
031002-1 CHINESE OPTICS LETTERS / Vol. 9, No. 3 / March 10, 2011

Hyperspectral remote sensing image classification based on
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To apply decision level fusion to hyperspectral remote sensing (HRS) image classification, three decision
level fusion strategies are experimented on and compared, namely, linear consensus algorithm, improved
evidence theory, and the proposed support vector machine (SVM) combiner. To evaluate the effects of the
input features on classification performance, four schemes are used to organize input features for member
classifiers. In the experiment, by using the operational modular imaging spectrometer (OMIS) II HRS
image, the decision level fusion is shown as an effective way for improving the classification accuracy of the
HRS image, and the proposed SVM combiner is especially suitable for decision level fusion. The results
also indicate that the optimization of input features can improve the classification performance.
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Hyperspectral remote sensing (HRS) is viewed as one of
the most evolving and most promising technologies for
advanced earth observations in the 21st century. Tradi-
tionally, HRS image classification is implemented by a
single classifier with the original hyperspectral data and
other derived features as input. Examples of classifiers
are the support vector machine (SVM), the maximum
likelihood classifier (MLC), and the back-propagation
neural network (BPNN). These methods have proven
their effectiveness in many applications, however, there
are still some problems. Firstly, each classifier has its own
merits and limitations, and achieving the desired accu-
racy using a single classifier is often difficult[1,2]. Sec-
ondly, the adjacent wavebands of HRS data are highly
correlated, thus the simultaneous use of all bands cannot
assure high accuracy. Due to the limitations of both the
classifiers and data, finding new solutions to improve the
classification performance is necessary. Decision level fu-
sion, using a specific criterion or algorithm to integrate
the results of different classifiers, has shown great benefits
in improving the classification accuracy of multi-source
remote sensing images[3,4]. After a survey of HRS classi-
fication techniques and decision level fusion algorithms,
some issues on HRS image classification based on deci-
sion level fusion are explored in this letter.

Many decision level fusion algorithms have been
developed. After comparing their suitability and per-
formance for remote sensing image classification, we se-
lected three fusion strategies for this study: the improved
evidence theory, the linear consensus, and the SVM com-
biner.

Evidence theory is also known as the Dempster-Shafer
(D-S) evidence theory, which was first applied by Demp-
ster and then developed by Shafer. Compared with the
Bayesian theory, the D-S evidence theory assigns proba-
bility to sets and is able to handle the uncertainty caused
by unknown factors[5]. The D-S evidence theory uses the

discrimination framework, the confidence function, the
likelihood function, and the probability allocation func-
tion to represent and process information. Supposing
that Θ = {C1, C2, · · · , Ci, · · · , CM} is the discrimination
framework and M is the number of classes, the basic
probability allocation function m is a function from 2Θ

to [0, 1] meeting the requirements of
m(φ) = 0∑
A⊆Θ

m(A) = 1. (1)

If there are two or more different evidences, the or-
thogonal sum can be used to combine those evidences.
Assuming that Z1, Z2, · · · , and Zn are the probability
allocation functions corresponding to evidences F1, F2,
· · · , and Fn, the orthogonal sum Z = Z1⊕ Z2 ⊕ · · · ⊕
Zn is

Z(φ) = 0, (2)

Z(A) = K−1 ×
∑
∩Ai

∏
1≤i≤n

Zi (Ai) , (3)

K =
∑

∩Ai 6=φ

∏
1≤i≤n

Zi(Ai). (4)

When various evidences are inconsistent or contra-
dictory to each other, the combined result of the D-S
evidence theory may be unreasonable. A modified ev-
idence combination algorithm was proposed and tested
by Sun et al.[6], which proved superior to the traditional
method in processing evidence that were contradicting
and highly inconsistent. For a remote sensing image,
different classifiers may generate different classification
labels, resulting in generation of evidence with high con-
tradiction, so the modified evidence combination is ap-
plied to the classification integration of HRS images. The
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detailed equations are as follows[6]:

kij =
∑

Ai
T

Aj=φ

Ai∈Fi,Aj∈Fj

Zi(Ai)Zj(Aj), (5)

k̃ =
1

n(n − 1)/2

∑
i<j

kij , (6)

ε = e−k̃, (7)
Z(A) = p(A) + Kεq(A), A 6= Φ,Θ, (8)
Z(Θ) = p(Θ) + Kεq(Θ) + k(1 − ε), (9)

p(A) =
∑

Ai∈Fi
Tn

i=1 Ai=A

Z1(A1)Z2(A2) · · ·Zn(An), (10)

q(A) =
1
n

n∑
i=1

Zi(A), (11)

where ε is the confidence of the evidence, k̃ is the average
contradiction level between two evidences, and K is the
total contradiction level of all evidences. This evidence
combination method can reduce the limitations caused
by high evidence inconsistency.

