Skip to main content
Log in

In-Situ hydrothermal synthesis of a MoS2 nanosheet electrode for electrochemical energy storage applications

  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

A molybdenum disulfide (MoS2) nanosheet film was grown directly on a stainless-steel substrate by using an in-situ hydrothermal growth technique at 200 °C. The formation of an MoS2 hexagonal structure with a nanosheet-like morphology was confirmed by using X-ray diffraction (XRD) and field-emission scanning electron microscopy (FE-SEM) while a layered MoS2 nanosheet structure was observed under an energy-filtering transmission electron microscope (EF-TEM). The electrochemical supercapacitor properties of the MoS2 nanosheet electrode were measured in 1-M aqueous Na2SO4 electrolyte by using cyclic voltammetry (CV) and charge/discharge technique, and the electrode’s specific capacitances were 91.29 F/g and 146.15 F/g, respectively. The concurrent double-layer capacitance and pseudo-capacitance behaviors of the electrode manifested themselves in the rectangular shape and redox peaks of the CV curve. The mesoporous MoS2 nanosheets were electrochemically stable for up to 1000 charge/discharge cycles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Z. A. Munshi, Handbook of solid state batteries and capacitors (World Scientific Publisher, 1995).

    Book  Google Scholar 

  2. M. Winter and R. J. Brodd, Chem. Rev. 104, 4245 (2004).

    Article  Google Scholar 

  3. X. Li and B. Wei, Nano Energy 2, 159 (2013).

    Article  Google Scholar 

  4. G. A. Snook, P. Kao and A. S. Best, J. Power Sources 196, 1 (2011).

    Article  Google Scholar 

  5. W. Deng, X. Ji, Q. Chen and C. E. Banks, RSC Adv. 1, 11171 (2011).

    Article  Google Scholar 

  6. X. Hu, W. W. Zhang, X. Liu, Y. Mei and Y. Huang, Chem. Soc. Rev. 44, 2376 (2015).

    Article  Google Scholar 

  7. X. Rui, H. Tan and Q. Yan, Nanoscale 6, 9889 (2014).

    Article  ADS  Google Scholar 

  8. Q. H. Wang, K. K. Zadeh, A. Kis, J. N. Coleman and M. S. Strano, Nat. Nanotechnol. 7, 699 (2012).

    Article  ADS  Google Scholar 

  9. Z. Y. Yin, H. Li, L. Jiang, Y. M. Shi, Y. H. Sun, G. Lu, Q. Zhang, X. D. Chen and H. Zhang, ACS Nano 6, 74 (2012).

    Article  Google Scholar 

  10. R. S. Sundaram, M. Engel, A. Lombardo, R. Krupke, A. C. Ferrari, P. Avouris and M. Steiner, Nano Lett. 13, 1416 (2013).

    Article  ADS  Google Scholar 

  11. J. M. Soon and K. P. Loh, Electrochem. Solid-State Lett. 10, A250 (2007).

    Article  Google Scholar 

  12. A. Ramadoss, T. Kim, G. S. Kim and S. J. Kim, New J. Chem. 38, 2379 (2014).

    Article  Google Scholar 

  13. L. Cao et al., Small 9, 2905 (2013).

    Article  Google Scholar 

  14. J. Xiao, D. Choi, L. Cosimbescu, P. Koech, J. Liu and J. P. Lemmon, Chem. Mater. 22, 4522 (2010).

    Article  Google Scholar 

  15. E. G. D. S. Firmiano, A. C. Rabelo, C. J. Dalmaschio, A. N. Pinheiro, E. C. Pereira, W. H. Schreiner and E. R. Leite, Adv. Energy Mater. 4, 13301380 (2014).

    Google Scholar 

  16. K. Krishnamoorthy, G. K. Veerasubramani, S. Radhakrishnan, S. J. Kim, Mater. Res. Bull. 50, 499 (2014).

    Article  Google Scholar 

  17. K. J. Huang, J. Z. Zhang, G. W. Shi and Y. M. Liu, Electrochimica Acta 132, 397 (2014).

    Article  Google Scholar 

  18. X. Feng, Q. Tang, J. Zhou, J. Fang, P. Ding, L. Sun and L. Shi, Cryst. Res. Technol. 48, 363 (2013).

    Article  Google Scholar 

  19. B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti and A. Kis, Nat. Nanotechnol 6, 147 (2011).

    Article  ADS  Google Scholar 

  20. H. Hwang, H. Kim and J. Cho, Nano Lett. 11, 4826 (2011).

    Article  ADS  Google Scholar 

  21. R. G. Dickinson and L. Pauling, J. Am. Chem. Soc. 45, 1466 (1923).

    Article  Google Scholar 

  22. A. I. Inamdar, Y. S. Kim, S. M. Pawar, J. H. Kim, H. S. Im and H. S. Kim, J. Power Sources 196, 2393 (2011).

    Article  Google Scholar 

  23. M. D. Stoller, S. Park, Y. Zhu, J. An and R. S. Ruoff, Nano Lett. 8, 3498 (2008).

    Article  ADS  Google Scholar 

  24. M. Sun, J. Tie, G. Cheng, T. Lin, S. Peng, F. Deng, F. Ye and L. Yu, J. Mater. Chem. A 3, 1730 (2015).

    Article  Google Scholar 

  25. Z. Wu, X. Pu, X. Ji, Y. Zhu, M. Jina, Q. Chea and F. Jiao, Electrochimica Acta 174, 238 (2015).

    Article  Google Scholar 

  26. M. S. Javed, S. Dai, M. Wang, D. Guo, L. Chen, X. Wang, C. Hu and Y. Xi, J. Power Sources 285, 63 (2015).

    Article  ADS  Google Scholar 

  27. B. Lei, G. R. Li and X. P. Gao, J. Mater. Chem. A 2, 3919 (2014).

    Article  Google Scholar 

  28. X. Zeng, L. Niu, L. Song, X. Wang, X. Shi and J. Yan, Metals 5, 1829 (2015).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rajkumar Patel.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Patel, R., Inamdar, A.I., Kim, H.B. et al. In-Situ hydrothermal synthesis of a MoS2 nanosheet electrode for electrochemical energy storage applications. Journal of the Korean Physical Society 68, 1341–1346 (2016). https://doi.org/10.3938/jkps.68.1341

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3938/jkps.68.1341

Keywords

Navigation