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Abstract: - Assigning seats in the same compartment to different fare classes of passengers is a major problem 
of airline seat allocation. Airlines sell the same seat at different prices according to the time at which the 
reservation is made and other conditions. Thus the same seat can be sold at different prices. The problem is to 
find an optimal policy that maximizes total expected revenue. To solve the above problem, this paper presents 
the novel computational approach to optimization and dynamic adaptive prediction of airline seat protection 
levels for multiple nested fare classes of single-leg flights under parametric uncertainty. It is assumed that time 
T (before the flight is scheduled to depart) is divided into h periods, namely a full fare period and h-1 
discounted fare periods. The fare structure is given. An airplane has a seat capacity of N. For the sake of 
simplicity, but without loss of generality, we consider (for illustration) the case of nonstop flight with two fare 
classes (business and economy). The proposed airline's inventory management policy is based on the use of the 
proposed computational models. These models emphasize pivotal quantities and ancillary statistics relevant 
for obtaining statistical predictive limits for anticipated quantities under parametric uncertainty and are 
applicable whenever the statistical problem is invariant under a group of transformations that acts 
transitively on the parameter space. The proposed technique is based on a probability transformation and 
pivotal quantity averaging. It is conceptually simple and easy to use. Finally, we give illustrative examples, 
where the proposed analytical methodology is illustrated in terms of the two-parameter exponential 
distribution. Applications to other log-location-scale distributions could follow directly. 
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1 Introduction 
Basically, there have been two static models of 
airline seat reservation: nested and non-nested. In 
non-nested model, distinct numbers of seats called 
buckets are exclusively assigned to each fare class. 
The sum of these buckets adds up to the total 
airplane seat capacity. In nested model, each fare 
class is assigned a booking limit, which is the total 
number of seats assigned to that fare class 
(protection level) plus the sum of all seat allocations 
to its lower fare classes. 

Earlier revenue management models considered 
non-nested seat allocations. However, a major 
difficulty with non-nested seat allocation is that if 
the limit for a fare class is reached, a booking 
request to that class is denied, while a lower fare 
bucket remains open. In a nested seat allocation, this 
booking denial does not happen as the inventories 
are shared among each fare class and its lower 
classes. The problem of constructing optimal airline 

seat protection levels for multiple nested fare classes 
of single-leg flights has been considered in 
numerous papers.  

In [1], the author was the first to propose a 
solution method of the airline seat allocation 
problem for a single-leg flight with two fare classes. 
The idea of his scheme is to equate the marginal 
revenues in each of the two fare classes. He suggests 
closing down the low fare class when the certain 
revenue from selling low fare seat is exceeded by 
the expected revenue of selling the same seat at the 
higher fare. That is, low fare booking requests 
should be accepted as long as  

2 1 1 1Pr( ),c c Z n                        (1) 

where c1 and c2 are the high and low fare levels 
respectively, Z1 denotes the demand for the high fare 
(or business) class, n1 is the number of seats to 
protect for the high fare class and Pr(Z1>n1) is the 
probability of selling more than n1 protected seats to 
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high fare class customers. It should be noted that 
an analytical proof of (1) is not given. 

Now we describe how it can be determined 
protection levels for multiple nested fare classes of 
single-leg flight when we deal with l=2 nested fare 
classes. The performance index which can be used 
to determine the optimal allocation of seats between 
l=2 dependent (i.e., nested) fare classes, subject to 
the total airplane seat capacity constraint, is given as 
follows.  

Maximize the total expected revenue for a 
single-leg flight with l=2 nested fare classes, 
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represents the expected revenue from the jth fare 
class, cj is the fare level for the jth fare class, nj 
denotes the protection level for the jth fare class, Zj 
denotes the customer demand for the jth fare class, 

( )j jf z is the probability density function of Zj. 

