Advanced Ceramics: Some Challenges and Solutions in Machining by Conventional Methods

Article Preview

Abstract:

The lecture discusses various machining methods of advanced ceramics, their performances and limitations. These methods include both conventional turning, grinding and milling operations and some selected from the category of non-traditional machining processes like electrical discharge machining, laser assisted milling, abrasive water jet and other are presented as well. Special consideration is given to machinable glass ceramic and aluminum nitride ceramic representing structural ceramics due to their wide range of applications and attractive properties

You might also be interested in these eBooks

Info:

Periodical:

Pages:

42-47

Citation:

Online since:

August 2014

Export:

Price:

* - Corresponding Author

[1] Classification of Advanced Technical Ceramics", VAMAS, Report No. 15, (1993).

Google Scholar

[2] D.S. Baik, K.S. No, J.S. Chun, Y.J. Yoon, H.Y. Cho, A Comparative evaluation for Mica-based glass ceramics, J. Mater. Sci. 30 (1995)1801-1806.

DOI: 10.1007/bf00351613

Google Scholar

[3] C. Duangrudee, S. Krongkarn, K. Kanchana, H. Greg, Y. Kimihiro, Machinable glass-ceramics forming as a restorative dental material, Dental Mater. J. 30(3)(2011) 358–367.

DOI: 10.4012/dmj.2010-154

Google Scholar

[4] H. Jin, W. Wang, J. Gao, G. Qiao, Z. Jin, Study of machinable AlN/BN ceramic composites, Materials Letters, 60 (2) (2006) 190 - 193.

DOI: 10.1016/j.matlet.2005.08.029

Google Scholar

[5] Y. Baik, R.A.L. Drew, Aluminum nitride: processing and applications, Adv. Ceram. Mater. 122(1996) 553–570.

Google Scholar

[6] I. Inasaki, Grinding of hard and brittle materials, Annals of the CIRP 36(2) (1987)463-471.

DOI: 10.1016/s0007-8506(07)60748-3

Google Scholar

[7] S. Jahanmir, H.K. Xu, L.K. Ives, Mechanisms of material removal in abrasive machining of ceramics, in: S. Jahanmir, M. Ramulu, and P. Koshy (Eds. ) Machining of Ceramics and Composites, Marcel Dekker, New York, 1999 p.11–84.

Google Scholar

[8] Abrasive processes. Handbook of ceramics grinding and polishing, I. Marinescu, B. Rowe, L. Yin, H.G. Wobker (Eds. ), Noyes Publications/William Andrew Publishing LLC, New York, USA (2000).

DOI: 10.1016/b978-1-4557-7858-4.00003-0

Google Scholar

[9] J. P. Davim, Surface Integrity in Machining, Springer, London-New York, (2010).

Google Scholar

[10] B.H. Yan, F.Y. Huang, H. M. Chow, Study on the turning characteristics of alumina-based ceramics, J. Mater. Proc. Techn. 54 (1995) 341−347.

Google Scholar

[11] L.J. Ma, A.B. Yu, Influencing of technological parameter on tools wear during turning fluorophlogopite glass-ceramics, J. Rare Earths, 25 (2007) 330−333.

DOI: 10.1016/s1002-0721(07)60497-9

Google Scholar

[12] Z.Y. Wang, K.P. Rajarkar, M. Murugappan, Cryogenic PCBN turning of ceramic (Si3Ni4), Wear 195(1996) 1−6.

DOI: 10.1016/0043-1648(95)06645-4

Google Scholar

[13] M.A. Dabnun, M.S.J. Hashmi, M.A. ElBaradie, Surface roughness prediction model by design of experiments for turning machinable glass–ceramic, J. Mater. Proc. Techn. 164–165 (2005) 1289–1293.

DOI: 10.1016/j.jmatprotec.2005.02.062

Google Scholar

[14] J.E. Mayer Jr., G.P. Fang, Diamond grinding of silicon nitride, NIST SP, 847 (1993), 205–222.

Google Scholar

[15] I.P. Tuersley, A. Jawaid, I.R. Pashby, Review: Various method of machining advanced ceramic materials, J. Mater. Proc. Techn. 42 (1994) 377-390.

DOI: 10.1016/0924-0136(94)90144-9

Google Scholar

[16] X.H. Yang, Y.M. Zhang, J.C. Han, High speed lapping of SiC ceramic material with fixed abrasive, Key Eng Materials 336–338 (2007) 1458–1460.

DOI: 10.4028/www.scientific.net/kem.336-338.1458

Google Scholar

[17] V.M. Shumyacher, O.V. Dushko, D.O. Pushkarev, Predicting the grinding efficiency of hard ceramics in terms of surface brittleness, Rus. Eng. Res. 29 (2009) 623–624.

DOI: 10.3103/s1068798x09060240

Google Scholar

[18] S. Agarwal, P.V. Rao, Experimental investigation of surface/subsurface damage formation and material removal mechanisms in SiC grinding, Int. J. Mach Tools Manuf. 48 (2008) 698–710.

DOI: 10.1016/j.ijmachtools.2007.10.013

Google Scholar

[19] W. Konig, V. Sinhoff, Lens and Optical Systems Design, SPIE (1992), 778-788.

Google Scholar

[20] E.C. Bianchi, P.R. Aguiar, C.E. Aguiar, DaSilva Jr., C.A. Fortulan, Advanced ceramics: evaluation of the ground surface, Ceramica 49 (2003)174-177.