For multiple classifier combination in remote sensing,
each classifier result can be viewed as a piece of evidence.
The probability allocation function is represented by the
classification accuracy of a specific class. For example,
if a pixel is classified to the ith class, the basic proba-
bility is m(Ci) = Pi, m(Θ) = 1 − Pi, where Pi is the
accuracy of the ith class given by the specific classifier.
After the evidence combination is completed, the label
with the maximum evidence confidence is selected as the
final class.

The consensus theory is a popular method for multiple
classifier combination and is suitable for integrating mul-
tiple outputs of the category probability generated by all
member classifiers. Two commonly used models of the
consensus theory are the linear consensus model and the
logarithm consensus model. The principle of the linear
consensus model is given by[7,8]

Tj(X) =
N∑

i=1

pi(Cj |X)λij . (12)

Each classifier is regarded as an expert and the output
element corresponding to X is its membership degree,
confidence level, or probability to every class. Tj(X) is
the membership of the unlabeled pixel X to class j after
combining multiple classifiers. pi(Cj |X) is the probabil-
ity or the confidence level of X belonging to class j by
the ith classifier. λij is the classification accuracy (pro-
ducer accuracy) of classifier i to class j and it represents
the importance degree as a weight. Within the mem-
ber classifiers, the SVM, BPNN, MLC, and the decision
tree classifier (DTC) may generate the probability value
directly, but the minimum distance classifier (MDC)
should use the following transformation to calculate the
probability value:

P (X ∈ Ci|X) =
1/dk(Ci|X)

M∑
i=1

1/dk(Ci|X)
, (13)

where dk(Ci|X) denotes the Mahalanobis distance be-
tween the spectral vector of the element X and the center
of the ith class.

After this transformation, the decision level fusion can
be used based on the class probability output of each
classifier. In the decision level fusion, we can decide the
class of element X according to the biggest membership
degree derived from Eq. (12).

In the hierarchical classifier framework of SVM com-
biner for the decision level fusion, the probability output
from each individual classifier is used as the input of
the SVM combiner or classifier for the next level. The
inaccuracy of class probability and inconsistency of inter-
classifiers in the first level can be reduced by processing
and classifying their probability outputs in the second
level. The SVM and the BPNN classifiers usually have
very good decision level fusion abilities, so the SVM
classifier is adopted as the decision level combiner. The
structure is shown in Fig. 1.

To obtain multiple classification results for the deci-
sion level fusion, providing every member classifier with
identical or different input features is necessary. We de-
signed four strategies to organize the input features. The
first scheme is the most commonly used, in which the
original hyperspectral data are used by all the classifiers.
The second scheme is an improvement of the first one,
in which all classifiers still use identical input features
but the feature set consists of both the original data and
the texture features derived from the original data. In
the third scheme, all wavebands are divided into sev-
eral groups based on the interband correlation analysis.
Each group of data together with the texture features
extracted is used by a specific classifier, which means
that the feature inputs for multiple classifiers are differ-
ent but every group of data should be a representative
subset of the original data. In the fourth scheme, the
first ten components derived from the maximum noise
fraction (MNF) transformation of the original data and
the texture features are used as input for all member
classifiers. Figure 2 shows the flowchart of the four fea-
ture combination schemes.

Airborne hyperspectral operational modular imaging
spectrometer (OMIS) II image was used in the exper-
iment. The image size was 400 rows with 400 pixels
on each row. After removing five bands that contained
heavy noise, the image with 59 bands was used for classi-
fication. The training samples and testing samples were
selected independently from the image. Figure 3 is the
false color composite of the HRS image using bands 61,
21, and 11 as the red, green, and blue (R, G, and B)
components, respectively.

Fig. 1. Structure of decision level fusion using SVM combiner.
RS: remote sensing.
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Fig. 2. Flowcharts of four feature input schemes. (a) Original
data for all classifiers; (b) original data and textural feature
for all classifiers; (c) different input feature sets for each clas-
sifier; (d) MNF components and texture for all classifiers.

