The Modified DNA Identification Classification on Fuzzy Relation

Article Preview

Abstract:

We proposed a categorized method of DNA sequences matrix by FCM (fuzzy cluster means). FCM avoided the errors caused by the reduction of dimensions. It further reached comprehensive machine learning. In our experiment, there are 40 training data which are artificial samples, and we verify the proposed method with 182 natural DNA sequences. The result showed the proposed method enhanced the accuracy of the classification of genes from 76% to 93%.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

1275-1281

Citation:

Online since:

February 2011

Keywords:

Export:

Price:

[1] Encyclopedia of Forensic Science DNA Republic of China, http: /www. cib. gov. tw/science/Science0201. aspx? DOC_ID=00007 (in chinese).

Google Scholar

[2] M. L. Phillips, Crime Scene Genetics: Transforming Forensic Science through Molecular Technologies. BioScience, vol. 58, 484-489, (2008).

DOI: 10.1641/b580604

Google Scholar

[3] P. W. Lisette, P. David, Noninvasive Genetic Sampling Tools for Wildlife Biologists: a review of applications and recommendations for accurate data collection, Journal of Wildl. Manage. 1419-1433. vol 69, (2005).

DOI: 10.2193/0022-541x(2005)69[1419:ngstfw]2.0.co;2

Google Scholar

[4] P. H. William, F. Christophe, G. S. Brian, Fuzzy Species Among Recombinogenic Bacteria, Journal of BMC Bioinformatics, 3: 6, (2005).

Google Scholar

[5] B. Hayes, The Invention of the Genetic Code, Journal of American Scientist-Computing Science, Jan. -Feb., (1998).

Google Scholar

[6] E. E. May, Bits and Bases: An Analysis of Genetic Information Paradigms. Signals, Systems and Computers, (2007).

Google Scholar

[7] H. Z. Geng, S. M. Wu, S. G. Ji, The Mathematical Modeling Contest, Beijing Science Press, 2007. (in chinese).

Google Scholar

[8] M. Zhang, M. X. Cheng, T. J. Tarn, A Mathematical Formulation of DNA Computation, Journal of IEEE Transaction on Nanobioscience , vol. 5, no. 1, (2006).

Google Scholar

[9] L. M. Adleman, Molecular Compution of Solutions to Combinatorial Problems, Journal of Science 1021-1024, VOL. 266, (1994).

Google Scholar

[10] M. S. Yang, Y. J Hu, C. R. Lin, C. L. Lin, Segmentation techniques for Tissue Differentiation in MRI of Ophthalmology Using Fuzzy Clustering Algorithms, Journal of Magnetic Resonance Imaging, 173–179, VOL. 20, (2002).

DOI: 10.1016/s0730-725x(02)00477-0

Google Scholar

[11] W. Xuan, Y. J. Yi, Random Basis to Classification and Fuzzy-C-Means Clustering Analysis Debris Flow Interpretation Issues, Journal of Water Conservation Technologies 4(1): 37-46, 2009. (in chinese).

Google Scholar

[12] M. S. Yang, Z. H. Yang, Fuzzy Clustering and Its Applications, Blue Ocean Culture, 2009. (in chinese).

Google Scholar

[13] J. C. Dunn, A Fuzzy Relative of The Isodata Process and Its Use in Detecting Compact, Well-Separated Couster., Journal of Cybernet, 3, 32-57, (1974).

DOI: 10.1080/01969727308546046

Google Scholar

[14] R. Lan, P. R. Reeves, When Does A Clone Deserve A Name? A Perspective on Bacterial Species Based on Population Genetics. Journal of Trends Microbiol, 9(9), 419-424, (2001).

DOI: 10.1016/s0966-842x(01)02133-3

Google Scholar

[15] J. L. Francisco, B. Armando, G. Fernando, C. Carlos, M. Antonio, Fuzzy Association Rules for Biological Data Analysis: A Case Study on Yeast, Journal of BMC Bioinformatics, 9, 107, (2008).

Google Scholar

[16] F. Limin, M. Enzo, FLAME, A Novel Fuzzy Clustering Method For The Analysis of DNA Microarray Data, Journal of BMC Bioinformatics, 8, 3, (2007).

DOI: 10.1186/1471-2105-8-3

Google Scholar

[17] L. C. Cheng, H. Kenneth, M. C. Chung, S. S. Grace, Uncovering Transcriptional Interactions Via an Adaptive Fuzzy Logic Approach, Journal of BMC Bioinformatics, 10: 400., (2009).

