Shape Memory Alloys in Automotive Applications

Article Preview

Abstract:

Shape memory alloy (SMA) actuators have drawn much attention and interest due to their unique and superior properties, and are expected to be equipped in many modern vehicles at competitive market prices. The key advantage is that SMA actuators do not require bulky and complicated mechanical design to function, where the active element (e.g. SMA wire or spring) can be deformed by applying minimal external force and will retain to their previous form when subjected to certain stimuli such as thermomechanical or magnetic changes. This paper describes the SMA attributes that make them ideally suited as actuators in automotive applications and to address their limitations, feasibilities and prospects.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

248-253

Citation:

Online since:

October 2014

Export:

Price:

* - Corresponding Author

[1] GM. Chevrolet Debuts Lightweight Smart Material, on Corvette. General Motors News; (2013).

Google Scholar

[2] Borroni-Bird CE. Smarter vehicles. Smart Structures and Materials 1997: Industrial and Commercial Applications of Smart Structures Technologies. San Diego, CA, (1997).

DOI: 10.1117/12.274698

Google Scholar

[3] F. Butera, A. Coda, G. Vergani. Shape memory actuators for automotive applications. Nanotec IT Newsletter. Roma: AIRI/nanotec IT, 2007, pp.12-6.

Google Scholar

[4] D. Stoeckel. Shape memory actuators for automotive applications, Materials & Design. 11 (1990) 302-7.

DOI: 10.1016/0261-3069(90)90013-a

Google Scholar

[5] JE. Huber, NA. Fleck, MF. Ashby. The selection of mechanical actuators based on performance indices. Proceedings of the Royal Society of London Series A: Mathematical, Physical and Engineering Sciences. 453 (1997) 2185-205.

DOI: 10.1098/rspa.1997.0117

Google Scholar

[6] K. Wilkes, P. Liaw, K. Wilkes. The fatigue behavior of shape-memory alloys, JOM. 52 (2000) 45-51.

DOI: 10.1007/s11837-000-0083-3

Google Scholar

[7] J. Cederström, J. Van Humbeeck. Relationship between shape memory material properties and applications, J Phys IV France. 05 (1995) C2-335-C2-41.

DOI: 10.1051/jp4:1995251

Google Scholar

[8] D.E. Hodgson, M.H. Wu, R.J. Biermann. Shape memory alloys. ASM Handbook: ASM International, 1990, pp.897-902.

Google Scholar

[9] W.J. Buehler, J.V. Gilfrich, R.C. Wiley. Effect of low-temperature phase changes on the mechanical properties of alloys near composition TiNi, Applied Physics. 34 (1963) 1475 - 7.

DOI: 10.1063/1.1729603

Google Scholar

[10] W.J. Buehler, F.E. Wang. A summary of recent research on the nitinol alloys and their potential application in ocean engineering, Ocean Engineering. 1 (1968) 105-8.

DOI: 10.1016/0029-8018(68)90019-x

Google Scholar

[11] G. Kauffman, I. Mayo. The Story of Nitinol: The serendipitous discovery of the memory metal and its applications, Chem Educator. 2 (1997) 1-21.

DOI: 10.1007/s00897970111a

Google Scholar

[12] J. Mohd Jani, M. Leary, A. Subic, M.A. Gibson. A review of shape memory alloy research, applications and opportunities, Materials & Design. 56 (2014) 1078-113.

DOI: 10.1016/j.matdes.2013.11.084

Google Scholar

[13] K. Yamauchi, I. Ohkata, K. Tsuchiya, S. Miyazaki. Shape Memory and Superelastic Alloys: Applications and Technologies: Woodhead Publishing Ltd, (2011).

DOI: 10.1533/9780857092625

Google Scholar

[14] D.J. Leo, C. Weddle, G. Naganathan, S.J. Buckley. Vehicular applications of smart material systems. 1998: 106-16.

Google Scholar

[15] J. Strittmatter, P. Gümpel. Long-time stability of Ni-Ti-shape memory alloys for automotive safety systems, Journal of Materials Engineering and Performance. 20 (2011) 506-10.

DOI: 10.1007/s11665-011-9848-9

Google Scholar

[16] G.S. Firstov, J. Van Humbeeck, Y.N. Koval. High temperature shape memory alloys problems and prospects, Journal of Intelligent Material Systems and Structures. 17 (2006) 1041-7.

