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New method for calibration of sun photometers
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A new method for calibration of sun photometers based on Bouguer-Beer law is proposed. The developed
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It is obvious that the development of new space and
ground remote sensing devices leads to the increase of
requirements for more perfect calibration of these sen-
sors. One can state that till now the method of Langley
diagrams remains as a basic method for the calibration
of ground sets of sun photometers[1−4]. This method is
based on Bouguer-Beer law, according to which the in-
tensity of solar radiation at the input of photometer I(λ)
may be determined as

I(λ) = I0(λ)e−mτatm , (1)

where λ is the wavelength, I0(λ) is the solar constant,
i.e., the intensity of sun radiation at the upper border of
atmosphere; m is the optical air mass; τatm is the optical
thickness of atmosphere, which is defined in ultraviolet
(UV) band as

τatm = τoz + τRay + τaer, (2)

where τoz, τRay, and τaer are optical thicknesses of atmo-
spheric ozone, Rayleigh scattering, and aerosol, respec-
tively.

According to the method of Langley, Eq. (1) should be
transformed to

lnI(λ) = lnI0(λ) − mτatm
. (3)

Then we can draw the linear diagram of dependence of
lnI(λ) on m, as shown in Fig. 1.

The common rule for drawing Langley diagrams con-
sists of the following steps.

1) Calculation of lnI(λ) for two values of m, i.e., m1

and m2, which correspond to appropriate angles of ob-
servation of the Sun, θ1 and θ2.

2) Drawing the graphic model of function lnI(λ) =
f(m) using two values of m.

3) The linear type graphics of aforesaid function is ex-
trapolated as far as m = 0, where this line crosses the
ordinate axis.

4) Taking into consideration the linearity of “input-
output” functional dependence of the photometer. It
should be assumed that the output signal is proportional
to I0(λ).

The main shortage of the Langley diagram method is
that temporal variations of optical depth of atmosphere
may lead to mistakes in the calibration of photometers.

There are some modifications of this method. For exam-
ple, it is proposed to use the formula[5]

lnI

m
=

lnI0

m
− τ,

i.e., to draw similar diagrams of

lnI

m
= f

(

1

m

)

.

It is stated that in the case of “short” diagrams
(mmax = 3), the Langley method and the alternative
method proposed in Ref. [2] are quivalent, but in the case
of “long” diagrams (mmax = 8), the difference between
these two methods becomes more significant. When the
high-frequency atmospheric fluctuation occurs, the alter-
native method is better than the former one; but if the
low-frequency atmospheric fluctuation presents, the clas-
sic Langley method is preferable.

The interesting idea suggested in Ref. [6] is that similar
diagrams for three-wavelength photometer should have
an argument not for the optical air mass, but for the ad-
justable combination of optical thicknesses in three wave-
lengths. Adjusting the value of this combination as far as
zero, one can reach the wanted combination of solar con-
stants in three wavelengths. But this idea is significant
only for multi-wavelength methods of sun photometry.

We describe a new calibration method for sun pho-
tometers which is also based on Bouguer-Beer Law. It
is assumed that the photometric ground measurements
are carried out at the wavelength λ by air mass m. In
this case, the intensity of solar radiation at the input of
photometer may be determined as

I (λ, m) = I0 (λ) e−mτ , (4)

Fig. 1. Langley diagram for calibration of sun photometers.
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which can also be written as

Ik (λ, m) = Ik
0 (λ) e−k m τ . (5)

Introducing the new value of air mass m1 = km, we have

Ik (λ, m) = Ik
0 (λ) e−m1 τ . (6)

Now we assume that the photometric measurements by
air mass m1 are carried out, i.e.,

I (λ, m1) = I0 (λ) e−m1 τ . (7)

From Eq. (6) we have

e−m1τ =
Ik (λ, m)

Ik
0 (λ)

. (8)

From Eq. (7) we have

e−m1τ =
I (λ, m1)

I0 (λ)
. (9)

Comparing Eqs. (8) and (9), we can get

Ik (λ, m)

Ik
0 (λ)

=
I (λ, m1)

I0 (λ)
. (10)

Then

I0 (λ) = k−1

√

Ik (λ, m)

I (λ, m)
(11)

or

Ik (λ, m) = Ik−1
0 (λ) · I (λ, k m) . (12)

Equation (12) is the basis of the suggested calibration
method. Using this equation, we can deduce the follow-
ing formulas for calibration purposes.