Theorem 1. If the performance index is given by 
(2), (3), then the optimal protection levels have to 
satisfy the following system of equations: 

   1 2 1 1 1 2 1arg ( ) ,    max 0,n c c F n n N n      (5) 

Proof. A simple application of the Lagrange 
multipliers technique leads to the optimal solution 
satisfying 
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It follows from (6) that 
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or 
 2 1 1 1( ).c c F n                         (10) 

This ends the proof. 
In [2], the authors showed that in the presence of 

l tariff classes under certain conditions of continuity, 
the conditions for optimal nested protection levels 
are reduced to the following set of probabilistic 
statements: 
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These statements have an intuitive interpretation, 
much like Littlewood’s rule. To illustrate the 
method of [2], consider a single-leg flight with l=3 
nested fare classes. In [2], the authors show that (for 
the case of l=3) the conditions for the optimal 
nested protection levels reduce to the following set 
of probability statements: 

        2 1 1 1Pr( ),c c Z n                       (12) 

  3 1 1 1 1 2 1 2Pr ,c c Z n Z Z n n          (13)                   

where (12) has to be transformed (in terms of 
probability distributions) to         

2 1 1( ),c c F n                           (14) 
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(13) has to be transformed (in terms of probabilities) 
to 
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(15) has to be transformed (in terms of probability 
distributions) to 
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In other words, the method of [2], needs the 
system of equations (in terms of probabilities),  
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which has to be transformed to the system of 
equations (in terms of probability distributions),     
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The complex empirical transformations of the 
system of equations (12), (13) (set of probability 
statements) to the system of equations (18) (in terms 
of probability distributions), in order to determine 
optimal protection levels for l=3 nested fare classes, 
show that the method of [2], is not suitable for 
practical applications if the number of nested fare 
classes l  4.    

Unfortunately, we did not find a numerical 
example in the literature for the case when the 
number of nested fare classes l  4. 
 
 

2 Optimization of Airline Seat 
Protection Levels for Nested Fare 
Classes of Single-Leg Flights 

The performance index which can be used to 
determine the optimal allocation of airline seats 
between l dependent (i.e., nested) fare classes, 
subject to N (the total airplane seat capacity), is 
given as follows. 

Maximize the total expected revenue for a 
single-leg flight with l nested fare classes (say, l=4) 
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represents the expected revenue from the lth fare 
class,  cl   is  the   fare  level  for  the  lth  fare  class,      
(cl < cl-1 < … <c1),  nl  denotes  the booking  limit  
for the  lth fare  class,  Zl  denotes  the customer 
demand for  the  lth  fare  class, ( )l lf z  is  the  
probability density function  of  Zl, ( )l lF z  is  the  
cumulative  distribution function of Zl, 
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represents the expected revenue from the (l1)th 
fare class, 1ln   denotes the protection level for the 
(l1)th fare class, and so on. 

Theorem 2. The optimal solution for the above 
performance index (19) is given as follows: 
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Proof. The proof follows using the technique of 
Lagrange multipliers. Here it is omitted and will 
appear elsewhere. 

For example, consider again a single-leg flight 
with l=3 nested fare classes. It follows immediately 
from (23) and (24) that the optimal protection levels 
have to satisfy the following system of two 
equations: 
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Theorem 3. It can be shown that the system of 
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Thus, using two different analytical approaches, the 
same result (18) was obtained. This indicates the 
correctness of the used analytical approaches and 
completes the proof. 
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  (33) 

For example, in the case of a single-leg flight 
with l=3 nested fare classes, the performance index 
is given as follows. 
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Maximize the total expected revenue for a 
single-leg flight with l=3 nested fare classes, 
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subject to 
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A simple application of the Lagrange multipliers 
technique leads to the optimal solution satisfying 
(35) and 
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3 Exponential Distribution 
Let  U= (U1  ...  Un) be the n ordered observations 
(order statistics) in a sample of size n from the two-
parameter exponential distribution with the 
probability density function (pdf) 

