [Google Scholar] [CrossRef]
  237. Qiu, J.; Wada, N.; Ogura, F.; Kojima, K.; Hirao, K. Structural Relaxation and Long-Lasting Phosphorescence in Sol-Gel-Derived GeO2 Glass After Ultraviolet Light Irradiation. J. Phys. Condens. Matter 2002, 14, 2561–2567. [Google Scholar]
  238. Wada, N.; Ogura, F.; Yamamoto, K.; Kojima, K. White Luminescence and Afterglow in Germanium Oxide Glasses Prepared by the Sol-Gel Method. Glass Technol. 2005, 46, 163–170. [Google Scholar]
  239. Qiu, J.; Gaeta, A.L.; Hirao, K. Long-Lasting Phosphorescence in Oxygen-Deficient Ge-Doped Silica Glasses at Room Temperature. Chem. Phys. Lett. 2001, 333, 236–241. [Google Scholar] [CrossRef]
  240. Qiu, J.; Kondo, Y.; Miura, K.; Mitsuyu, T.; Hirao, K. Infrared Femtosecond Laser Induced Visible Long-Lasting Phosphorescence in Mn2+-Doped Sodium Borate Glasses. Jpn. J. Appl. Phys. 1999, 38, L649–L651. [Google Scholar] [CrossRef]
  241. Yamazaki, M.; Kojima, K. Long-Lasting Afterglow in Tb3+-Doped SiO2-Ga2O3-CaO-Na2O Glasses and Its Sensitization by Yb3+. Solid State Commun. 2004, 130, 637–639. [Google Scholar] [CrossRef]
  242. Qiu, J.; Miyauchi, K.; Kawamoto, Y.; Kitamura, N.; Qiu, J.; Hirao, K. Long-Lasting Phosphorescence in Sn2+-Cu2+ Codoped Silicate Glass and Its High-Pressure Treatment Effect. Appl. Phys. Lett. 2002, 81, 394–396. [Google Scholar] [CrossRef] [Green Version]
  243. Zhang, L.; Li, C.; Su, Q. Long Lasting Phosphorescence in Eu2+ and Ce3+ Co-Doped Strontium Borate Glasses. J. Rare Earths 2006, 24, 196–198. [Google Scholar] [CrossRef]
  244. Sanada, T.; Seto, H.; Morimoto, Y.; Yamamoto, K.; Wada, N.; Kojima, K. Luminescence and Long-Lasting Afterglow in Mn2+ and Eu3+ Co-Doped ZnO–GeO2 Glasses and Glass Ceramics Prepared by Sol-Gel Method. J. Sol-Gel Sci. Technol. 2010, 56, 82–86. [Google Scholar] [CrossRef]
  245. Takahashi, Y.; Ando, M.; Ihara, R.; Fujiwara, T. Green-Emissive Mn-Activated Nanocrystallized Glass with Willemite-Type Zn2GeO4. Opt. Mater. Express 2011, 1, 372–378. [Google Scholar] [CrossRef]
  246. Jiang, X.W.; Qiu, J.R.; Zeng, H.D.; Zhu, C.S. Femtosecond Laser-Induced Long-Lasting Phosphorescence in Pr3+-Doped ZnO-B2O3-SiO2 Glass. Chin. Phys. 2003, 12, 1386–1389. [Google Scholar] [CrossRef]
  247. Wang, Z.Y.; Zhang, F.A.; Guo, X.R.; Wang, Y.H.; Fan, X.P.; Qian, G.D. Study on Long-Lasting Phosphorescent Mechanism of Tb3+ Doped ZnO-B2O3-SiO2 Glass. J. Zhejiang Univ. 2006, 40, 1454–1457. [Google Scholar]
  248. Yamazaki, M.; Yamamoto, Y.; Nagahama, S.; Sawanobori, N.; Mizuguchi, M.; Hosono, H. Long Luminescent Glass:Tb3+-Activated ZnO-B2O-SiO2 Glass. J. Non-Cryst. Solids 1998, 241, 71–73. [Google Scholar] [CrossRef]
  249. Li, C.; Su, Q.; Wang, S. Multi-Color Long-Lasting Phosphorescence in Mn2+-Doped ZnO-B2O3-SiO2 Glass-Ceramics. Mater. Res. Bull. 2002, 37, 1443–1449. [Google Scholar] [CrossRef]
  250. Li, C.; Yu, Y.; Wang, S.; Su, Q. Photo-Stimulated Long-Lasting Phosphorescence in Mn2+-Doped Zinc Borosilicate Glasses. J. Non-Cryst. Solids 2003, 321, 191–196. [Google Scholar] [CrossRef]
  251. Li, C.; Su, Q. Action of Co-Dopant in Electron-Trapping Materials: The Case of Sm3+ in Mn2+-Activated Zinc Borosilicate Glasses. Appl. Phys. Lett. 2004, 85, 2190–2192. [Google Scholar] [CrossRef]
