Please wait a minute...
金属学报  2013, Vol. 49 Issue (10): 1219-1226    DOI: 10.3724/SP.J.1037.2013.00143
  论文 本期目录 | 过刊浏览 |
5052和6061铝合金在中国南海深海环境下的腐蚀行为研究
孙飞龙,李晓刚,卢琳,程学群,董超芳,高瑾
北京科技大学腐蚀与防护中心, 北京 100083
CORROSION BEHAVIOR OF 5052 AND 6061 ALUMINUM ALLOYS IN DEEP OCEAN ENVIRONMENT OF SOUTH CHINA SEA
SUN Feilong, LI Xiaogang, LU Lin, CHENG Xuequn, DONG Chaofang, GAO Jin
Corrosion and Protection Center, University of Science and Technology Beijing, Beijing 100083
引用本文:

孙飞龙,李晓刚,卢琳,程学群,董超芳,高瑾. 5052和6061铝合金在中国南海深海环境下的腐蚀行为研究[J]. 金属学报, 2013, 49(10): 1219-1226.
SUN Feilong, LI Xiaogang, LU Lin, CHENG Xuequn, DONG Chaofang, GAO Jin. CORROSION BEHAVIOR OF 5052 AND 6061 ALUMINUM ALLOYS IN DEEP OCEAN ENVIRONMENT OF SOUTH CHINA SEA[J]. Acta Metall Sin, 2013, 49(10): 1219-1226.

全文: PDF(3422 KB)  
摘要: 

通过实海暴露实验, 研究了5052和6061铝合金在中国南海海域800和1200 m深海环境下浸泡3 a的腐蚀行为.采用SEM, EDS和XRD技术, 分别进行了腐蚀形貌观察、腐蚀产物成分和相组成分析.结果表明: 2种铝合金在深海环境下均发生了很严重的局部腐蚀, 表面形成了白色的腐蚀产物,腐蚀产物由Al2O3, SiO2, 以及少量Mg3(SO4)2(OH)2和NaCl组成.5052和6061铝合金均在铆接区域产生了缝隙腐蚀穿孔, 其中, 5052铝合金还在截面形成了沟槽状腐蚀坑.在样品主表面, 5052和6061铝合金主要发生点腐蚀, 其中6061铝合金表面的点蚀坑深度更大,密度更高, 且在800 m深海环境下发生了点蚀穿孔. 分析表明, 随着水深的增加,5052和6061铝合金的最大点蚀坑深度先增加后降低,最大点蚀坑深度的最大值出现在水深800 m左右.这是由于800 m深海中的溶氧量最低, 促进了局部腐蚀的发生.

关键词 铝合金点腐蚀深海实海    
Abstract

Aluminum alloys have been found ever-increasing applications in marine environments. The study on the corrosion of aliminum alloys using field test was started in USA in 1940s.Such studies, however, were carried out in China untill 1980s. Although the corrosion  behaviours of 11 kinds of aluminum alloys were investigated exposed to tide, splash and full immersion zones at Qingdao, Zhoushan, Yulin and Xiamen area of China, the corrosion behaviour of materials in deep ocean environments is different from that in shallow marine environments. In this work, the corrosion behavior of 5052 and 6061 aluminum alloys in 800 and 1200 m deep ocean environments of South China Sea was studied using field test. The morphology and composition of corrosion products were investigated using SEM, EDS and XRD. The results indicated that severe local corrosion took place in the aluminum alloys. The corrosion products were composed of Al2O3, SiO2 and a small amount of Mg3(SO4)2(OH)2 and NaCl.The crevice corrosion perforation occurred on the edge of 5052 and 6061 samples.And the groove corrosion pits formed on the cross section of 5052 sample.Pitting corrosion took place on the main area of 5052 and 6061 samples.The size and density of pits formed on 6061 aluminum alloy were higher than those on 5052 aluminum alloy.And the pitting corrosion perforation formed on 6061 aluminum alloy in 800 m deep ocean.Comparing with the data of literatures,the maximum pit depths of 5052 and 6061 aluminum alloys decreased first and then increased with depth increased. The maximum value of pit depth appeared at about 800 m deep ocean. This is due to the amount of dissolved oxygen is the lowest in 800 m deep ocean, which promotes local corrosion.