1
( ) exp ,    0,  ,

u
f u u
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and the cumulative distribution function (cdf) 
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where ( , ),     is the shift parameter and  is 
the scale parameter. It is assumed that these 
parameters are unknown. In Type II censoring, 
which is of primary interest here, the number of 
survivors is fixed and Ur is a random variable. In 
this case, the likelihood function is given by 
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is the complete sufficient statistic for ω. The 
probability density function of S=(S1, Sn) is given by 
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where 
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is the pivotal quantity, the probability density 
function of which is given by 
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is the pivotal quantity, the probability density 
function of which is given by 
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3.1 Pivot-Based Elimination of Unknown 
(Nuisance) Parameters from the Two-
Parameter Exponential Distribution 

Let us suppose that U is a future observation from 
the same distribution (38), independent of U = (U1  
...  Un). Then a statistical estimate of (38) can be 
determined as follows. 

Step 1. Invariant embedding of S1 in (38) to 
isolate the unknown parameter   from the problem 
through V1 (44),  
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Step 2. Averaging  (48) over the probability 
distribution of the pivotal quantity V1 to eliminate 
unknown parameter from the problem. It follows 
from (48) and (46) that the pivot-based estimate of 
the cumulative distribution function (38) (obtained 
through the pivot-based method) is given by 
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it follows from (51) that the probability density 
function (pdf) of U is given by 
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with the cumulative distribution function  
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Step 3. Invariant embedding of Sn in (53) to 
isolate the unknown parameter   from the problem 
through Vn (46),  
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Step 4. Averaging  (54) over the probability 
distribution of the pivotal quantity Vn to eliminate 
unknown parameter  from the problem. It follows 
from (54) and (47) that the pivot-based estimate of 
the cumulative distribution function (38) (obtained 
through the pivot-based method) is given by 
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where 
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The pivot-based estimate of the probability density 
function (37) is given by  
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It follows from (55) that the cumulative distribution 
function of the ancillary statistic  
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The probability density function of the ancillary 
statistic (58) is given by 

( ) 1
( ) ,    x 0.

(1 )n

dF x n
f x

dx x


  


         (60) 

3.2 Constructing Shortest Length or Equal 
Tails Confidence Intervals for Future 
Observations from the Two-Parameter 
Exponential Distribution under 
Parametric Uncertainty 

Using (58) and (59), it can be obtained a 100(1)% 
confidence interval for U from 
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by suitably choosing the decision variables 1x  and 

2x . Hence, the statistical confidence interval for U 
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The length of the statistical confidence interval for 
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1x represents the p - quantile, which is given by 
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The shortest length confidence interval for U can 
be found as follows: 

Minimize 
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subject to 

0 ,p                            (70) 

The optimal numerical solution minimizing L(x1, 
x2 | sn) can be obtained using the standard computer 
software “Solver” of Excel 2016. If, for example, n 
= 4,  = 0.05, then the optimal numerical solution is 
given by 

0p                               (71) 

with the 100(1)% shortest-length confidence 
interval 

1 2( , | ) 1.1 .n nL x x s s                  (72) 

The 100(1)% equal tails confidence interval is 
given by 

1 2( , | ; / 2) 1.5n nL x x s p s           (73)  
 

with 
5.0.02p                          (74) 

Relative efficiency. The relative efficiency of 

1 2 ;, / 2( |  )ns pL x x  as compared with L(x1,x2| sn) 
is given by  
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 Subsect 

4 Generalized Pivotal Quantities to 
Construct Statistical Predictive 
Limits for Order Statistics in the 
New Sample 

Theorem 4. Suppose we are interested in a new 
random sample of m ordered observations 
U1…Um from a known distribution with a 
probability density function (pdf) ( ),f u cumulative 

distribution function (cdf) ( ),F u   where   is the 
parameter (in general, vector). Then for constructing 
one-sided predictive limits (for the rth order statistic 
Ur, r{1, 2, …, m}) with confidence level 1    
can be used the following generalized pivotal 
quantities. 

Generalized Pivotal Quantity GPQ1: 
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Proof. It follows from (76) that 
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This ends the proof. 

