Skip to main content
Log in

A Dielectric-Modulated Normally-Off AlGaN/GaN MOSHEMT for Bio-Sensing Application: Analytical Modeling Study and Sensitivity Analysis

  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

This paper presents an analytical model of a bio-molecule-induced threshold voltage shift (ΔVth) in a normally-off AlGaN/GaN metal-oxide-semiconductor high-electron-mobility transistors (MOSHEMTs) used as bio-particle sensors. In the analytical model, the presence of biomolecules is represented by using the dielectric modulation (DM) technique for label-free electrical detection. The dielectric/semiconductor interface density-of-State (DOS)-dependent model for the density of two dimensional electron gas (2DEG) is obtained by solving a 2-D Poisson equation demonstrating required energy band diagrams. The effective capacitance in the cavity region and the threshold voltage are obtained by using dielectric modulation and the Poisson equation. Subsequently, the changes in the threshold voltage and the drain current of the device are used as the sensing metric for the detection of bio-molecules in the cavity region. Interestingly, the charge of the biomolecules can also used as a sensing parameter. The predicted sensing metric characteristics of the developed analytical model are in good agreement with the result of technology computer-aided design (TCAD) simulations, thus confirming the validity of the proposed model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Kalra, M. J. Kumar and A. Dhawan, IEEE Electron Dev. Lett. 37, 1485 (2016).

    Article  ADS  Google Scholar 

  2. H. Im, X. J. Huang, B. Gu and Y. K. Choi, Nat. Nanotechnol. 2, 430 (2007).

    Article  ADS  Google Scholar 

  3. D. Moon, J. W. Han and M. Meyyappan, IEEE Trans. Nanotechnol. 15, 956 (2015).

    Article  ADS  Google Scholar 

  4. P. Bergveld, Sensors and Actuators B. Chem. 88, 1 (2003).

    Article  Google Scholar 

  5. L. Bousse, N. F. Derooij and P. Bergaveld, IEEE Trans. Electron Dev. 10, 1263 (1983).

    Article  ADS  Google Scholar 

  6. J. Xu, X. L. Luo and H. Y. Chen, Front. Biosci. 10, 420 (2005).

    Article  Google Scholar 

  7. S. Kim, D. Baek, J. Y. Kim, S. J. Choi, M. L. Seol and Y-K. Choi, Appl. Phys. Lett. 101, 073703 (2012).

    Article  ADS  Google Scholar 

  8. S. Khandlewal and T. A. Fjeldly, Solid-State Electron. 76, 60 (2012).

    Article  ADS  Google Scholar 

  9. Ajay, R. Narang, M. Saxena and M. Gupta, Superlattices Microstruct. 88, 225 (2015).

    Article  ADS  Google Scholar 

  10. R. Narang, K. V. S. Reddy, M. Saxena, R. S. Gupta and M. Gupta, IEEE Trans. Electron Dev. 59, 2809 (2012).

    Article  ADS  Google Scholar 

  11. R. Narang, M. Saxena, R. S. Gupta and M. Gupta, IEEE Electron Dev. Lett. 33, 266 (2012).

    Article  ADS  Google Scholar 

  12. Ajay, R. Narang, M. Saxena and M. Gupta, IEEE Electron Dev. Lett. 62, 2636 (2015).

    Article  Google Scholar 

  13. J. M. Choi, J. W. Han, S. J. Choi and Y. K. Choi, IEEE Trans. Electron Dev. 57, 3477 (2010).

    Article  ADS  Google Scholar 

  14. J. Y. Kim et al., Bio Nano Science 2, 35 (2012).

    Google Scholar 

  15. Ajay, R. Narang, M. Saxena and M. Gupta, Superlattices Microstruct. 85, 557 (2015).

    Article  ADS  Google Scholar 

  16. K. W. Lee et al., Appl. Phys. Lett. 96, 033703–1 (2010).

    Article  ADS  Google Scholar 

  17. M. S. Parihar and A. Kranti, Nanotechnology 26, 145201 (2015).

    Article  ADS  Google Scholar 

  18. S. J. Pearton, F. Ren and B. H. Chu, State of the Art in Biosensors (IntechOpen, 2013), p. 225.

    Google Scholar 

  19. K. Jena, R. Swain and T. R. Lenka, J. Korean Phys. Soc. 67, 1592 (2015).

    Article  ADS  Google Scholar 

  20. K. Jena, R. Swain and T. R. Lenka, IET Circ. Dev. & Sys. 10, 423 (2016).

    Article  Google Scholar 

  21. R. Swain, K. Jena and T. R. Lenka, Superlattices Microstruct. 84, 54 (2015).

    Article  ADS  Google Scholar 

  22. J. Panda, K. Jena, R. Swain and T. R. Lenka, J. Semicon. 37, 044003 (2016).

    Article  Google Scholar 

  23. Sentaurus Device User Guide, Version G-2012. 06, Synopsys Inc., 2012.

  24. J. M. Kinsella and A. Ivanisevic, Nat. Nanotechnol. 2, 596 (2007).

    Article  ADS  Google Scholar 

  25. R. Swain, K. Jena and T. R. Lenka, Semicond. 50, 384 (2016).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Jena.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mishra, S.N., Jena, K. A Dielectric-Modulated Normally-Off AlGaN/GaN MOSHEMT for Bio-Sensing Application: Analytical Modeling Study and Sensitivity Analysis. J. Korean Phys. Soc. 74, 349–357 (2019). https://doi.org/10.3938/jkps.74.349

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3938/jkps.74.349

Keywords

Navigation