  252. Li, C.; Su, Q. Effect of Samarium on Mn Activated Zinc Borosilicate Storage Glasses. J. Rare Earths 2006, 24, 506–508. [Google Scholar] [CrossRef]
  253. Li, C.; Wang, J.; Liang, H.; Su, Q. Near Infrared Long Lasting Emission of Yb3+ and Its Influence on the Optical Storage Ability of Mn2+-Activated Zinc Borosilicate Glasses. J. Appl. Phys. 2007, 101, 113304:1–113304:4. [Google Scholar]
  254. Lin, G.; Dong, G.; Tan, D.; Liu, X.; Zhang, Q.; Chen, D.; Qiu, J.; Zhao, Q.; Xu, Z. Long Lasting Phosphorescence in Oxygen-Deficient Zinc-Boron-Germanosilicate Glass-Ceramics. J. Alloys Compd. 2010, 504, 177–180. [Google Scholar] [CrossRef]
  255. Smet, P.F.; Van den Eeckhout, K.; Bos, A.J.J.; van der Kolk, E.; Dorenbos, P. Temperature and Wavelength Dependent Trap Filling in M2Si5N8:Eu (M = Ca, Sr, Ba) Persistent Phosphors. J. Lumin. 2012, 132, 682–689. [Google Scholar] [CrossRef]
  256. Korthout, K.; Van den Eeckhout, K.; Botterman, J.; Nikitenko, S.; Poelman, D.; Smet, P.F. Luminescence and X-Ray Absorption Measurements of Persistent SrAl2O4: Eu, Dy Powders: Evidence for Valence State Changes. Phys. Rev. B 2011, 84, 085140:1–085140:7. [Google Scholar] [CrossRef]
  257. Smet, P.F.; Parmentier, A.B.; Poelman, D. Selecting Conversion Phosphors for White-Light Emitting Diodes. J. Electrochem. Soc. 2011, 158, R37–R54. [Google Scholar] [CrossRef] [Green Version]
  258. Bos, A.J.J.; van Duijvenvoorde, R.M.; van der Kolk, E.; Drozdowski, W.; Dorenbos, P. Thermoluminescence Excitation Spectroscopy: A Versatile Technique to Study Persistent Luminescence Phosphors. J. Lumin. 2011, 131, 1465–1471. [Google Scholar] [CrossRef]
  259. Van den Eeckhout, K.; Bos, A.J.J.; Poelman, D.; Smet, P.F. Revealing Trap Depth Distributions in Persistent Phosphors. Phys. Rev. B 2013, 87, 045126:1–045126:11. [Google Scholar] [CrossRef]
  260. Chen, R.; McKeever, S.W.S. Section 2.4.3, Continua; Trap Distributions. In Theory of Thermoluminescence and Related Phenomena; World Scientific: Singapore, 1997. [Google Scholar]
  261. Takeyama, T.; Nakamura, T.; Takahashi, N.; Ohta, M. Electron Paramagnetic Resonance Studies on the Defects Formed in the Dy(III)-Doped SrAl2O4. Solid State Sci. 2004, 6, 345–348. [Google Scholar] [CrossRef]
  262. Poelman, D.; Smet, P.F. Photometry in the Dark: Time Dependent Visibility of Low Intensity Light Sources. Opt. Express 2010, 18, 26293–26299. [Google Scholar] [CrossRef] [PubMed]
  263. Poelman, D.; Smet, P.F. Photometry in the Dark: Time Dependent Visibility of Low Intensity Light Sources: Erratum. Opt. Express 2011, 19, 18808–18809. [Google Scholar] [CrossRef]

Share and Cite

MDPI and ACS Style

Van den Eeckhout, K.; Poelman, D.; Smet, P.F. Persistent Luminescence in Non-Eu2+-Doped Compounds: A Review. Materials 2013, 6, 2789-2818. https://doi.org/10.3390/ma6072789

AMA Style

Van den Eeckhout K, Poelman D, Smet PF. Persistent Luminescence in Non-Eu2+-Doped Compounds: A Review. Materials. 2013; 6(7):2789-2818. https://doi.org/10.3390/ma6072789

Chicago/Turabian Style

Van den Eeckhout, Koen, Dirk Poelman, and Philippe F. Smet. 2013. "Persistent Luminescence in Non-Eu2+-Doped Compounds: A Review" Materials 6, no. 7: 2789-2818. https://doi.org/10.3390/ma6072789

Article Metrics

Back to TopTop