 Generalized Pivotal Quantity GPQ2: 
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with shape parameters m  r+1 and r. 

Proof. It follows from (80) that 
1

1,

2

( ) ( | )m r r r r
r rGPQ

d d
f z dz P U u m

du du        (81) 

with 
1

1,

2

( ) ( | ).m r r r r

GPQ

f z dz P U u m             (82) 

This ends the proof. 

Generalized Pivotal Quantity GPQ3: 

( )1
3

1 ( )
r

r

F um r
GPQ

r F u




 



 

 

1

, 1 1

11~ ( ) ,
, 1

1
1

r

r m r m

rr z
m rm rz z

r m r r
z

m r





  

 
     

       
 

(0, ),z                              (83) 

where , 1( )r m r z    is the probability density function  

(pdf) of the F distribution ( ( , 1))F r m r  with 
parameters r and m−r+1, which are positive integers 
known as the degrees of freedom for the numerator 
and the degrees of freedom for the denominator. 

Proof. It follows from (83) that 
3

, 1

0

( ) ( | )
GPQ

r m r r r
r r

d d
z dz P U u m

du du          (84) 

with 
3

, 1

0

( ) ( | ).
GPQ

r m r r rz dz P U u m             (85)  

This ends the proof. 

Generalized Pivotal Quantity GPQ4: 

1 ( )
4

1 ( )
r

r

F ur
GPQ

m r F u







 
 

 1, 1

11

~ ( ) ,
1, 1

1

m r

m r r m

m rm r z
rrz z

m r r m r
z

r





  

   
   

       

 

 (0, ),z                               (86) 

where 1, ( )m r r z    is the probability density 

function (pdf) of the F distribution ( ( 1, )F m r r 
with parameters m  r +1 and r, which are positive 
integers known as the degrees of freedom for the 
numerator and the degrees of freedom for the 
denominator.   
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Proof. It follows from (86) that 

1,

4

( ) ( | )m r r r r
r rGPQ

d d
z dz P U u m

du du 


        (87) 

with 

1,

4

( ) ( | ).m r r r r

GPQ

z dz P U u m


              (88) 

This ends the proof. 
 
 

5 Generalized Pivotal Quantities to 
Construct Statistical Predictive 
Limits for Order Statistics in the 
Same Sample 

Theorem 5. Suppose we observe some random 
sample of m ordered observations U1…Um from a 
known distribution with a probability density 
function (pdf) ( ),f u cumulative distribution 

function (cdf) ( ),F u  where    is the parameter (in 
general, vector). The order statistic Ur is known. 
Then, for constructing one-sided predictive limits 
(for the kth order statistic Uk, k{r+1, …, m}) with 
confidence level 1 ,  the following generalized 
pivotal quantities can be used.  

Generalized Pivotal Quantity GPQ5: 

( )
5 1

( )
r

k

F u
GPQ

F u




   

 
1 ( 1) 1

, 1

(1 )
~ ( ) ,

, 1

r k m r

r k m r

z z
z z

r k m r


    

  


 
   

 

 0 1,z                              (89)   

where , 1( )r k m r z    is the probability density function 

of the beta distribution ( ( , 1))Beta r k m r    with 
shape parameters r−k and m−r+1. 

Proof. It follows from (89) that 

5

, 1

0

( )
GPQ

r k m r
r

d
z dz

du
     

( | ; )r r k k
r

d
P U u U u m

du                (90) 

with 

5

, 1

0

( ) ( | ; ),
GPQ

r k m r r r k kz dz P U u U u m        (91) 

where 
( | ; )r r k kP U u U u m    

( ) ( )
1 .

( ) ( )

j m k j
m k

r r

j r k k k

m k F u F z

j F u F z
 

 

 


 

     
     

    
    (92)  

This ends the proof. 