DOI: 10.1177/1045389x06063922

Google Scholar

[17] Ma J, Karaman I, Noebe RD. High temperature shape memory alloys. International Materials Reviews. 2010; 55: 257-315.

DOI: 10.1179/095066010x12646898728363

Google Scholar

[18] J. Beyer, J.H. Mulder. Recent Developments in High Temperature Shape Memory Alloys. MRS Proceedings: Cambridge Univ Press, (1994).

DOI: 10.1557/proc-360-443

Google Scholar

[19] M. Kohl. Shape Memory Microactuators (Microtechnology and MEMS). 1 ed. Heidelberg: Springer-Verlag Berlin, (2010).

Google Scholar

[20] R.H. Richman, A.S. Rao, D. Kung. Cavitation erosion of NiTi explosively welded to steel, Wear. Part 1: 80-5 (1995) 181–183.

DOI: 10.1016/0043-1648(94)07029-6

Google Scholar

[21] J.K. Singh, A.T. Alpas. Dry sliding wear mechanisms in a Ti50Ni47Fe3 intermetallic alloy, Wear. 302–11 (1995) 181-183.

DOI: 10.1016/0043-1648(95)90037-3

Google Scholar

[22] P. Clayton. Tribological behavior of a titanium-nickel alloy, Wear. Part A: 202-10 (1993) 162–164.

DOI: 10.1016/0043-1648(93)90502-d

Google Scholar

[23] D. Mantovani. Shape memory alloys: Properties and biomedical applications, JOM. 52 (2000) 36-44.

DOI: 10.1007/s11837-000-0082-4

Google Scholar

[24] J. Ryhänen, M. Kallioinen, J. Tuukkanen, J. Junila, E. Niemelä, P. Sandvik, et al. In vivo biocompatibility evaluation of nickel-titanium shape memory metal alloy: Muscle and perineural tissue responses and encapsule membrane thickness, Biomedical Materials Research. 41 (1998).

DOI: 10.1002/(sici)1097-4636(19980905)41:3<481::aid-jbm19>3.0.co;2-l

Google Scholar

[25] Dynalloy Inc. Technical characteristics of Flexinol actuator wires. In: Dynalloy Inc. U, editor. Costa Mesa (CA), 2007, pP. 12.

Google Scholar

[26] L. Fumagalli, F. Butera, A. Coda. SmartFlex® NiTi wires for shape memory actuators, Journal of Materials Engineering and Performance. 18 (2009) 691-5.

DOI: 10.1007/s11665-009-9407-9

Google Scholar

[27] M. Leary, S. Huang, T. Ataalla, A. Baxter, A. Subic. Design of shape memory alloy actuators for direct power by an automotive battery, Materials & Design. 43 (2013) 460-6.

DOI: 10.1016/j.matdes.2012.07.002

Google Scholar

[28] K. Kuribayashi. Improvement of the response of an SMA actuator using a temperature sensor, The International Journal of Robotics Research. 10 (1991) 13-20.

DOI: 10.1177/027836499101000102

Google Scholar

[29] K. Ikuta, M. Tsukamoto, S. Hirose. Shape memory alloy servo actuator system with electric resistance feedback and application for active endoscope. IEEE International Conference on Robotics and Automation, 1988, pp.427-30.

DOI: 10.1109/robot.1988.12085

Google Scholar

[30] F. Schiedeck, S. Mojrzisch. Design of a robust control strategy for the heating power of shape memory alloy actuators at full contraction based on electric resistance feedback, Smart Materials and Structures. 20 (2011) 045002.

DOI: 10.1088/0964-1726/20/4/045002

Google Scholar

[31] H. Meier, A. Czechowicz, C. Haberland, S. Langbein. Smart control systems for smart materials, Journal of Materials Engineering and Performance. 20 (2011) 559-63.

DOI: 10.1007/s11665-011-9877-4

Google Scholar

[32] M. Bergamasco, P. Dario, F. Salsedo. Shape memory alloy microactuators, Sensors and Actuators A: Physical. 21 (1990) 253–7.

DOI: 10.1016/0924-4247(90)85049-a

Google Scholar

[33] S. Langbein, A. Czechowicz. Adaptive resetting of SMA actuators, Journal of Intelligent Material Systems and Structures. 23 (2012) 127-34.

