Skip to main content
Log in

Magnetic-field-induced liquid metal droplet manipulation

  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

We report magnetic-field-induced liquid metal droplet on-demand manipulation by coating a liquid metal with ferromagnetic materials. The gallium-based liquid metal alloy has a challenging drawback that it is instantly oxidized in ambient air, resulting in surface wetting on most surfaces. When the oxidized surface of the droplet is coated with ferromagnetic materials, it is non-wettable and can be controlled by applying an external magnetic field. We coated the surface of a liquid metal droplet with either an electroplated CoNiMnP layer or an iron (Fe) particle by simply rolling the liquid metal droplet on an Fe particle bed. For a paper towel, the minimum required magnetic flux density to initiate movement of the ~8 μL Fe-particle-coated liquid metal droplet was 50 gauss. Magnetic-field-induced liquid metal droplet manipulation was investigated under both horizontal and vertical magnetic fields. Compared to the CoNiMnP-electroplated liquid metal droplet, the Fe-particle-coated droplet could be well controlled because Fe particles were uniformly coated on the surface of the droplet. With a maximum applied magnetic flux density of ~1,600 gauss, the CoNiMnP layer on the liquid metal broke down, resulting in fragmentation of three smaller droplets, and the Fe particle was detached from the liquid metal surface and was re-coated after the magnetic field had been removed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. Liu, P. Sen and C.-J. Kim, J. Microelectromech. Syst. 21, 443 (2012).

    Article  Google Scholar 

  2. K.-Q. Ma and J. Liu, J. Phys. D: Appl. Phys. 40, 4722 (2007).

    Article  ADS  Google Scholar 

  3. B. L. Mellor, N. A. Kellis and B. A. Mazzeo, Rev. Sci. Instrum. 82, 046110 (2011).

    Article  ADS  Google Scholar 

  4. J.-H. So and M. D. Dickey, Lab Chip 11, 905 (2011).

    Article  Google Scholar 

  5. J.-H. So, H.-J. Koo, M. D. Dickey and O. D. Velev, Adv. Funct. Mater. 22, 625 (2012).

    Article  Google Scholar 

  6. H.-J. Kim, C. Son and B. Ziaie, Appl. Phys. Lett. 92, 011904 (2008).

    Article  ADS  Google Scholar 

  7. J. Park et al., Nat. Commun. 3, 916 (2012).

    Article  ADS  Google Scholar 

  8. E. Palleau, S. Reece, S. C. Desai, M. E. Smith and M. D. Dickey, Adv. Mater. 25, 1589 (2013).

    Article  Google Scholar 

  9. B. Aissa, M. Nedil, M. A. Habib, E. Haddad, W. Jamroz, D. Therriault, Y. Coulibaly and F. Rosei, Appl. Phys. Lett. 103, 063101 (2013).

    Article  ADS  Google Scholar 

  10. S. Cheng, A. Rydberg, K. Hjort and Z. Wu, Appl. Phys. Lett. 94, 144103 (2009).

    Article  ADS  Google Scholar 

  11. G. J. Hayes, J. So, A. Qusba, M. D. Dickey and G. Lazzi, IEEE T. Antenn. Propag. 60, 2151 (2012).

    Article  Google Scholar 

  12. M. Kubo, X. Li, C. Kim, M. Hashimoto, B. J. Wiley, D. Ham and G. M. Whitesides, Adv. Mater. 22, 2749 (2010).

    Article  Google Scholar 

  13. C. Shi, W. Zhigang, P. Hallbjorner, K. Hjort and A. Rydberg, IEEE T. Antenn. Propag. 57, 3765 (2009).

    Article  ADS  Google Scholar 

  14. J. Wang, S. Liu, S. Guruswamy and A. Nahata, Appl. Phys. Lett. 103, 221116 (2013).

    Article  ADS  Google Scholar 

  15. T. S. Kasirga, Y. N. Ertas and M. Bayindir, Appl. Phys. Lett. 95, 214102 (2009).

    Article  ADS  Google Scholar 

  16. W. G. Tonaki, W. Hu, A. T. Ohta and W. A. Shiroma, in Proceedings of the 2013 IEEE International Wireless Symposium (Beijing, China, April 14–18, 2013), p. 1.

    Book  Google Scholar 

  17. F. Scharmann, G. Cherkashinin, V. Breternitz, C. Knedlik, G. Hartung and T. Weber, Surf. Interface. Anal. 36, 981 (2004).

    Article  Google Scholar 

  18. D. Zrnic and D. S. Swatik, J. Less-Common Met. 18, 67 (1969).

    Article  Google Scholar 

  19. D. Kim, D. Jung, J. H. Yoo, Y. Lee, W. Choi, G. S. Lee and J.-B. Lee, J. Micromech. Microeng. 24, 055018 (2014).

    Article  ADS  Google Scholar 

  20. D. Kim, D. W. Lee, W. Choi and J. B. Lee, J. Microelectromech. Syst. 22, 1267 (2013).

    Article  Google Scholar 

  21. D. Kim, Y. Lee, D.-W. Lee, W. Choi and J.-B. Lee, in Proceedings of the 2013 International Solid-State Sensors, Actuators and Microsystems Conference, TRANSDUCERS & EUROSENSORS XXVII (Barcelona, Spain, June 16–20, 2013), p. 2620.

    Google Scholar 

  22. D. Kim, P. Thissen, G. Viner, D.-W. Lee, W. Choi, Y. J. Chabal and J.-B. Lee, ACS Appl. Mater. Interfaces 5, 179 (2013).

    Article  Google Scholar 

  23. H. Huan and L. Chang, in Proceedings of the 2009 International Solid-State Sensors, Actuators and Microsystems Conference, TRANSDUCERS (Denver, USA, June 21–25, 2009), p. 1103.

    Google Scholar 

  24. K. Vummidi, P. Ralston, C. Lihan, N. S. Barker and S. Raman, in Proceeding of the 2009 IEEE MTTS International Microwave Symposium Digest (Boston, USA, June 7–12, 2009), p. 461.

    Google Scholar 

  25. N. V. Myung, D. Y. Park, B. Y. Yoo and P. T. A. Sumodjo, J. Magn. Magn. Mater. 265, 189 (2003).

    Article  ADS  Google Scholar 

  26. C. H. Ahn and M. G. Allen, IEEE T. Ind. Electron. 45, 866 (1998).

    Article  Google Scholar 

  27. H. J. Cho, S. Bhansali and C. H. Ahn, J. Appl. Phys. 87, 6340 (2000).

    Article  ADS  Google Scholar 

  28. S. Guan and B. J. Nelson, J. Magn. Magn. Mater. 292, 49 (2005).

    Article  ADS  Google Scholar 

  29. C. D. M. Campos, A. Flacker, S. A. Moshkalev and E. G. O. Nobrega, Thin Solid Films 520, 4871 (2012).

    Article  ADS  Google Scholar 

  30. V. Sivan, S.-Y. Tang, A. P. O’Mullane, P. Petersen, N. Eshtiaghi, K. Kalantar-zadeh and A. Mitchell, Adv. Funct. Mater. 23, 144 (2013).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daeyoung Kim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, D., Lee, JB. Magnetic-field-induced liquid metal droplet manipulation. Journal of the Korean Physical Society 66, 282–286 (2015). https://doi.org/10.3938/jkps.66.282

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3938/jkps.66.282

Keywords

Navigation