DOI: 10.1186/1471-2105-10-400

Google Scholar

[18] K. C. Hsiao, C. H. Huang, K. L. Ng, Protein Structural Classes Prediction via Residues Environment Profile, Asian Journal of Health and Informatiom Sciences, Vol. 1 No. 3, pp.332-342, (2006).

Google Scholar

[19] S. Y. Shin, I. H. Lee, D. Kim, B. T. Zhang, Multiobjective Evolutionary Optimization of DNA Sequences for Reliable DNA Computing., Critical Rev. Biochem. Journal of Molecular Bio, vol. 9, pp.143-158, (2005).

DOI: 10.1109/tevc.2005.844166

Google Scholar

[20] K. Karplus, C. Barrett, R. Hughey, Hidden Markov Models for Detecting Remote Protein Homologies., Journal of BMC Bioinformatics, 14(10): 846-856, (1998).

DOI: 10.1093/bioinformatics/14.10.846

Google Scholar

[21] Z. C. Fen, P. H. Wen, Biological Science Information Easily, Hop Kee Book Press, 2005. (in chinese).

Google Scholar

[22] L. Luo, Z. H. Shao, Protein Secondary Structural Predict based on conditional random fields, Application Research of Computers, Vol. 26 No. 3, 832-839, 2009.

Google Scholar

[23] Gene Expression and the Genetic Code, National Yang Ming University, general biology textbook online. (in chinese).

Google Scholar

[24] Z. Chi, H. Yan, T. Phan, Fuzzy Algoritms With Application to Image Processing and Pattern Recognition, World Scientific Publish Co. Pte. Ltd, (1996).

Google Scholar

[25] S. C. Lin, P. Q. Feng, Oh! Fuzzy. Fuzzy Analysis, 3rd Wave Press, 1994. (in chinese).

Google Scholar

[26] L. A. Zadeh, Fuzzy sets. Information and Control, 8(3): 338-353, (1965).

Google Scholar

[27] H. Zimmerman, Fuzzy Sets Theory and Its Applications Kluwer Academic Publishers, (2001).

Google Scholar

[28] F. M. Liang, W. H. Wong, Evolutionary Monte Carlo for Protein Folding Simulation, Journal of Chemical Physicals, 3374-3380, (2001).

Google Scholar

[29] L. Christos, P. Costas, P. Themis, et al., Sequence–Based Protein Structure Prediction Using a Reduced State-space Hidden markov model, Journal of Computer in Biology and Medicines, 37(9): 1211-1224, (2007).

DOI: 10.1016/j.compbiomed.2006.10.014

Google Scholar

[30] S. J. Hua, Z. R. Sun, A Novel Method of Protein Secondary Secture Prediction With High Segment Overlap Measure: Support Vector Machine Approach,Journal of Molecular Biology , 308(2), 397-407, (2001).

DOI: 10.1006/jmbi.2001.4580

Google Scholar

[31] J. J. Ward, L. J. McGUFFIN, B. F. Buxton, et al., Secondary Secture Prediction With Support Vector Machines Approach, Journal of BMC Bioinformatics, 19(3), 1650-1655, (2003).

DOI: 10.1093/bioinformatics/btg223

Google Scholar

[32] J. C. Bezdek, Pattern Recognition with Fuzzy Objective Function Algorithms. New York: Plenum, 1980.

Google Scholar

[33] H. Kim, H. Park, Protein Secondary Secture Prediction based on an Improved Support Vector Machines, Journal of Protein Engineering, 16(8), 553-560, (2003).

DOI: 10.1093/protein/gzg072

Google Scholar

[34] D. T. Jones, Protein Secondary Structural Predict Based on Position Spectific Scoring Matrices, Journal of Molecular Biology, 292(2), 195-202, (1999).

Google Scholar

[35] A. G. Murzin, S. E. Brenner, T. Hubbard, C. Chothia, SCOP:A Structural Classification of Protein Database for The Investigation of Sequences And Structures. Journal of Molecular Biology , 536-540, (1995).

DOI: 10.1016/s0022-2836(05)80134-2

Google Scholar

[36] J. G. M. Wetmur, DNA Probes: Applications of The Principles of Nucleic Acid Hybridization, Critical Rev. Biochem. Journal of Molecular Bio, vol. 26, pp.227-259, (1991).

DOI: 10.3109/10409239109114069

Google Scholar

[37] T. Hastie, R. Tibshirani, M. Eisen, A. Alizadeh, R. Levy , L. Staudt, W. C. Chan, D. Botsteinm, P. Brown, Gene Shaving As A Method for Identifying Distinct Sets of Genes With Similar Expression. , Journal of Genom Bio, 1: 1-21, (2000).

Google Scholar