DOI: 10.1177/1045389x11431741

Google Scholar

[34] D. Stöckel. The Shape Memory Effect: Phenomenon, Alloys, Applications. Shape memory alloys for power systems (EPRI), 1995, pp.1-13.

Google Scholar

[35] Dynalloy. Dynalloy Newsletters (2006).

Google Scholar

[36] A. Weber. Smart materials have a bright future. Advanced Assembly and Materials for Transportation Applications (2010).

Google Scholar

[37] A.L. Browne, P.W. Alexander, N. Mankame, P. Usoro, N.L. Johnson, J. Aase, et al. SMA heat engines: Advancing from a scientific curiosity to a practical reality. Smart materials, structures and NDT in Aerospace. Montreal, Quebec, Canada: CANSMART CINDE IZFP (2011).

Google Scholar

[38] R. Gehm. Smart materials spur additional design possibilities. Automotive Engineering International. April 2007 ed: SAE; 2007, pp.46-7.

Google Scholar

[39] F. Tosco, S. Alacqua, M. Biasiotto. EP Patent 2, 082, 914: Fiat Group Automobiles S. p.A. (2010).

Google Scholar

[40] F. Butera, G. Alessandretti. EP Patent 0, 972, 676. C.R.F. Società Consortile per Azioni. (2000).

Google Scholar

[41] T. Luchetti, A. Zanella, M. Biasiotto, A. Saccagno. Electrically actuated antiglare rear-view mirror based on a shape memory alloy actuator, Journal of Materials Engineering and Performance. 18 (2009) 717-24.

DOI: 10.1007/s11665-009-9487-6

Google Scholar

[42] S. Alacqua, F. Butera, A. Zanella, G. Capretti. US Patent 7625019B2: CRF Societa Consortile per Azioni. (2009).

Google Scholar

[43] D. Stoeckel, F. Tinschert. Temperature Compensation with Thermovariable Rate Springs in Automatic Transmissions. SAE technical paper series: SAE (1991).

DOI: 10.4271/910805

Google Scholar

[44] R. Vaidyanathan. Shape-Memory Alloys. Kirk-Othmer Encyclopedia of Chemical Technology: John Wiley & Sons, Inc., (2000).

DOI: 10.1002/0471238961.1908011619030805.a01.pub2

Google Scholar

[45] P. Abrahamsson, E. Møster. Demands on Shape memory alloys from the application designer's point of view, J Phys IV France. 07 (1997) C5-667-C5-72.

DOI: 10.1051/jp4:19975106

Google Scholar

[46] E.G. Welp, J. Breidert. Knowledge and method base for shape memory alloys, Materialwissenschaft und Werkstofftechnik. 35 (2004) 294-9.

DOI: 10.1002/mawe.200400745

Google Scholar

[47] J. Van Humbeeck. Shape memory materials: state of the art and requirements for future applications, Le Journal de Physique IV. 7 (1997) C5-3.

DOI: 10.1051/jp4:1997501

Google Scholar

[48] J-E. Bidaux, J-A. Månson, R. Gotthardt. Active stiffening of composite materials by embedded shape-memory-alloy fibres, MRS Proceedings: Cambridge Univ Press, 1996, p.107.

DOI: 10.1557/proc-459-107

Google Scholar

[49] J. Raghavan, T. Bartkiewicz, S. Boyko, M. Kupriyanov, N. Rajapakse, B. Yu. Damping, tensile, and impact properties of superelastic shape memory alloy (SMA) fiber-reinforced polymer composites, Composites Part B: Engineering. 41 (2010) 214-22.

DOI: 10.1016/j.compositesb.2009.10.009

Google Scholar

[50] Y. Furuya, A. Sasaki, M. Taya. Enhanced mechanical properties of TiNi shape memory fiber/Al matrix composite, JIM, Materials Transactions. 34 (1993) 224-7.

DOI: 10.2320/matertrans1989.34.224

Google Scholar

[51] P. Ghosh, A. Rao, A.R. Srinivasa. Design of multi-state and smart-bias components using shape memory alloy and shape memory polymer composites, Materials & Design. 44 (2013) 164-71.

DOI: 10.1016/j.matdes.2012.05.063

Google Scholar

[52] J. Ma, I. Karaman. Expanding the repertoire of shape memory alloys, Science. 327 (2010)1468-9.

DOI: 10.1126/science.1186766

Google Scholar