Fig. 3. False color composite of original image.

In the decision level fusion, the members in the clas-
sifier ensemble include SVM, BPNN, MLC, DTC, and
MDC. The mean and variance derived from the gray-
level co-occurrence matrix (GLCM) of band 18, which
had the biggest variance, were adopted as the texture
feature in the second scheme. The grouping results,
which are calculated based on the correlation of adjacent
bands in the third scheme, are 1–7, 8–20, 21–32, 33–55,
and 56–59. The results are classified separately using the
five member classifiers.

The classification results are shown in Figs. 4−7. Ta-
ble 1 summarizes the accuracy of different schemes.

For different classifier inputs, the second scheme, which
includes the spectral and texture features, and the fourth
scheme, which uses MNF transformation and texture
features, obtain higher classification accuracy than using
the original data alone. The worst classification accuracy

Fig. 4. Classification results of the first scheme. (a) SVM; (b)
BPNN; (c) DTC; (d) MDC; (e) MLC; (f) evidence theory; (g)
linear consensus; (h) SVM combiner.

Fig. 5. Classification results of the second scheme. (a) SVM;
(b) BPNN; (c) DTC; (d) MDC; (e) MLC; (f) evidence theory;
(g) linear consensus; (h) SVM combiner.

Table 1. Classification Accuracy and Kappa Coefficient of Each Scheme

Classification
The First Scheme The Second Scheme The Third Scheme The Fourth Scheme

Method
Overall

Kappa
Overall

Kappa
Overall

Kappa
Overall

KappaAccuracy (%) Accuracy (%) Accuracy (%) Accuracy (%)

SVM 90.72 0.88 91.21 0.89 86.11 0.83 91.70 0.90

BPNN 92.53 0.91 91.20 0.89 80.74 0.76 93.51 0.92

DTC 87.86 0.85 89.32 0.87 86.88 0.84 91.49 0.89

MDC 91.42 0.89 91.84 0.90 79.41 0.74 91.14 0.89

MLC 87.16 0.84 88.21 0.85 88.83 0.86 92.11 0.90

Evidence Theory 92.18 0.90 92.67 0.91 90.79 0.88 94.00 0.92

Linear Consensus 92.53 0.91 92.67 0.91 89.88 0.87 92.32 0.90

SVM Combiner 92.67 0.91 96.86 0.96 90.65 0.88 93.44 0.92



March 10, 2011 / Vol. 9, No. 3 / CHINESE OPTICS LETTERS 031002-4

Fig. 6. Classification results of the third scheme. (a) SVM;
(b) BPNN; (c) DTC; (d) MDC; (e) MLC; (f) evidence theory;
(g) linear consensus; (h) SVM combiner.

Fig. 7. Classification results of the fourth scheme. (a) SVM;
(b) BPNN; (c) DTC; (d) MDC; (e) MLC; (f) evidence theory;
(g) linear consensus; (h) SVM combiner.

is generated by the grouping scheme based on interband
correlation, which is the third scheme. Therefore, we can
conclude that both the textural features and the MNF
transformation have positive effects on classification, and
that the MNF transformation may help in overcoming
the Hughes phenomena to a certain extent. However, if

only the relevant part of the whole band set is used, the
classification accuracy is not satisfactory.

For the experimental results of the three decision level
fusion strategies, the overall accuracy of decision level
fusion is comparable to or higher than the best single
member classifier. Out of all the classification schemes,
the SVM combiner for decision level fusion obtains the
highest accuracy, or quite close to the highest accuracy,
which means that it is a very good tool for decision level
fusion.

In conclusion, we present some ideas and experiments
on HRS image classification based on decision level fu-
sion. Experiments have been done to compare three dif-
ferent decision level fusion methods using different in-
put feature sets. By comparing the performance of four
kinds of feature combination schemes, the SVM com-
biner and the improved evidence theory are found to ob-
tain high accuracy when using the original data together
with the textural feature data and components from the
MNF transformation together with the textural feature
data, respectively. We therefore conclude that the deci-
sion level fusion, especially the SVM combiner, is effective
in HRS image classification, and that the introduction of
textural features is helpful to improve further the classi-
fication accuracy. In our future research, the application
scopes, as well as the advantages and disadvantages of
each decision level fusion strategy will be compared and
analyzed.
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