DOI: 10.1590/s0366-69132003000300012

Google Scholar

[21] W.H. Daniels, Super abrasives for ceramic grinding and finishing, SME TP, EM 89-125 (1989).

Google Scholar

[22] H. Huang, Y.C. Liu, Experimental investigations of machining characteristics and removal mecha-nisms of advanced ceramics in high speed deep grinding, Int. J. Mach. Tool Manuf. 43 (2003) 811-823.

DOI: 10.1016/s0890-6955(03)00050-6

Google Scholar

[23] F. Klocke, E. Verlemann, C. Schippers, High speed grinding of ceramics. Machining of Ceramics and Composites, Marcel Dekker, New York, 1999, pp.119-138.

Google Scholar

[24] Zhong, Z., Surface finish of precision machined advanced materials, J. Mater. Proc. Techn. 122 (2-3) (2002) 173–178.

Google Scholar

[25] Y. Takeuchi, K. Sawada, T. Sata, Ultra-precision 3D micromachining of glass, Ann. CIRP 45 (1) (1996) 401–404.

DOI: 10.1016/s0007-8506(07)63090-x

Google Scholar

[26] S. Ng, D. Le, S. Tucker, G. Zhang, 1996. Control of machining induced edge chipping on glass ceramics, Proc 1996 ASME Int. Mech. Eng. Cong. Exposition, MED (4), Atlanta, 1996, pp.229-236.

Google Scholar

[27] Y.Q. Cao, Failure analysis of exit edges in ceramic machining using finite element analysis, Eng. Failure Anal. 8 (4) (2001)325-338.

DOI: 10.1016/s1350-6307(00)00024-8

Google Scholar

[28] T. Matsumura, T. Hiramatsu, T. Shirakashi, T. Muramatsu, A study on cutting force in the milling process of glass, J. Manuf. Proc. 7 (2) (2005) 102–108.

DOI: 10.1016/s1526-6125(05)70087-6

Google Scholar

[29] W.L. Schixlir, Conventional machining of green aluminum/aluminum nitride ceramics, The Ohio J. Sci. 94 (5) (1994)151-154.

Google Scholar

[30] X. Du, Q. Mingli, R. Abdur, Y. Zhihao, B. Yang, Q. Xuanhui, Structure and properties of AlN ceramics prepared with spark plasma sintering, Mater. Sci. Eng. A 496 (2008) 269-272.

Google Scholar

[31] F.Z. Han, YX. Wang, Zhou, M. High-speed EDM milling with moving electric arcs, Int. J. Mach. Tools Manuf. 49 (2009)20–24.

DOI: 10.1016/j.ijmachtools.2008.08.005

Google Scholar

[32] YH. Liu, RJ. Ji, QY. Li, LL. Yu, XP. Li, An experimental investigation for electric discharge milling of SiC ceramics with high electrical resistivity, J. Alloys Comp. 472 (2009)406–410.

DOI: 10.1016/j.jallcom.2008.04.072

Google Scholar

[33] M. Kunieda, Y. Miyoshi, T. Takaya, N. Nakajima, Y.Z. Bo, M. Yoshida, High speed 3D milling by dry EDM, CIRP Annals Manuf. Techn. 52 (2003)147–50.

DOI: 10.1016/s0007-8506(07)60552-6

Google Scholar

[34] L. Chen, E. Siores, W. C. K. Wong, Keft characteristics in abrasive water jet cutting of ceramics materials, Int. J. Machine tools Manuf. 36 (1996)1201−1206.

DOI: 10.1016/0890-6955(95)00108-5

Google Scholar

[35] C. Eckert, J. Weatherall, Advanced ceramics: 90's global business outlook, Ceramics Ind. 134(4) (1990)53–57.

Google Scholar

[36] C. Treadwell, Z.J. Pei, Machining ceramics with rotary ultrasonic machining, Ceramic Ind. (June 2003)39–42.

Google Scholar

[37] H. Hocheng, N.H. Tai, C.S. Liu, Assessment of Ultrasonic Drilling of C/SiC Composite Material, Composites, Part A, 31 (2000)133– 142.

DOI: 10.1016/s1359-835x(99)00065-2

Google Scholar

[38] G. Chryssolouries, N. Anifantis, S. Karagiannis, Laser assisted machining: An Overview, J. Manuf. Sci. Eng, 119, Issue 4B (1997)766–769.

DOI: 10.1115/1.2836822

Google Scholar

[39] C. W. Chang, C. P. Kuo, An investigation of laser-assisted machining of Al2O3 ceramics planning, Int. J. Machine Tools Manuf. 47 (2007) 452−461.

DOI: 10.1016/j.ijmachtools.2006.06.010

Google Scholar

[40] B. Yang, X. Shen, S. Lei, Mechanisms of edge chipping in laser-assisted milling of silicon nitride ceramics, Int. J. Mach. Tools Manuf. 49 (2009)344–350.

DOI: 10.1016/j.ijmachtools.2008.09.006

Google Scholar

[41] B. Daudin, P. Martin, Mega-electronvolt ion beam polishing of anodically grown alumina, Materials Sci. Eng. 115 (1989)63-66.

DOI: 10.1016/0921-5093(89)90657-6

Google Scholar

[42] D. Landolt, R.F. Chauvy, O. Zinger, Electrochemical micromachining, polishing and surface structuring of metals: Fundamentals aspects and new developments, Electroch. Acta 48 (2003)3185−3201.

DOI: 10.1016/s0013-4686(03)00368-2

Google Scholar