Skip to main content
Log in

Properties of FeSe nanobridges prepared by using a focused ion beam

  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

We have fabricated FeSe nanobridges by using a focused ion beam (FIB) etching technique and studied their transport properties. FeSe films were prepatterned into microbridges by using a standard photolithography and argon-ion-milling technique and was subsequently patterned into nanobridges by using a focused Ga+ beam with a beam current of 9 pA to minimize damage to the film. The nominal width and length of the bridges were 300 nm and 100 nm, respectively, and the film thickness was about 1,000 nm. Our film was deposited on an Al2O3(0001) substrate by using a pulsed laser deposition technique and had a (101)-oriented tetragonal phase according to its X-ray diffraction spectrum. We have studied the current-voltage (IV) characteristics, the temperature-dependent critical current and the normal state resistance. The as-made film exhibited an onset transition temperature (T c) of 11.0 K and zero resistivity at 6.7 K. Argon-ion milling decreased T c, T c,onset = 10.0 K, and T c0 = 6.0 K, but subsequent FIB nanobridge patterning did not affect T c. The measured transport properties of the nanobridges showed a flux-flow behavior with thermal fluctuations with negligible pinning effect. The results are compared with those of the MgB2 counterpart with a coherence length of similar size. The details of the fabrication procedure and the measured properties are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y. Kamihara, T. Watanabe, M. Hirano and H. Hosono, J. Am. Chem. Soc. 130, 3296 (2008).

    Article  Google Scholar 

  2. M. Rotter, M. Tegel and D. Johrendt, Phys. Rev. Lett. 101, 107006 (2008).

    Article  ADS  Google Scholar 

  3. M. J. Pitcher, D. R. Parker, P. Adamson, S. J. Herkelrath, A. T. Boothroyd, R. M. Ibberson, M. Brunelli and S. J. Clarke, Chem. Commun. 45, 5918 (2008).

    Article  Google Scholar 

  4. F.-C. Hsu et al., Proc. Natl. Acad. Sci. U.S.A. 105, 14262 (2008).

    Article  ADS  Google Scholar 

  5. A. S. Sefat, A. Huq, M. A. McGuire, R. Jin, B. C. Sales, D. Mandrus, L. M. D. Cranswick, P. W. Stephens and K. H. Stone, Phys. Rev. B 78, 104505 (2008).

    Article  ADS  Google Scholar 

  6. Y. Mizuguchi, F. Tomioka, S. Tsuda, T. Yamaguchi and Y. Takano, Appl. Phys. Lett. 93, 152505 (2008).

    Article  ADS  Google Scholar 

  7. Y. F. Nie, E. Brahimi, J. I. Budnick, W. A. Hines, M. Jain and B. O. Wells, Appl. Phys. Lett. 94, 242505 (2009).

    Article  ADS  Google Scholar 

  8. H. Okabe, N. Takeshita, K. Horigane, T. Muranaka and J. Akimitsu, Phys. Rev. B 81, 205119 (2010).

    Article  ADS  Google Scholar 

  9. S. Margadonna et al., Phys. Rev. B 80, 064506 (2009).

    Article  ADS  Google Scholar 

  10. E. Bellingeri et al., Appl. Phys. Lett. 96, 102512 (2010).

    Article  ADS  Google Scholar 

  11. S. X. Huang, C. L. Chien, V. Thampy and C. Broholm, Phys. Rev. Lett. 104, 217002 (2010).

    Article  ADS  Google Scholar 

  12. M. J. Wang et al., Phys. Rev. Lett. 103, 117002 (2009).

    Article  ADS  Google Scholar 

  13. J. K. Dong, T. Y. Guan, S. Y. Zhou, X. Qiu, L. Ding, C. Zhang, U. Patel, Z. L. Xiao and S. Y. Li, Phys. Rev. B 80, 024518 (2009).

    Article  ADS  Google Scholar 

  14. R. Khasanov, M. Bendele, A. Amato, K. Conder, H. Keller, H.-H. Klauss, H. Luetkens and E. Pomjakushina, Phys. Rev. Lett. 104, 087004 (2010).

    Article  ADS  Google Scholar 

  15. C. T. Wu, H. H. Chang, J. Y. Luo, T. J. Chen, F. C. Hsu, T. K. Chen, M. J. Wang and M. K. Wu, Appl. Phys. Lett. 96, 122506 (2010).

    Article  ADS  Google Scholar 

  16. S.-G. Jung, N. H. Lee, E.-M. Choi, W. N. Kang, S.-I. Lee, T.-J. Hwang and D. H. Kim, Physica C, in print.

  17. S. G. Lee, S. H. Oh, C. S. Kang and S. J. Kim, Physica C, 460, 1468 (2007).

    Article  ADS  Google Scholar 

  18. S.-G. Lee, S.-H. Hong, W. N. Kang and D. H. Kim, J. Appl. Phys. 105, 013924 (2009); S.-G. Lee, S.-H. Hong, W. K. Seong and W. N. Kang, Appl. Phys. Lett. 95, 202504 (2009).

    Article  ADS  Google Scholar 

  19. V. Ambegaokar and B. J. Halperin, Phys. Rev. Lett. 22, 1364 (1969).

    Article  ADS  Google Scholar 

  20. M. Yu. Kupriyanov, K. K. Likharev and L. A. Maslova, in Proceedings of the 14th International Conference on Low Temperature Physics (Otaniemi, Finland, August 14–18, 1975), p. 104.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Soon-Gul Lee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hong, SH., Lee, SG., Jung, SG. et al. Properties of FeSe nanobridges prepared by using a focused ion beam. Journal of the Korean Physical Society 61, 1430–1434 (2012). https://doi.org/10.3938/jkps.61.1430

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3938/jkps.61.1430

Keywords

Navigation