Sand as a Heat Storage Media for a Solar Application: Simulation Results

Article Preview

Abstract:

This paper deals with the numerical investigation of transient behavior and thermal storage capability of a sensible heat storage unit. The former has a cubic configuration with embedded charging tubes; it is used to store solar energy with sand as a storage media. The system operates in the range of low temperature. To analyze their heat storage characteristics (including the bed temperature, energy stored rate, charging energy efficiency), a finite element based 2-D mathematical model has been developed using COMSOL Multiphysics. The results show that sand has an important thermal inertia. However, it was interesting to develop these storage systems in the region where both sand and solar energy were plentiful.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

214-220

Citation:

Online since:

August 2014

Export:

Price:

* - Corresponding Author

[1] Khare S, Dell Amico M, Knight C, McGarry S, Selection of materials for high temperature sensible energy storage, Solar Energy Materials & Solar Cells 115(2013), 114–122.

DOI: 10.1016/j.solmat.2013.03.009

Google Scholar

[2] A. Gil, M. Medrano, I. Martorell , A. Lazaro, P. Dolado, B. Zalba, State of the art on high temperature thermal energy storage for power generation. Part 1—Concepts, materials and modellization, Renewable and Sustainable Energy Reviews, 14, 2010, p.31.

DOI: 10.1016/j.rser.2009.07.035

Google Scholar

[3] Ibrahim D, Marc A. R, Thermal energy storage system and application , Wiley (2011), 84–141.

Google Scholar

[4] Navarro M. E, Martinez M, Gil A, Fernandez A. I, Cabeza L. F, Olives R, Py X, Selection and characterization of recycled materials for sensible thermal energy storage, Solar Energy Materials & Solar Cells 107 (2012), 131–135.

DOI: 10.1016/j.solmat.2012.07.032

Google Scholar

[5] K. Nithyanandam, R. Pitchumani, Cost and performance analysis of concentrating solar power systems with integrated latent thermal energy storage, Energy 64 (2014), 793-810.

DOI: 10.1016/j.energy.2013.10.095

Google Scholar

[6] A.I. Fernandez, M. Martı´nez, M. Segarra, I. Martorell, L.F. Cabeza, Selection of materials with potential in sensible thermal energy storage, Solar Energy Materials & Solar Cells, 94, 2010, p.1723–1729.

DOI: 10.1016/j.solmat.2010.05.035

Google Scholar

[7] H. Singh, R.P. Saini, J.S. Saini, A review on packed bed solar energy storage systems, Renewable and Sustainable Energy Reviews, 14, 2010, p.1059–1069.

DOI: 10.1016/j.rser.2009.10.022

Google Scholar

[8] C. Dang Vu, B. Delcambre, Etude expérimental et modélisation d'un stockage thermique de longue durée en lit de cailloux enterré couplé à des capteurs à air, revue phys. Appl. 22, 1987, pp.487-503.

DOI: 10.1051/rphysap:01987002207048700

Google Scholar

[9] Hasnain S. H, Review on sustainable thermal energy storage technologies, part i: heat storage materials and techniques, Energy Convers. Mgmt 39(1998), 1127-1138.

DOI: 10.1016/s0196-8904(98)00025-9

Google Scholar

[10] A. Khouya, J. Benabdelouhab, A. DraouI, Simulation numérique des transfert thermiques dans un système de séchage solaire du bois, 13 èmes Journées Internationales de Thermique, Albi, 28- 30 Août (2007).

Google Scholar

[11] B. Dhifaoui a, S. Ben Jabrallaha, b, A. Belghith a, J.P. Corriou c, Experimental study of the dynamic behaviour of a porous medium submitted to a wall heat flux in view of thermal energy storage by sensible heat, International Journal of Thermal Sciences, 46, 2007, p.1056.

DOI: 10.1016/j.ijthermalsci.2006.11.014

Google Scholar

[12] M. Medrano, A. Gil, I. Martorell, X. Potau, L. Cabeza, State of the art on high-temperature thermal energy storage for power generation. Part 2—Case studies, Renewable and Sustainable Energy Reviews, 14, 2010, p.56–72.

DOI: 10.1016/j.rser.2009.07.036

Google Scholar

[13] D. Fernandes, F. Pitié, G. Cáceres, J. Baeyens. Thermal energy storage: How previous findings determine current research priorities, Energy, 39, 2012, pp.246-25.

DOI: 10.1016/j.energy.2012.01.024

Google Scholar

[16] S. Jeter, J. Stephens, D. Sadowski, M. Golob, J. McKoy, B. Lines, Development of a novel thermal energy storage system using sand as the medium, SOLAR 2010 Conference Proceedings, 2010, USA.

Google Scholar

[14] Hassan S, Hernandez R. S, Vonzabern K, Pierce J, Kantesaria K, Rubin M, Thermal Inertia of sand at different Levels of Water Saturation, 44th Lunar and Planetary science Conference (2013).

Google Scholar

[18] P. Li, J. Van Lew, C. Chan, W. Karaki, J. Stephens, J.E. O'Brien, Similarity and generalized analysis of efficiencies of thermal energy storage systems, Renewable Energy, 39, 2012, pp.388-402.

DOI: 10.1016/j.renene.2011.08.032

Google Scholar

[15] Lia P, Lewa J. V, Chana C, Karakia W, Stephens J, O'Brien J. E, Similarity and generalized analysis of efficiencies of termal energy storage systems, Ranawable Energy 39 (2012), 388-402.

Google Scholar