Generalized Pivotal Quantity GPQ6: 

( )
6

( )
r

k

F u
GPQ

F u




  

 

 
1 1 1

1,

(1 )
~ ( ) ,

1,

m r r k

m r r k

z z
z z

m r r k


    

  


 

   
 

   0 1.z                             (93) 

where 1, ( )m r r k z    is the probability density function  

(pdf) of the beta distribution  ( ( 1, ))Beta m r r k     
with shape parameters m−r+1 and r−k. 

Proof. It follows from (93) that 

1

1,

6

( )m r r k
r GPQ

d
z dz

du
     

( | ; )r r k k
r

d
P U u U u m

du                 (94) 

with 
1

1,

6

( ) , ( | ; )m r r k r r k k

GPQ

z dz P U u U u m        (95) 

This ends the proof. 

Generalized Pivotal Quantity GPQ7: 

1 ( ) ( )
7 1

( ) ( )
r r

k k

m r F u F u
GPQ

F u F ur k
 

 

  
    

 

, 1~ ( )r k m rz z     

1

1

11 ,
( , 1)

1
1

r k

m k

r kr k z
m rm r

r k m r r k
z

m r

 

 

 
    

        

 

z (0, ),                             (96) 

where , 1( )r k m r z    is the probability density function  

(pdf) of the F distribution ( ( , 1))F r k m r   with 
parameters r−k and m−r+1, which are positive 
integers known as the degrees of freedom for the 
numerator and the degrees of freedom for the 
denominator.  

Proof. It follows from (96) that 

7

, 1

0

( )
GPQ

r k m r
r

d
z dz

du
     
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( | ; )r r k k
r

d
P U u U u m

du                (97) 

with 
7

, 1

0

( ) ( | ; ).
GPQ

r k m r r r k kz dz P U u U u m       (98) 

This ends the proof. 

Generalized Pivotal Quantity GPQ8: 

( ) ( )
8 1

( ) ( )1
r r

k k

r k F u F u
GPQ

F u F um r
 

 
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1
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m r r k m r
z

r k

 

 

   
  

        

 

  (0, ),z                             (99) 

where 1, ( )m r r k z     is the probability density 

function (pdf) of the F distribution ( ( 1, ))F m r r k    
with parameters m  r+1 and r  k, which are 
positive integers known as the degrees of freedom 
for the numerator and the degrees of freedom for the 
denominator, 

Proof. It follows from (99) that 

1,

8

( )m r r k
r GPQ

d
z dz

du




    

( | ; )r r k k
r

d
P U u U u m

du              (100) 

with 

1,

8

( ) ( | ; ).m r r k r r k k

GPQ

z dz P U u U u m


       (101) 

This ends the proof. 
 
 

6 Illustrative Example    
For the sake of simplicity but without loss of 
generality, consider the problem of optimal 
allocation of seats between two dependent (i.e., 
nested) fare classes. The performance index which 
can be used to determine the optimal allocation of 
seats between two dependent (i.e., nested) fare 
classes, subject to the total airplane seat capacity 
constraint, is given as follows. 

Maximize the total expected revenue for a 
single-leg flight with two nested fare classes 
(business and economy),

   
 

1 2 2 2( , ) ( )Q n n Q n
 

2 1 1 2 2 2{ ( min( , ))},E Q n n n Z             (102) 

where 

2 2 2 2 2 2( ) { min( , )}Q n E c n Z  

2

2 2 2 2 2

0

( ) ,
n

c n F z dz
 

   
 

                  (103) 

2 1 1 2 2 2{ ( min( , ))}E Q n n n Z   

2 1 2 2

1 1 2 2 1 1 1 2 2 2

0 0

( ) ( )
n n n z

c n n z F z dz f z dz
  

     
 
   

1

2

1 1 1 1 1 2 2 2

0

( ) ( ) .
n

n

c n F z dz f z dz
  

   
 
        (104) 

subject to  

1 2 ,    0   for 1, 2,jn n N n j   
        

(105) 

 
where c1 and c2 are the high and low fare levels 
respectively (c1>c2), nj denotes the booking limit for 
the jth fare class, Zj denotes the customer demand 
for the jth fare class, ( )j jf z is the probability density 

function of Zj , N is the total capacity of the cabin to 
be shared among the two fare classes. A simple 
application of the Lagrange multipliers technique 
leads to the optimal solution satisfying  