1) If k = 1, we have the trivial result I(λ, m) = I(λ, m).
2) If k = 2, we have

I2 (λ, m) = I0 (λ) · I (λ, 2 m) . (13)

3) If k = 3, we have

I3 (λ, m) = I2
0 (λ) · I (λ, 3 m) . (14)

Equations (13) and (14) allow us to suggest the follow-
ing practical methods for calibration of sun photometers.

In line with Eq. (13), one would carry out the photo-
metric measurements at air masses m and 2m. It should
be noted that the classic Langley diagram method also
requires to carry out photometric measurements at two
different air masses, but the ratio is not required. In the
proposed method, we use two measured diagrams, axes
of which represent the physical parameters, homogenous
with I(λ, m), I0(λ), and I(λ, 2m) (Fig. 2). First of
all, we should designate the quadrate with area equal to
I2(λ, 2m) to be marked. The main requirement of this
method is to find out such a point I0(λ) on the other axis,
upon which the area of rectangle OI(λ, 2m)B2(λ, m) has
the area of quadrate OI(λ, m)B1I(λ, m). The geometric
interpretation of this method is shown in Fig. 2.

According to this method, in line with Eq. (14) the
photometric measurements on air masses m and 3m may
be carried out. Then the three measured diagrams should
be used, the axes of which represent the physical param-
eter homogenous with I(λ, m), I0(λ), and I(λ, 3m). In
one axis, the value of I(λ, 3m) should be marked. On
the plane which is perpendicular to this axis, we should
place the quadrate with area equal to I2

0 (λ). The main
condition of this contraction is that the volume of the
parallelepiped with height equal to I(λ, 3m) and basis
area equal to I2

0 (λ) would be equal to the volume of
the cube with its side equal to I(λ, m). The geometric
interpretation of this method is shown in Fig. 3.

In order to describe the major advantages of suggested
method in comparison with Langley method, the error
analysis is carried out. The relevant graphical explana-
tion is given in Fig. 4. The function of initial Langley
plot diagram (line 1 in Fig. 4) may be written as

Fig. 2. Geometric interpretation of suggested method of equal
areas.

Fig. 3. Geometric interpretation of suggested method of equal
volumes.

Fig. 4. Graphical explanation of error analysis.
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lnI01 = lnI21 + k1m2, (15)

where

k1 =
lnI11 − lnI21

m2 − m1
. (16)

Suppose that we have the measurement errors of any
nature in points m1 and m2 which are equal to ∆lnI1

and ∆lnI2 accordingly, the function of experimental line
of Langley plot diagram 2 may be written as

lnI02 = lnI22 + k2m2. (17)

where

k2 =
I12 − I22

m2 − m1
. (18)

The absolute error may be given as

∆lnI0L = lnI02 − lnI01. (19)

To calculate the absolute value of error, we should take
logarithm with Eq. (11). As a result, we get

lnI0(λ) =
k

k − 1
lnI(λ, m1)

−
1

k − 1
ln(λ, km1). (20)

If increments ∆I(λ, m1) and ∆I(λ, km1) occur, Eq.
(20) may be written as

ln [I0(λ) + ∆I0(λ)]

=
k

k − 1
ln[I(λ, m1) + ∆I(λ, m1)]

−
1

k − 1
ln[I(λ, km1) + ∆I(λ, km1)]. (21)

From Eqs. (20) and (21), we have

∆lnI0(λ) =
k

k − 1
ln

[

1 +
∆I(λ, m1)

I(λ, m1)

]

−
1

k − 1
ln

[

1 +
∆I(λ, km1)

I(λ, km1)

