Skip to main content
Log in

Layer-number-dependent work function of MoS2 nanoflakes

  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

We investigated the layer-number-dependent work function of MoS2 nanoflakes by using Kelvin probe force microscopy (KPFM) to measure the surface potential. The work functions of as-prepared 1- to 6-layer MoS2 nanoflakes were 5.15–5.39 eV and increased with increasing layer number. After annealing, the work functions of the nanoflakes decreased to 0.1–0.2 eV due to elimination of absorbed molecules on the surface. However, the work function of the edge region of the annealed flakes was relatively larger than that of the internal region. The charge carrier trapping by adsorbed molecules due to the polarity and the hydrophilicity of MoS2 may cause a reduction in the work function of the annealed flakes compared with that for MoS2 exposed to air. The dependence of the obtained work function of MoS2 nanoflakes on the number of layers is essential to the formation of metal contacts for fabricating future MoS2-based devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva and A. Firsov, Science. 306, 666 (2004).

    Article  ADS  Google Scholar 

  2. S. M. Kim, A. Hsu, P. T. Araujo, Y.-H. Lee, T. Palacios, M. Dresselhaus, J. C. Idrobo, K. K. Kim and J. Kong, Nano Lett. 13, 933 (2013).

    Article  ADS  Google Scholar 

  3. A. Splendiani, L. Sun, Y. Zhang, T. Li, J. Kim, C. Chim, G. Galli and F. Wang, Nano Lett. 10, 1271 (2010).

    Article  ADS  Google Scholar 

  4. B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti and A. Kis, Nat. Nanotechnol. 6, 147 (2011).

    Article  ADS  Google Scholar 

  5. R. F. Frindt, J. Appl. Phys. 37, 1928 (1966).

    Article  ADS  Google Scholar 

  6. P. Joesen, R. F. Frindt and S. R. Morrison, Mater. Res. Bull. 21, 457 (1986).

    Article  Google Scholar 

  7. R. F. Frindt, Phys. Rev. Lett. 28, 299 (1972).

    Article  ADS  Google Scholar 

  8. W. M. R. Divigalpitiya, R. F. Frindt and S. R. Morrison, Science. 246, 369 (1989).

    Article  ADS  Google Scholar 

  9. D. Yang, S. J. Sandoval, W. M. R. Divigalpitiya, J. C. Irwin and R. F. Frindt, Phys. Rev. B 43, 12053 (1991).

    Article  ADS  Google Scholar 

  10. S. K. Kim et al., Nat. commun. 3, 1011 (2012).

    Article  ADS  Google Scholar 

  11. S. S. Datta, D. R. Strachan, E. J. Mele and A. T. Charlie Johnson, Nano Lett. 9, 7 (2009).

    Article  ADS  Google Scholar 

  12. X. Wang, W. Xie, J. Du, C. Wang, N. Zhao and J. B. Xu, Adv. Mater. 24, 2614 (2012).

    Article  Google Scholar 

  13. N. J. Lee, J. W. Yoo, Y. J. Choi, C. J. Kang, D. Y. Jeon, D. C. Kim, S. Seo and H. J. Chung, Appl. Phys. Lett. 95, 222107 (2009).

    Article  ADS  Google Scholar 

  14. A. Castellanos-Gomez, E. Cappelluti, R. Roldan, N. Agrait, F. Guinea and G. Rubio-Bollinger, Adv. Mater. 25, 899 (2013).

    Article  Google Scholar 

  15. Y. Li, C. Y. Xu and L. Zhen, Appl. Phys. Lett. 102, 143110 (2013).

    Article  ADS  Google Scholar 

  16. C. Lee, H. Yan, L. E. Brus, L. E. Heinz, T. F. Hone, J. Hone and S. Ryu, ACS Nano. 4, 2695 (2010).

    Article  Google Scholar 

  17. M. Nonnenmacher, M. P. O’Boyle, and H. K. Wickramasinghe, Appl. Phys. Lett. 58, 2921 (1991).

    Article  ADS  Google Scholar 

  18. D. Zieglr, P. Gava, J. Guttinger, F. M. L. Wirtz, M. Lazzeri, A. M. Saitta, A. Stemmer, F. Mauri and C. Stampfer, Phys. Rev. B 83, 235434 (2011).

    Article  ADS  Google Scholar 

  19. D. Ziegler, P. Gava, J. Gttinger, F. Molitor, L. Wirtz, M. Lazzeri, M. A. Saitta, A. Stemmer, F. Mauri and C. Stampfer, Phys. Rev. B 83, 235434 (2011).

    Article  ADS  Google Scholar 

  20. G. L. Hao, X. Qi, J. Li, L.W. Yang, J. J. Yin, F. Lu and J. X. Zhong, Solid State Commun. 151, 818 (2011).

    Article  ADS  Google Scholar 

  21. C. K. Oliveira, M. J. S. Matos, M. S. C. Mazzoni, H. Chacham and B. R. A. Neves, Nanotechnology 23, 175703 (2012).

    Article  ADS  Google Scholar 

  22. Q. Wang, K. Kalantar-Zadeh, A. Kis, J. N. Coleman and M. S. Strano, Nat. Nanotechnol. 7, 699 (2012).

    Article  ADS  Google Scholar 

  23. M. Chhowalla, H. S. Shin, G. Eda, L. Li, K. Loh and H. Zhang, Nat. Chem. 5, 263 (2013).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Woochul Yang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Choi, S., Shaolin, Z. & Yang, W. Layer-number-dependent work function of MoS2 nanoflakes. Journal of the Korean Physical Society 64, 1550–1555 (2014). https://doi.org/10.3938/jkps.64.1550

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3938/jkps.64.1550

PACS numbers

Keywords

Navigation