   2
1 2 1 1 1 1 1

1

arg Pr arg
c

n c c Z n F n
c

 
        

 
 

1

2

1 2
1 1

1

arg min ( ) ,
n

c c
F n

c

 
  

 
 

2 1  min(0, ),n N n 
                 

(106) 
 
where n1 denotes the optimal protection level for the 
high fare class, and n2 denotes the optimal booking 
limit for the low fare class. Thus, (106) suggests 
closing down the low fare class when the certain 
revenue from selling low fare seats is exceeded by 
the expected revenue of selling the same seat at the 
higher fare. It should be remarked that there is no 
protection level for the low fare (or economy) class; 
n2 is the booking limit, or the number of seats 
available, for the low fare class; the low fare class is 
open as long as the number of bookings in this class 
remains less than this limit. Thus, (n1+n2) is the 
booking limit or number of seats available for the 
high fare class at the time.  The high fare class is 
open as long as the number of bookings in this and 
low classes remains less than this limit.   
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6.1 Model of Optimal Statistical Estimation 
of Airline Seat Protection Levels for 
Nested Fare Classes under Parametric 
Uncertainty 

The model is given as follows: 
Step 1. It follows from (56) that 

( 1)

1 1
1 1 1 1( ) ( ) 1 ( ) 1 .

n

n

n s
F n F n F n

s

 
 

     
 

s s (107) 

Step 2. It follows from (106) and (107) that 

 
( 1)

2 2 1 1
1 1 1

1 1

arg arg 1

n

n

c c n s
n F n

c c s

            
     

 

 
1/

1
1

2

1 .
n

n

c
s s

c

  
    
   

                   (108) 

Step 3. 
 

  1/

2 1 1 2min 0, 1 .
n

nn N s s c c        
(109) 

The proposed policies of the dynamic adaptive 
airline seat inventory control are based on the use of 
order statistics of cumulative customer demand, 
which have such properties as bivariate dependence 
and conditional predictability. Dynamic adaptation 
of the airline seat reservation system to airline 
customer demand is carried out via the bivariate 
dependence of order statistics of cumulative 
customer demand. Dynamic anticipatory adaptive 
optimization of the airline seat allocation includes 
dynamic anticipatory adaptive nested optimization 
of protection levels over time T. It is carried out via 
the conditional predictability of order statistics.  The 
airline seat reservation system makes online 
decisions as to whether to accept or reject any 
customer request using established decision rules 
based on order statistics of the current cumulative 
customer demand. The computer simulation results 
are promising. 

 
6.2 Model of Dynamic Adaptive  Control of 

Airline Seat Protection Levels for Nested 
Fare Classes under Parametric 
Uncertainty 

For example, consider a single-leg flight with two 
fare classes (business and economy) for a single 
departure date with predefined reading dates at 
which the dynamic policy is to be updated, i.e., the 
booking period before departure is divided into h 
reading periods: (0=0, 1], (1, 2], …, (h-1, h]  
determined by the h reading dates: 1, 2, …, h. 
These reading dates are indexed in increasing order: 

0<1<2<  <h, where (h-1, h] denotes the reading 
period immediately preceding a departure, and h is 
at departure. Typically, the reading periods that are 
closer to departure cover much shorter periods of 
time than those further from departure. For example, 
the reading period immediately preceding departure 
may cover 1 day whereas the reading period (1 
month) from departure may cover 1 week. 

Let us suppose that the cumulative customer 
demand for the high (business) fare class at the kth 
reading date (time k, 1kh)  is Uk representing the 
kth order statistic from the underlying distribution 
with the probability density function ( )f u  and 
cumulative distribution function ( ),F u  where   is 
a parameter (in general, vector). This parameter is 
assumed to be unknown, but there is a sample of 
order statistics U1  ...  Uh (statistical estimates of 
cumulative customer demands for the high 
(business) fare class of past flights). 

