Please wait a minute...
金属学报  2013, Vol. 49 Issue (5): 583-592    DOI: 10.3724/SP.J.1037.2012.00699
  论文 本期目录 | 过刊浏览 |
奥氏体化与冷却速率对过共析钢组织的影响
李俊杰,Godfrey Andrew,刘伟
清华大学材料科学与工程系, 北京 100084
EFFECTS OF AUSTENITIZATION AND COOLING RATES  ON THE MICROSTRUCTURE IN A HYPEREUTECTOID STEEL
LI Junjie, Godfrey Andrew, LIU Wei
Department of Materials Science and Engineering, Tsinghua University, Beijing 100084
引用本文:

李俊杰,Godfrey Andrew,刘伟. 奥氏体化与冷却速率对过共析钢组织的影响[J]. 金属学报, 2013, 49(5): 583-592.
LI Junjie, Godfrey Andrew, LIU Wei. EFFECTS OF AUSTENITIZATION AND COOLING RATES  ON THE MICROSTRUCTURE IN A HYPEREUTECTOID STEEL[J]. Acta Metall Sin, 2013, 49(5): 583-592.

全文: PDF(4049 KB)  
摘要: 

通过使用热膨胀仪模拟奥氏体化与连续冷却过程, 研究了一种过共析钢在连续冷却条件下奥氏体化与冷却速率对于先共析渗碳体及珠光体片间距的影响规律. 结果表明: 提高连续冷却速率、延长奥氏体化时间或者提高奥氏体化温度均可以降低相变温度, 扩大相变温度区间, 细化珠光体片间距, 使先共析渗碳体厚度变薄或变得不连续. 然而, 过度地提高冷却速率或者奥氏体化温度会导致出现马氏体,破坏组织的均匀性; 通过控制合适的奥氏体化温度和冷却速率, 大幅度延长奥氏体化时间得到了细化的全珠光体组织, 并从C原子扩散和形核生长的角度对实验现象进行了理论解释.

关键词 过共析钢奥氏体化冷却速率先共析渗碳体片间距相变温度扩散    
Abstract

Cold-drawn pearlitic steel wires have the highest strength of all steel products. It is a promising way to enhance the mechanical properties by increasing the carbon content. However, the proeutectoid cementite forms easily due to the hypereutectoid composition and deteriorates the mechanical and processing properties of steel wires. It is important for hypereutectoid steel wire drawing to achieve a fine and fully pearlitic microstructure without proeutectoid cementite. The austenitization and following continuous cooling process were simulated in the dilatometer for a hypereutectoid steel. The microstructure was observed with OM and SEM. The transformation temperature, prior--austenite grain size, pearlitic interlamellar spacing and proeutectoid cementite thickness were determined by dilatometric curves or OM/SEM images. The austenite grain size increases rapidly with a higher temperature and almost keeps invariant with a longer austenitization time. Faster cooling rate, higher austenitization temperature or longer austenitization time decrease the starting and finishing temperature of phase transformation, widen the temperature range, refine the pearlitic interlamellar spacing and suppress the proeutectoid cementite precipitation (reduce the thickness or make it discontinuous). However, it is easy to form martensite which is bad for the homogeneity of pearlitic microstructure by increasing the cooling rate or austenitization temperature simply. A fine pearlite in a pseudoeutectoid microstructure is achieved by extending the austenitization time to 60 min and controlling the austenitization temperature and cooling rate. Discontinuous proeutectoid cementite is observed in the samples with the higher austenitization temperature. Higher austenitization temperature and longer time are helpful to weaken the carbon concentration gradient. The homogeneous carbon distribution restrains carbon diffusion for cementite nucleation during the proeutectoid cementite precipitation and pearlite transformation, which decreases the transformation temperature. Compare to pearlite transformation, the proeutectoid cementite precipitation is affected more strongly by the carbon diffusion due to a longer diffusion distance. Therefore, the precipitation amount of proeutectoid cementite is reduced if the carbon diffusion is restrained. The amount of grain corner and grain edge reduce more dramatically than that of grain boundary if austenite grain size increases. The proeutectoid cementite only nucleates in grain corner and grain edge. The pearlite nucleation can form in grain boundary. Therefore, the larger austenite grains result in the sharp reduction in the sites for nucleation of proeutectoid cementite. Then, the amount of proeutectoid cementite are reduced and the morphology becomes discontinuous.