Key wordsaluminum alloy    pitting corrosion    deep ocean    field test
收稿日期: 2013-03-28     
基金资助:

国家自然科学基金资助项目51171025

作者简介: 孙飞龙, 女, 1985生, 博士生

[1] Southwell C R, Alexander A L, Hummer C W. Mater Prot, 1965; 4: 30

[2] Schumacher M. Sea Water Corrosion Handbook. New Jersey: Park Ridge, 1979: 150
[3] Sparks C P, Cabillic J P, Schawann J C. J Energy Resour--Trans ASME, 1983: 105: 282
[4] Dexter S C. Handbook of Oceanographic Engineering Materials. New York: Whiley-Interscience, 1979: 23
[5] Dexter S C. Corrosion, 1980; 36: 423
[6] Li Y, Xing S H, Li X, Wei X J. Chin J Nonferrous Met, 2006; 16: 2083
(李焰, 邢少华, 李鑫, 魏绪钧. 中国有色金属学报, 2006; 16: 2083)
[7] Li Y, Xing S H, Li X, Wei X J. Chin J Nonferrous Met, 2007; 17: 1247
(李焰, 邢少华, 李鑫, 魏绪钧. 中国有色金属学报, 2007; 17: 1247)
[8] Li Y, Xing S H, Li X, Wei X J. Chin J Nonferrous Met, 2007; 17: 1527
(李焰, 邢少华, 李鑫, 魏绪钧. 中国有色金属学报, 2007; 17: 1527)
[9] Zhu X L, Li L Y, Xu J. Chin J Nonferrous Met, 1998; 8 (suppl 1): 210
(朱小龙, 林乐耘, 徐杰. 中国有色金属学报, 1998; 8(增刊1): 210)
[10] Huang G Q. Corros Prot, 2002; 23: 18
(黄桂桥. 腐蚀与防护, 2002; 23: 18)
[11] Huang G Q. Corros Prot, 2002; 23(2): 47
(黄桂桥. 腐蚀与防护, 2002; 23(2): 47)
[12] Huang G Q. Corros Prot, 2003; 24(2): 47
(黄桂桥. 腐蚀与防护, 2003; 24(2): 47)
[13] Mu Z J, Lin Z J, Zhuang Y, Chen X F, Wang J J, Lin L Y, Zhao Y H. Dev Appl Mater,2007; 22(5): 20
(穆振军, 林志坚, 庄炎, 陈翔峰, 王晶晶, 林乐耘, 赵月红. 材料开发与应用, 2007; 22(5): 20)
[14] Lin L Y, Zhao Y H. Chin J Nonferrous Met, 2003; 13: 1246
(林乐耕, 赵月红. 中国有色金属学报, 2003; 13: 1246)
[15] Yin Z X, Chen Y C, Zhou H J. J Guizhou Univ Technol (Nat Sci Ed), 2007; 36: 18
(尹卓湘, 陈延超, 周红娟. 贵州大学学报(自然科学版), 2007; 36: 18)
[16] Lyndon J A, Gupta R K, Gibson M A, Birbilis N. Corros Sci, 2013; 70: 290
[17] Jain S, Lim M L C, Hudson J L, Scully J R. Corros Sci, 2012; 59: 136
[18] Yasakau K A, Zheludkevich M L, Lamaka S V, Ferreira M G S. Electrochim Acta, 2007; 52: 7651
[19] Liang W J, Rometsch P A, Cao L F, Birbilis N, Corros Sci, In press, DOI:http://dx.doi.org/10.1016/j.corsci.2013. 06.035