Also, suppose that the cumulative customer 
demands for the high and low fare classes are 
stochastically independent. Each booking of a seat 
of the high fare class in the reading period (k1, k] 
generates revenue of c1. Each booking of a seat of 
the low fare class in the reading period (k1, k] 
generates revenue of c2, where c1 > c2 for all k{1, 
…, h). Then the model of optimal statistical 
estimation of airline seat protection levels for nested 
fare classes under parametric uncertainty includes 
the following steps: 

Step 1. Let’s assume that Uk , {1,  ...,  },k h   
represents the kth order statistic from the two-
parameter exponential distribution (38), where the 
parameter  is unknown. It follows from (91) that 

5

, 1

0

( )
GPQ

r k h r z dz     

( | ; ) ,r r k kP U u U u h               (110)  

where                                                                        

, 1;

( )
5 1

( )
r

r k h r
k

F u
GPQ q

F u





     (α-quantile), (111) 

( ) exp .
u

F u



 

  
 

                (112) 

It follows from (111) and (112) that 

, 1;

1
ln .

1r k
r k h r

u u
q 


  

 
     

         (113) 

Step 2. Assuming r=h, ρ=ρk and α=αk, it follows 
from (113) that 
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,1;

1
ln .

1
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k kh
h k

u u
q 




 
     

          (114) 

Step 3. For each k=1, …, h-1 we define ρk and αk 
such that  

,1;

1
ln

1
k

kh k
h k

u u
q 




 
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 
1/

2 1
1 1 1 1

1 2

arg 1
n

n

c c
n F n s s

c c

    
        
     

 (115) 

It should be noted that equation (115) is used to 
determine the exact fragment estimate  

,1;

1
ln ,

1
k

k
h kq 




 
   

 

 1,  ..., 1 ,k h                     (116) 

based on accurate statistical information obtained 
from the process of selling and reserving air tickets 
for the high (business) fare class and past single-leg 
flights. 

Step 4. For a new flight with new cumulative 
customer demand values  of  new

kU for each k=1, …, 
h-1, the exact fragment estimate  (116) can be used 
for dynamic adaptive control of airline seat 
protection level for the high (business) fare class 
under parametric uncertainty of customer demand 
models during the process of selling and reserving 
air tickets for a new future flight as follows:  

1
,1;

1
ln ,

1
k

new new
k k

h k

N U
q 




 
     

 

 1,  ..., 1 ,k h                    (117) 

where 1
newN is the dynamic adaptive airline seat 

protection level for the high (business) fare class 
under parametric uncertainty of customer demand 
models during the process of selling and reserving 
air tickets for a new future flight.  
 
 

7 Conclusion 
New rigorous formulations of the problems of 
statistical optimization and dynamic adaptive 
control of airline seat protection levels for several 
nested fare classes under parametric uncertainty of 
consumer demand models are presented. Several 
results useful for practical application have been 
obtained. Illustrative examples are given. 

The new intelligent analytical technique 
proposed in this paper represents the conceptually 
simple, efficient, and useful method for constructing 
optimal airline seat protection levels for multiple 
nested fare classes of single-leg flights with any 
practical number l (2) of nested fare classes. The 
technique yields the optimal allocation of airline 
seats between l dependent (i.e., nested) fare classes, 
subject to N (the total airplane seat capacity), that 
takes into account not only the past observations but 
also the future observation program and the 
associated statistics. The optimum procedure is to 
consider the situation as a dual optimization of 
allocation problem where information and action are 
interrelated. 

The technique used in this article is based on a 
probability transformation and pivotal quantity 
averaging, [3], [4], [5], [6], [7], [8], [9], [10], [11], 
[12], [13], [14], [15], [16], [17]. It is conceptually 
simple and easy to use.  

The methodology presented in this article can be 
useful for solving problems of the optimal allocation 
of resources in physics and engineering. 
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