Skip to main content
Log in

Improving Fire Resistance of Cotton Fabric through Layer-by-Layer Assembled Graphene Multilayer Nanocoating

  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

In this study, thin films containing poly(vinyl alcohol) (PVA) and graphene nanoplatelets (GNPs), stabilized with poly(4-styrene-sulfonic acid) (PSS), were assembled by a simple and cost-effective layer-by-layer (LbL) technique in order to introduce the anti-flammability to cotton. These antiflammable layers were characterized by using UV-vis spectrometry and quartz crystal microbalance as a function of the number of bilayers deposited. Scanning electron microscopy was used to visualize the morphology of the thin film coatings on the cotton fabric. The graphene-polymer thin films introduced anti-flammable properties through thermally stable carbonaceous layers at a high temperature. The thermal stability and flame retardant property of graphene-coated cotton was demonstrated by thermogravimetric analysis, cone calorimetry, and vertical flame test. The results indicate that LbL-assembled graphene-polymer thin films can be applied largely in the field of flame retardant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. Lecoeur, I. Vroman, S. Bourbigot, T. M. Lam and R. Delobel, Polymer Degradation and Stability 74, 487 (2001).

    Article  Google Scholar 

  2. J. Alongi, F. Carosio, A. Frache and G. Malucelli, Carbohydrate Polymers 92, 114 (2013).

    Article  Google Scholar 

  3. M. Sain, S. H. Park, F. Suhara and S. Law, Polymer Degradation and Stability 83, 363 (2004).

    Article  Google Scholar 

  4. F. Laoutid, L. Bonnaud, M. Alexandre, J-M. Lopez-Cuesta and Ph. Dubois, Materials Science and Engineering: R: Reports 63, 100 (2009).

    Article  Google Scholar 

  5. H. Qin, S. Zhang, C. Zhao, G. Hu and M. Yang, Polymer 46, 8386 (2005).

    Article  Google Scholar 

  6. Å. Bergman et al., Environment International 49, 57 (2012).

    Article  Google Scholar 

  7. M. Rakotomalala, S. Wagner and M. Döring, Materials 3, 4300 (2010).

    Article  ADS  Google Scholar 

  8. P. O. Darnerud, Environment International 29, 841 (2003).

    Article  Google Scholar 

  9. M. Ema, S. Fujii, M. Hirata-Koizumi and M. Matsumoto, Reproductive Toxicology 25, 335 (2008).

    Article  Google Scholar 

  10. S. Kemmlein, D. Herzke and R. J. Law, J Chromatography A 1216, 320 (2009).

    Article  Google Scholar 

  11. Q. L. Li, X. L. Wang, D. Y. Wang, Y. Z. Wang, X. N. Feng and G. H. Zheng, J Applied Polymer Science 122, 342 (2011).

    Article  Google Scholar 

  12. H. Lu, L. Song and Y. Hu, Polymers for Advanced Technologies 22, 379 (2011).

    Article  Google Scholar 

  13. H. Pan, Y. Pan, W. Wang, L. Song, Y. Hu and K. M. Liew, Industrial & Engineering Chemistry Research 53, 14315 (2014).

    Article  Google Scholar 

  14. X. Ding et al., Surface and Coatings Technology 305, 184 (2016).

    Article  Google Scholar 

  15. Y. S. Kim, R. Davis, A. A. Cain and J. C. Grunlan, Polymer 52, 2847 (2011).

    Article  Google Scholar 

  16. Y. C. Li et al., ACS Nano 4, 3325 (2010).

    Article  Google Scholar 

  17. F. Carosio, G. Laufer, J. Alongi, G. Camino and J. C. Grunlan, Polymer Degradation and Stability 96, 745 (2011).

    Article  Google Scholar 

  18. G. Laufer, F. Carosio, R. Martinez, G. Camino and J. C. Grunlan, J Colloid and Interface Science 356, 69 (2011).

    Article  ADS  Google Scholar 

  19. Y. T. Park et al., Advanced Functional Materials 25, 575 (2015).

    Article  Google Scholar 

  20. G. Decher, Y. Lvov and J. Schmitt, Thin Solid Films 244, 772 (1994).

    Article  ADS  Google Scholar 

  21. P. T. Hammond, Advanced Materials 16, 1271 (2004).

    Article  Google Scholar 

  22. M. K. Gheith et al., Advanced Materials 18, 2975 (2006).

    Article  Google Scholar 

  23. Y. T. Park, A. Y. Ham and J. C. Grunlan, J Physical Chemistry C 114, 6325 (2010).

    Article  Google Scholar 

  24. Y. T. Park, A. Y. Ham and J. C. Grunlan, Journal of Materials Chemistry 21, 363 (2011).

    Article  Google Scholar 

  25. Y. T. Park, A. Y. Ham, Y. H. Yang and J. C. Grunlan, RSC Advances 1, 662 (2011).

    Article  Google Scholar 

  26. J. C. Grunlan, J. K. Choi and A. Lin, Biomacromolecules 6, 1149 (2005).

    Article  Google Scholar 

  27. S. Y. Wong et al., Biomacromolecules 13, 719 (2012).

    Article  Google Scholar 

  28. M. A. Priolo, D. Gamboa, K. M. Holder and J. C. Grunlan, Nano Letters 10, 4970 (2010).

    Article  ADS  Google Scholar 

  29. Y. H. Yang, M. Haile, A. Malek, Y. T Park and J. C Grunlan, Macromolecules 44, 1450 (2011).

    Article  ADS  Google Scholar 

  30. J. J Park, W. J. Hyun, S. C. Mun, Y. T. Park and O. O. Park, ACS Applied Materials & Interfaces 7, 6317 (2015).

    Article  Google Scholar 

  31. M. Zhou and S. Dong, Accounts of Chemical Research 44, 1232 (2011).

    Article  Google Scholar 

  32. P. T. Hammond, Materials Today 15, 196 (2012).

    Article  Google Scholar 

  33. I. J. Chung et al., J Materials Chemistry A 6, 3108 (2018).

    Article  Google Scholar 

  34. S. Seo, S. Lee and Y. T. Park, Review of Scientific Instruments 87, 5 (2016).

    Article  Google Scholar 

  35. G. Laufer, C. Kirkland, A. A. Cain and J. C. Grunlan, ACS Applied Materials and Interfaces 4, 1643 (2012).

    Article  Google Scholar 

  36. F. Carosio, A. Di Blasio, J. Alongi and G. Malucelli, Polymer 54, 5148 (2013).

    Article  Google Scholar 

  37. Y. S. Kim, Y. C. Li, W. M. Pitts, M. Werrel and R. D. Davis, ACS Applied Materials and Interfaces 6, 2146 (2014).

    Article  Google Scholar 

  38. Y. C. Li, Y. S. Kim, J. Shields and R. Davis, J. Materials Chemistry A 1, 12987 (2013).

    Article  Google Scholar 

  39. J. C. Yang, W. Liao, S. B. Deng, Z. J. Cao and Y. Z. Wang, Carbohydrate Polymers 151, 434 (2016).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong Tae Park.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jang, W., Chung, I.J., Kim, J. et al. Improving Fire Resistance of Cotton Fabric through Layer-by-Layer Assembled Graphene Multilayer Nanocoating. J. Korean Phys. Soc. 72, 1052–1057 (2018). https://doi.org/10.3938/jkps.72.1052

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3938/jkps.72.1052

Keywords

Navigation