]

. (22)

Taking into consideration k =
m2

m1
, Eq. (22) may be

written as

∆lnI0(λ) =
m2

m2 − m1
ln

[

1 +
∆I(λ, m1)

I(λ, m1)

]

−
m1

m2 − m1
ln

[

1 +
∆I(λ, km1)

I(λ, km1)

]

. (23)

It is obvious that the advantage in accuracy of calibra-
tion may be reached upon the following condition:

∆lnI0L > ∆lnI0(λ). (24)

In view of Eqs. (19), (23), and (24), we have

lnI02 +
m

m2 − m1
ln

[

1 +
∆I(λ, m2)

I(λ, m2)

]

> lnI01 +
m2

m2 − m1
ln

[

1 +
∆I(λ, m1)

I(λ, m1)

]

. (25)

From the inequality (25), we can finally get the follow-
ing condition for the presence of advantage in accuracy
of calibration:

I02

I01
>

[

1 + ∆ I (λ, m1)
I(λ, m1)

]m2/m2 −m1

[

1 + ∆ I (λ, m2)
I(λ, m2)

]m1/m2 −m1

. (26)

Thus, the formula (26) defines the condition for pres-
ence of advantage in accuracy of calibration in the sug-
gested method in comparison with Langley diagram
method. It is obvious that

m2

m2 − m1
>

m1

m2 − m1
.

Therefore, the absolute condition for the presence of
aforesaid advantage is

∆ I (λ, m1)

I (λ, m1)
≥

∆ I (λ, m2)

I (λ, m2)
. (27)

It is clear that condition (26) may also be met upon some
violation of condition (27).

Another advantage of the suggested method in compar-
ison with classic Langley method is that we have an an-
alytical formula making it possible to calculate the value
of I0(λ) using various derivative formulas, while in the
Langley method the value of I0(λ) may be found using
only geometrical method.

Experimental researches were performed by comparing
two photometers of the same construction. The first pho-
tometer was calibrated using the Langley method and the
second one using the suggested method of equal areas.
The “input-output” characteristics of both photometers
were linearized with accuracy equal to 3%, which allows
to compare the output signals of photometers with suf-
ficient accuracy. The photometric measurements were
carried out at air masses equivalent to elevation angles
of the Sun α1 = 20◦, 25◦, 30◦, and 35◦ (correspondingly,
2α1 = 40◦, 50◦, 60◦, and 70◦). The relative error of de-
termination of solar constant values is calculated by

γ =
U01 (λ) − U02 (λ)

U02 (λ)
, (28)

where U01(λ) is the value of the output signal of the pho-
tometer calibrated using suggested method of equal ar-
eas; U02(λ) is that using the Langley method; λ = 557±
3 nm. The calculated values of γ are shown in Table 1.

Table 1. Comparisons of Two Photometers with
Relative Error Calculated by Eq. (28)

Measurements 1 2 3 4

α1 20◦ 25◦ 30◦ 35◦

γ (%) +5.42 −2.33 −4.97 +3.06
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As can be seen from Table 1, the error shows a dual-
polarity characteristic, which presumably can be ex-
plained by effects of many factors, such as error of lin-
earization of photometric channels, error of calculation
on the Langley diagrams, error due to aerosol variability,
and so on.

Concerning the scientific value of the Langley method
and the suggested one, it should be noted that both
methods are valid for homogenized atmosphere. Limi-
tations concerning the values of optical air mass in Eq.
(7) are also valid for both methods. But the factual ad-
vantage in calculation of solar constant shown above in
error analysis may be considered as a significant positive
feature of the suggested method.

In conclusion, the main shortages of the classic method
of Langley diagrams include the effect of variations of at-
mospheric optical depth to the accuracy of calculations
and the absence of analytical formula allowing to calcu-
late the calibration parameter values without geometric
procedures. The suggested calibration methods make it
possible to determine the calibration parameter values

using photometric measurements on air masses m, 2m,
and 3m and to further calculate the wanted values using
analytical or geometric calculation procedures.
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