Skip to main content
Log in

Fabrication of BaKFeAs intergrain nanobridges by using a focused ion beam

  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

We have studied the fabrication and the transport properties of Ba0.6K0.4Fe2As2 intergrain nanobridges patterned by using a focused ion beam (FIB). Prior to FIB etching, 8-µm-wide bridges were prepatterned from Ba0.6K0.4Fe2As2 films by using argon ion milling with a photoresist mask. The lowest-possible beam current of 1.5 pA was used for the FIB nanobridge pattern to minimize the etching damage to the bridge. The nanobridge contained a single grain boundary, and the nominal dimensions were 200 nm in width and 100 nm in length. We have also studied current-voltage (I-V) characteristics, the temperature-dependent critical current (I c ), and the normal-state resistance (RN). The transport measurements of the nanobridge showed a strong-coupling nature with a high critical current density of 1.25 × 106 A/cm2 at 4.2 K, which is comparable to the intragrain value. The nanobridge showed the onset of a resistive transition at 37 K and zero resistance at 27 K. Measured I-V curves were dominated mainly by Josephson coupling, showing resistivelyshunted-junction (RSJ) behaviors with multiple transitions at low temperatures. The temperature dependence of the critical current was I c ∼ (1 − T/T c )1.0.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Z. A. Ren et al., Chin. Phys. Lett. 25, 2215 (2008).

    Article  ADS  Google Scholar 

  2. Z. A. Ren et al., EuroPhys. Lett. 82, 57002 (2008).

    Article  ADS  Google Scholar 

  3. M. Rotter, M. Tegel and D. Johrendt, Phys. Rev. Lett. 101, 107006 (2008).

    Article  ADS  Google Scholar 

  4. A. Beck et al., IEEE Trans. Appl. Supercond. 5, 2192 (1995).

    Article  Google Scholar 

  5. S. G. Lee and Y. Hwang, Appl. Phys. Lett. 76, 2755 (2000).

    Article  ADS  Google Scholar 

  6. S. G. Lee, Y. Hwang, J. T. Kim and G. Y. Sung, Physica C 341–348, 1473 (2000).

    Article  Google Scholar 

  7. C. J. van der Beek, M. Konczykowski, S. Kasahara, T. Terashima, R. Okazaki, T. Shibauchi and Y. Matsuda, Phys. Rev. Lett. 105, 267002 (2010).

    Article  ADS  Google Scholar 

  8. L. Shan, Y.-L. Wang, B. Shen, B. Zeng, Y. Huang, A. Li, D. Wang, H. Yang, C. Ren, Q.-H. Wang, S. H. Pan and H.-H. Wen, Nat. Phys. 7, 325 (2011).

    Article  Google Scholar 

  9. S. G. Lee, S. H. Hong, W. K. Seong and W. N. Kang, Appl. Phys. Lett. 95, 202504 (2009).

    Article  ADS  Google Scholar 

  10. S. G. Lee, S. H. Hong, W. K. Seong and W. N. Kang, Physica C 470, s1036 (2010).

    Article  Google Scholar 

  11. N. H. Lee, S.-G. Jung, D. H. Kim and W. N. Kang, Appl. Phys. Lett. 96, 202505 (2010).

    Article  ADS  Google Scholar 

  12. C. Ren, Z.-S. Wang, H.-Q. Luo, H. Yang, L. Shan and H.-H. Wen, Phys. Rev. Lett. 101, 257006 (2008).

    Article  ADS  Google Scholar 

  13. J. Jung, I. Isaac and M. A.-K. Mohamed, Phys. Rev. B 48, 7526 (1993).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Soon-Gul Lee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hong, SH., Lee, S.H., Lee, SG. et al. Fabrication of BaKFeAs intergrain nanobridges by using a focused ion beam. Journal of the Korean Physical Society 61, 1449–1452 (2012). https://doi.org/10.3938/jkps.61.1449

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3938/jkps.61.1449

Keywords

Navigation