\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

On optimal ternary linear codes of dimension 6

Abstract Related Papers Cited by
  • We prove that $[g_3(6,d),6,d]_3$ codes for $d=253$-$267$ and $[g_3(6,d)+1,6,d]_3$ codes for $d=302, 303, 307$-$312$ exist and that $[g_3(6,d),6,d]_3$ codes for $d=175, 200, 302, 303, 308, 309$ and a $[g_3(6,133)+1,6,133]_3$ code do not exist, where $g_3(k,d)=\sum_{i=0}^{k-1} \lceil d / 3^i \rceil$. These determine $n_3(6,d)$ for $d=133, 175, 200, 253$-$267, 302, 303, 308$-$312$, where $n_q(k,d)$ is the minimum length $n$ for which an $[n,k,d]_q$ code exists. The updated $n_3(6,d)$ table is also given.
    Mathematics Subject Classification: Primary: 94B27, 94B05; Secondary: 51E20, 05B25.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    A. Beutelspacher, Blocking sets and partial spreads in finite projective spaces, Geom. Dedicata, 9 (1980), 425-449.doi: 10.1007/BF00181559.

    [2]

    R. C. Bose and R. C. Burton, A characterization of flat spaces in a finite projective geometry and the uniqueness of the Hamming and the MacDonald codes, J. Combin. Theory, 1 (1966), 96-104.doi: 10.1016/S0021-9800(66)80007-8.

    [3]

    A. A. Bruen, Polynomial multiplicities over finite fields and intersection sets, J. Combin. Theory Ser. A, 60 (1992), 19-33.doi: 10.1016/0097-3165(92)90035-S.

    [4]

    M. van Eupen and R. Hill, An optimal ternary $[69,5,45]$ code and related codes, Des. Codes Cryptogr., 4 (1994), 271-282.doi: 10.1007/BF01388456.

    [5]

    M. van Eupen and P. Lisonêk, Classification of some optimal ternary linear codes of small length, Des. Codes Cryptogr., 10 (1997), 63-84.doi: 10.1023/A:1008292320488.

    [6]

    N. Hamada, A characterization of some $[n,k,d;q]$-codes meeting the Griesmer bound using a minihyper in a finite projective geometry, Discrete Math., 116 (1993), 229-268.doi: 10.1016/0012-365X(93)90404-H.

    [7]

    N. Hamada, The nonexistence of $[303,6,201;3]$-codes meeting the Griesmer bound, Technical Report OWUAM-009, Osaka Women's University, 1995.

    [8]

    N. Hamada and T. Helleseth, The uniqueness of $[87,5,57;3]$ codes and the nonexistence of $[258,6,171;3]$ codes, J. Statist. Plann. Inference, 56 (1996), 105-127.doi: 10.1016/S0378-3758(96)00013-4.

    [9]

    N. Hamada and T. Helleseth, The nonexistence of some ternary linear codes and update of the bounds for $n_3(6,d)$, $1\leq d\leq 243$, Math. Japon., 52 (2000), 31-43.

    [10]

    N. Hamada and T. Maruta, A survey of recent results on optimal linear codes and minihypers, unpublished manuscript, 2003.

    [11]

    U. Heim, On $t$-blocking sets in projective spaces, unpublished manuscript, 1994.

    [12]

    R. Hill, Caps and codes, Discrete Math., 22 (1978), 111-137.doi: 10.1016/0012-365X(78)90120-6.

    [13]

    R. Hill, Optimal linear codes, in "Cryptography and Coding II'' (ed. C. Mitchell), Oxford Univ. Press, Oxford, (1992), 75-104.

    [14]

    R. Hill, An extension theorem for linear codes, Des. Codes Cryptogr., 17 (1999), 151-157.doi: 10.1023/A:1008319024396.

    [15]

    R. Hill and D. E. Newton, Optimal ternary linear codes, Des. Codes Cryptogr., 2 (1992), 137-157.doi: 10.1007/BF00124893.

    [16]

    W. C. Huffman and V. Pless, "Fundamentals of Error-Correcting Codes," Cambridge University Press, Cambridge, 2003.

    [17]

    C. M. Jones, "Optimal Ternary Linear Codes," Ph.D thesis, University of Salford, 2000.

    [18]

    I. N. Landjev, The nonexistence of some optimal ternary linear codes of dimension five, Des. Codes Cryptogr., 15 (1998), 245-258.doi: 10.1023/A:1008317124941.

    [19]

    I. Landgev, T. Maruta and R. Hill, On the nonexistence of quaternary $[51,4,37]$ codes, Finite Fields Appl., 2 (1996), 96-110.

    [20]

    T. Maruta, On the nonexistence of $q$-ary linear codes ofdimension five, Des. Codes Cryptogr., 22 (2001), 165-177.

    [21]

    T. Maruta, Extendability of ternary linear codes, Des. Codes Cryptogr., 35 (2005), 175-190.doi: 10.1007/s10623-005-6400-7.

    [22]

    T. Maruta, "Griesmer Bound for Linear Codes over Finite Fields," available online at http://www.geocities.jp/mars39geo/griesmer.htm

    [23]

    Y. OyaThe nonexistence of $[132,6,86]_3$ codes and $[135,6,88]_3$ codes, Serdica J. Comput., to appear.

    [24]

    G. Pellegrino, Sul massimo ordine delle calotte in S4,3, Matematiche (Catania), 25 (1970), 1-9.

    [25]

    M. Takenaka, K. Okamoto and T. Maruta, On optimal non-projective ternary linear codes, Discrete Math., 308 (2008), 842-854.doi: 10.1016/j.disc.2007.07.044.

    [26]

    H. N. Ward, Divisibility of codes meeting the Griesmer bound, J. Combin. Theory Ser. A, 83 (1998), 79-93.doi: 10.1006/jcta.1997.2864.

    [27]

    Y. Yoshida and T. Maruta, Ternary linear codes and quadrics, Electronic J. Combin., 16 (2009), 21 pp.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(110) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return