Key wordshypereutectoid steel    austenitization    cooling rate    proeutectoid cementite,    interlamellar spacing    transformation temperature    diffusion
收稿日期: 2012-11-23     
作者简介: 李俊杰, 男, 1987年生, 博士生

[1] Li Y J, Choi P, Goto S, Borchers C, Raabe D, Kirchheim R.  Acta Mater, 2012; 60: 4005


[2] Tashiro H.  Nipp Steel Tec Rep, 1999; 80: 6

[3] Choi H C, Park K T.  Scr Mater, 1996; 34: 857

[4] Taleff E M, Sridhar G B, Pourladian B.  Wire J Int, 2003; 36: 73

[5] Bae C M, Nam W J, Lee C S.  Metall Mater Trans, 2000; 31A: 2665

[6] Jang Y S, Phaniraj M P, Kim D I, Shim J H, Huh M Y.  Metall Mater Trans, 2010; 41A: 2078

[7] Kanetsuki Y, Ibaraki N, Ashida S.  ISIJ Int, 1991; 31: 304

[8] Taleff E M, Syn C K, Lesuer D R, Sherby D.  Metall Mater Trans, 1996; 27A: 111

[9] Peng H F, Song X Y, Gao A G, Ma X L.  Mater Lett, 2005; 59: 3330

[10] Zhang Y D, Esling C, Gong M L, Vincent G, Zhao X, Zuo L.  Scr Mater, 2006; 54: 1897

[11] San Martin D, Rivera-Diaz-del-Castillo P E J, Garcia-de-Andres C.  Scr Mater, 2008; 58: 926

[12] Elwazri A M, Wanjara P, Yue S.  Metall Mater Trans, 2005; 36A: 2297

[13] Li Y, Yang Z M.  Acta Metall Sin, 2010; 46: 1501

(李翼, 杨忠民. 金属学报, 2010; 46: 1501)

[14] Han K, Mottishaw T D, Smith G, Edmonds D V, Stacey A G.  Mater Sci Eng, 1995; A190: 207

[15] Liu Z C.  Heat Treat Met, 2007; 33: 1

(刘宗昌. 金属热处理, 2007; 33: 1)

[16] Roberts G A, Mehl R F.  Trans AIME, 1943; 154: 318

[17] Porter D A, Easterling K E, Sherif M Y, translated by Chen L, Yu Y N.  Phase Transformation in Metals and

Alloys. Beijing: Higher Education Press, 2011: 63

(Porter D A, Easterling K E, Sherif M Y 著, 陈冷, 余永宁 译. 金属和合金中的相变. 北京: 高等教育出版社, 2011: 63)

[18] Borchardt F S.  Master Thesis, University of Pittsburgh, 2004

[19] Scheil E.  Arch Eisenhuttenw, 1935; 8: 565

[20] Brandt W H.  Trans AIME, 1946; 167: 550

[21] Hull F C, Colton R A, Mehl R F.  Trans AIME, 1942; 50: 185

[22] Guo N.  PhD Dissertation, Chongqing University, 2012

(郭宁. 重庆大学博士学位论文, 2012)

[23] Howell P R.  Mater Charact, 1998; 40: 227

[24] Elwazri A M, Wanjara P, Yue S.  Mater Sci Eng, 2005; A404: 91

[25] Han K, Smith G, Edmonds D V.  Metall Mater Trans, 1995; 26A: 1617

[26] Han K, Edmonds D V, Smith G.  Metall Mater Trans, 2001; 32A: 1313

[27] Nesterov D, Levchenko N, Sapozhkov V, Shevchenko A.  Steel Trans, 1992; 22: 191