[20] Mujibur Rahman A B M, Kumar S, Gerson A R. Corros Sci, 2008; 50: 1267
[21] Abodi L C, DeRose J A, Damme S V, Demeter A, Suter T, Deconinck J.Electrochim Acta, 2012; 63: 169
[22] Guillaumin V, Mankowski G. Corros Sci, 2000; 42: 105
[23] Frankel G S. J Electrochem Soc, 1998; 145: 2186
[24] Hoar T P, Mears D C, Rothwell G P. Corros Sci, 1965; 5: 279
[25] Lin L F, Chao C Y, Macdonald D D. J Electrochem Soc, 1981; 128: 1194.
[26] Uhlig H H. J Electrochem Soc, 1950; 97: 215C
[27] Beccaria A M, Poggi G. Br Corros J, 1985; 20: 1836
[1] 王宗谱, 王卫国, Rohrer Gregory S, 陈松, 洪丽华, 林燕, 冯小铮, 任帅, 周邦新. 不同温度轧制Al-Zn-Mg-Cu合金再结晶后的{111}/{111}近奇异晶界[J]. 金属学报, 2023, 59(7): 947-960.
[2] 夏大海, 计元元, 毛英畅, 邓成满, 祝钰, 胡文彬. 2024铝合金在模拟动态海水/大气界面环境中的局部腐蚀机制[J]. 金属学报, 2023, 59(2): 297-308.
[3] 高建宝, 李志诚, 刘佳, 张金良, 宋波, 张利军. 计算辅助高性能增材制造铝合金开发的研究现状与展望[J]. 金属学报, 2023, 59(1): 87-105.
[4] 马志民, 邓运来, 刘佳, 刘胜胆, 刘洪雷. 淬火速率对7136铝合金应力腐蚀开裂敏感性的影响[J]. 金属学报, 2022, 58(9): 1118-1128.
[5] 宋文硕, 宋竹满, 罗雪梅, 张广平, 张滨. 粗糙表面高强铝合金导线疲劳寿命预测[J]. 金属学报, 2022, 58(8): 1035-1043.
[6] 王春辉, 杨光昱, 阿热达克·阿力玛斯, 李晓刚, 介万奇. 砂型3DP打印参数对ZL205A合金铸造性能的影响[J]. 金属学报, 2022, 58(7): 921-931.
[7] 田妮, 石旭, 刘威, 刘春城, 赵刚, 左良. 预拉伸变形对欠时效7N01铝合金板材疲劳断裂的影响[J]. 金属学报, 2022, 58(6): 760-770.
[8] 高川, 邓运来, 王冯权, 郭晓斌. 蠕变时效对欠时效7075铝合金力学性能的影响[J]. 金属学报, 2022, 58(6): 746-759.
[9] 苏凯新, 张继旺, 张艳斌, 闫涛, 李行, 纪东东. 微弧氧化6082-T6铝合金的高周疲劳性能及残余应力松弛机理[J]. 金属学报, 2022, 58(3): 334-344.
[10] 郑椿, 刘嘉斌, 江来珠, 杨成, 姜美雪. 拉伸变形对高氮奥氏体不锈钢显微组织和耐腐蚀性能的影响[J]. 金属学报, 2022, 58(2): 193-205.
[11] 王冠杰, 李开旗, 彭力宇, 张壹铭, 周健, 孙志梅. 高通量自动流程集成计算与数据管理智能平台及其在合金设计中的应用[J]. 金属学报, 2022, 58(1): 75-88.
[12] 赵婉辰, 郑晨, 肖斌, 刘行, 刘璐, 余童昕, 刘艳洁, 董自强, 刘轶, 周策, 吴洪盛, 路宝坤. 基于Bayesian采样主动机器学习模型的6061铝合金成分精细优化[J]. 金属学报, 2021, 57(6): 797-810.
[13] 孙佳孝, 杨可, 王秋雨, 季珊林, 包晔峰, 潘杰. 5356铝合金TIG电弧增材制造组织与力学性能[J]. 金属学报, 2021, 57(5): 665-674.
[14] 陈军洲, 吕良星, 甄良, 戴圣龙. AA 7055铝合金时效析出强化模型[J]. 金属学报, 2021, 57(3): 353-362.
[15] 刘刚, 张鹏, 杨冲, 张金钰, 孙军. 铝合金中的溶质原子团簇及其强韧化[J]. 金属学报, 2021, 57(11): 1484-1498.