Skip to main content
Log in

Pd/Ta2O5/SiC Schottky-diode hydrogen sensors formed by using rapid thermal oxidation of Ta thin films

  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

Pd/Ta2O5/SiC Schottky-diode hydrogen sensors were fabricated, and their hydrogen gas sensing performance was investigated at 573 K and 773 K. Interfacial Ta2O5 films of 120 nm in thickness were formed by using rapid thermal oxidation (RTO) of the sputtered Ta films on SiC. The crystallinity of the Ta and the Ta2O5 films were characterized by using X-ray diffraction (XRD). As-sputtered Ta films on 4H-SiC are composed of α-Ta (body-centered-cubic) and β-Ta (tetragonal), and α-Ta (110) is the dominant orientation. After RTO at 573 K, the Ta films are converted to β-Ta2O5 (orthorhombic). The diode sensors show high sensitivity to H2 even at the low H2 concentration of 500 ppm, and the voltage change of the sensor upon H2 exposure is proportional to the H2 concentration in the range of 500 ∼ 2000 ppm at 573 K. The response voltage ΔV is shown to arise mostly from the change in the series resistance component of the sensor upon H2 exposure; the main origin of that change is believed to be the Ta2O5 interfacial layer. The response time t90 of the sensor at 573 K was estimated to be approximately 8 s.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. T. Soo, K. Y. Cheong and A. F. M. Noor, Sens. Actuators, B 151, 39 (2010).

    Article  Google Scholar 

  2. T. Hübert, L. Boon-Brett, G. Black and U. Banach, Sens. Actuators, B 157, 329 (2011).

    Article  Google Scholar 

  3. L. Boon-Brett, J. Bousek, G. Black, P. Moretto, P. Castello, T. Hübert and U. Banach, Int. J. Hydrogen Energy 35, 373 (2010).

    Article  Google Scholar 

  4. V. Aroutiounian, Int. J. Hydrogen Energy 32, 1145 (2007).

    Article  Google Scholar 

  5. G. Eranna, B. C. Joshi, D. P. Runthala and R. P. Gupta, Crit. Rev. Solid State Mater. Sci. 29, 111 (2004).

    Article  ADS  Google Scholar 

  6. S. Nakagomi, Y. Shindo and Y. Kokubun, Phys. Status Solidi (a) 185, 33 (2001).

    Article  ADS  Google Scholar 

  7. J. P. Xu, P. T. Lai, D. G. Zhong and C. L. Chan, IEEE Electron Device Lett. 24, 13 (2003).

    Article  ADS  Google Scholar 

  8. S. Kandasamy, A. Trinchi, W. Wlodarski, E. Comini and G. Sberveglieri, Sens. Actuators, B 111–112, 111 (2005).

    Article  Google Scholar 

  9. W. M. Tang, C. H. Leung and P. T. Lai, Microelectron. Reliab. 48, 1780 (2008).

    Article  Google Scholar 

  10. J. Yu, G. Chen, C. X. Li, M. Shafiei, J. Z. Ou, J. du Plessis, K. Kalantar-zadeh, P. T. Lai and W. Wlodarski, Sens. Actuators, A 172, 9 (2011).

    Article  Google Scholar 

  11. C. Chaneliere, J. L. Autran, R. A. B. Devine and B. Ballad, Mat. Sci. Eng. R 22, 269 (1998).

    Article  Google Scholar 

  12. T. Dimitrova and E. Atanassova, Solid-State Electron. 42, 307 (1998).

    Article  ADS  Google Scholar 

  13. S. W. Park and H. B. Im, Thin Solid Films 207, 258 (1992).

    Article  ADS  Google Scholar 

  14. G. Eftekhari, Phys. Status Solidi (a) 146, 867 (1994).

    Article  ADS  Google Scholar 

  15. J. Y. Zhang and I. W. Boyd, Appl. Phys. Lett. 77, 3574 (2000).

    Article  ADS  Google Scholar 

  16. J. P. Masse, H. Szymanowski, O. Zabeida, A. Amassian. J. E. Klemberg-Sapieha and L. Martinu, Thin Solid Films 515, 1674 (2006).

    Article  ADS  Google Scholar 

  17. S. Boughaba, G.I. Sproule, J.P. McCaffrey, M. Islam and M.J. Graham, Thin Solid Films 358, 104 (2000).

    Article  ADS  Google Scholar 

  18. S. Wolf, Silicon Processing for the VLSI Era (Lattice Press, Sunset Beach, California, 2002), Vol. 4, p. 82.

    Google Scholar 

  19. H. C. Cheng, ULSI Technology, edited by C. Y. Chang and S. M. Sze (McGraw-Hill, Singapore, 1996), Chap. 5.

  20. E. Ö. Sveinbjörnsson and C.-M. Zetterling, in Process Technology for Silicon Carbide Devices, edited by C.-M. Zetterling (INSPEC, London, 2002), Chap.5

  21. R. Hoogeveen, M. Moske, H. Geisler and K. Samwer, Thin Solid Films 275, 203 (1996).

    Article  ADS  Google Scholar 

  22. L. Liu, Y. Wang and H. Gong, J. Appl. Phys. 90, 416 (2001).

    Article  ADS  Google Scholar 

  23. L. A. Clevenger, A. Mutscheller, J. M. E. Harper, C. Cabral and K. Barmak, J. Appl. Phys. 72, 4918 (1992).

    Article  ADS  Google Scholar 

  24. ICDD PDF database 01-89-2843.

  25. ICDD PDF database 00-19-1299.

  26. I. Lundström, Sens. Actuators 1, 403 (1981).

    Article  Google Scholar 

  27. A. Mandelis and C. Christofides, Physical Chemistry and Technology of Solid State Gas Sensor Devices (John Wiley & Sons, Inc., New York, 1993), p. 61.

    Google Scholar 

  28. S. Nakagomi, K. Okuda and Y. Kokubun, Sens. Actuators B 96, 364 (2003).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sung-Jae Joo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Joo, SJ., Choi, J.H., Kim, S.J. et al. Pd/Ta2O5/SiC Schottky-diode hydrogen sensors formed by using rapid thermal oxidation of Ta thin films. Journal of the Korean Physical Society 63, 1794–1798 (2013). https://doi.org/10.3938/jkps.63.1794

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3938/jkps.63.1794

Keywords

Navigation