[28] Hung C Y, Spanos G, Rosenberg R O, Kral M V.  Acta Mater, 2002; 50: 3781

[29] Kral M V, Spanos G.  Acta Mater, 1999; 47: 711

[30] Kral M V, Spanos G.  Acta Mater, 2003; 51: 301

[31] Spanos G, Kral M V.  Int Mater Rev, 2009; 54: 19

[32] Kral M V, Spanos G.  Scr Mater, 1997; 36: 875

[33] Kral M V, Mangan M A, Spanos G, Rosenberg R O.  Mater Charact, 2000; 45: 17
[1] 宫声凯, 刘原, 耿粒伦, 茹毅, 赵文月, 裴延玲, 李树索. 涂层/高温合金界面行为及调控研究进展[J]. 金属学报, 2023, 59(9): 1097-1108.
[2] 王法, 江河, 董建新. 高合金化GH4151合金复杂析出相演变行为[J]. 金属学报, 2023, 59(6): 787-796.
[3] 程远遥, 赵刚, 许德明, 毛新平, 李光强. 奥氏体化温度对Si-Mn钢热轧板淬火-配分处理后显微组织和力学性能的影响[J]. 金属学报, 2023, 59(3): 413-423.
[4] 张月鑫, 王举金, 杨文, 张立峰. 冷却速率对管线钢中非金属夹杂物成分演变的影响[J]. 金属学报, 2023, 59(12): 1603-1612.
[5] 徐文国, 郝文江, 李应举, 赵庆彬, 卢炳聿, 郭和一, 刘天宇, 冯小辉, 杨院生. 微量AlTiInconel 690合金高温氧化行为的影响[J]. 金属学报, 2023, 59(12): 1547-1558.
[6] 刘路军, 刘政, 刘仁辉, 刘永. Nd90Al10 晶界调控对晶界扩散磁体磁性能和微观结构的影响[J]. 金属学报, 2023, 59(11): 1457-1465.
[7] 李赛, 杨泽南, 张弛, 杨志刚. 珠光体-奥氏体相变中扩散通道的相场法研究[J]. 金属学报, 2023, 59(10): 1376-1388.
[8] 沈莹莹, 张国兴, 贾清, 王玉敏, 崔玉友, 杨锐. SiCf/TiAl复合材料界面反应及热稳定性[J]. 金属学报, 2022, 58(9): 1150-1158.
[9] 李闪闪, 陈云, 巩桐兆, 陈星秋, 傅排先, 李殿中. 冷速对高碳铬轴承钢液析碳化物凝固析出机制的影响[J]. 金属学报, 2022, 58(8): 1024-1034.
[10] 李细锋, 李天乐, 安大勇, 吴会平, 陈劼实, 陈军. 钛合金及其扩散焊疲劳特性研究进展[J]. 金属学报, 2022, 58(4): 473-485.
[11] 化雨, 陈建国, 余黎明, 司永宏, 刘晨曦, 李会军, 刘永长. Cr铁素体耐热钢与奥氏体耐热钢的异种材料扩散连接接头组织演变及力学性能[J]. 金属学报, 2022, 58(2): 141-154.
[12] 刘仲武, 何家毅. 钕铁硼永磁晶界扩散技术和理论发展的几个问题[J]. 金属学报, 2021, 57(9): 1155-1170.
[13] 陈胜虎, 戎利建. 超细晶铁素体-马氏体钢的高温氧化成膜特性及其对Pb-Bi腐蚀行为的影响[J]. 金属学报, 2021, 57(8): 989-999.
[14] 李娟, 赵宏龙, 周念, 张英哲, 秦庆东, 苏向东. CoCrFeNiCu高熵合金与304不锈钢真空扩散焊[J]. 金属学报, 2021, 57(12): 1567-1578.
[15] 刘晨曦, 毛春亮, 崔雷, 周晓胜, 余黎明, 刘永长. 低活化铁素体/马氏体钢组织调控及其固相连接研究进展[J]. 金属学报, 2021, 57(11): 1521-1538.