Economic and Ecological Evaluation of Hybrid Additive Manufacturing Technologies Based on the Combination of Laser Metal Deposition and CNC Machining

Article Preview

Abstract:

Hybrid additive manufacturing technologies combine selective material deposition with a conventional milling process in one machine, enabling the production of complex metal parts and reducing the need for part specific tools. The hybrid technology offers technological advantages compared to more established additive fabrication processes, such as powder bed fusion. Compared to powder bed based additive processes, which are currently in a prevailing positon regarding AM adaption, hybrid additive technologies enable increased build rates, enhanced build volumes and a reduction of machine changes. In the Laser Metal Deposition (LMD) process, metal powder is deposited through a nozzle and melted by a laser on the surface of the part. By integrating the LMD process into a machining center, good surface roughness and low tolerances can be realized by means of e. g. milling without reclamping. In comparison to powder bed based processes, cost and resource input have not been investigated in detail. In this study, hybrid additive manufacturing technologies are analyzed regarding cost and resource input. A cost model for hybrid additive processes is introduced that enables the analysis of the manufacturing cost structure for a given part. Furthermore, the resource inputs for the operation of a hybrid production machine are estimated.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

213-222

Citation:

Online since:

November 2015

Export:

Price:

* - Corresponding Author

[1] T.T. Wohlers, Wohlers report 2014: 3D printing and additive manufacturing state of the industry annual worldwide progress report, Wohlers Associates, Fort Collins, Col., (2014).

DOI: 10.1089/3dp.2013.0004

Google Scholar

[2] I. Gibson, D.W. Rosen, B. Stucker, Additive manufacturing technologies: Rapid prototyping to direct digital manufacturing, 1st ed., Springer, New York, (2010).

DOI: 10.1007/978-1-4939-2113-3

Google Scholar

[3] G. Friedl, C. Hofmann, B. Pedell, Kostenrechnung: Eine entscheidungsorientierte Einführung, 2nd ed., Vahlen, Franz, Munich, (2013).

DOI: 10.15358/9783800668151

Google Scholar

[4] N. Hopkinson, P. Dickens, Analysis of rapid manufacturing—using layer manufacturing processes for production, Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science 217 (2003) 31–39.

DOI: 10.1243/095440603762554596

Google Scholar

[5] M. Zäh, F. Hagemann, Wirtschaftliche Fertigung mit Rapid-Technologien: Anwender-Leitfaden zur Auswahl geeigneter Verfahren, 1st ed., Hanser, Munich, (2006).

DOI: 10.3139/9783446439573.fm

Google Scholar

[6] Krauss H., C. Eschey, A. Götzfried, S. Teufelhart, S. Westhäuser, M. Zäh, G. Reinhart, Modellgestützte und hierarchische Prozesskettenbetrachtung für die additive Fertigung, RTejournal - Forum für Rapid Technologie Vol. 8 (2011).

Google Scholar

[7] M. Ruffo, C. Tuck, R. Hague, Cost estimation for rapid manufacturing - laser sintering production for low to medium volumes, Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture 220 (2006) 1417–1427.

DOI: 10.1243/09544054jem517

Google Scholar

[8] E. Atzeni, A. Salmi, Economics of additive manufacturing for end-usable metal parts, Int J Adv Manuf Technol 62 (2012) 1147–1155.

DOI: 10.1007/s00170-011-3878-1

Google Scholar

[9] L. Rickenbacher, A. Spierings, K. Wegener, An integrated cost‐model for selective laser melting (SLM), Rapid Prototyping Journal 19 (2013) 208–214.

DOI: 10.1108/13552541311312201

Google Scholar

[10] J. Gerken, Formgebende Herstellung metallischer Bauteile mit Laserstrahlung, 1st ed., VDI, Düsseldorf, (1998).

Google Scholar

[11] M. Gharbi, P. Peyre, C. Gorny, M. Carin, S. Morville, P. Le Masson, D. Carron, R. Fabbro, Influence of various process conditions on surface finishes induced by the direct metal deposition laser technique on a Ti-6Al-4V alloy, Journal of Materials Processing Technology 2012 (2012).

DOI: 10.1016/j.jmatprotec.2012.11.015

Google Scholar

[12] F. Le Bourhis, O. Kerbrat, L. Dembinski, J. -Y. Hascoet, P. Mognol, Predictive Model for Environmental Assessment in Additive Manufacturing Process, Procedia CIRP 15 (2014) 26–31.

DOI: 10.1016/j.procir.2014.06.031

Google Scholar

[13] M. Gharbi, P. Peyre, C. Gorny, M. Carin, S. Morville, P. Le Masson, D. Carron, R. Fabbro, Influence of various process conditions on surface finishes induced by the direct metal deposition laser technique on a Ti-6Al-4V alloy, Journal of Materials Processing Technology 2012 (2012).

DOI: 10.1016/j.jmatprotec.2012.11.015

Google Scholar

[14] F.W. Liou, J. Choi, R. Landers, V. Janardhan, S.N. Balakrishnan, S. Agarwal, Research and Development of A Hybrid Rapid Manufacturing Process. Working Paper, Rolla, Missouri, (2001).

Google Scholar

[15] J.B. Jones, The Synergies of Hybridizing CNC and Additive Manufacturing, Detroit, (2014).

Google Scholar

[16] F. -M. Kieß, Japaner forcieren Hybridtechnik, mav Innovation in der spanenden Fertigung (2014) 28–30.

Google Scholar

[17] DMG Mori, Lasertec Baureihe offizieller Produktkatalog: Generative Fertigung in Fertigteilqualität - Intelligent kombiniert: Laserauftragschweißen & Fräsen, available at http: /ch-de. dmgmori. com/blob/334058/bddfe9db4fd0366510a5226abd3a0846/pl1de14-lasertec-65-3d-pdf-data. pdf (accessed on January 8, 2015).

Google Scholar

[18] Siemens AG, NX Hybrid Additive Manufacturing, available at http: /www. plm. automation. siemens. com/en_us/products/nx/for-manufacturing/cam/hybrid-additive-manufacturing. shtml#lightview-close (accessed on June 9, 2015).

Google Scholar

[19] W. Liu, J.N. DuPont, Fabrication of functionally graded TiC/Ti composites by Laser Engineered Net Shaping, Scripta Materialia 48 (2003) 1337–1342.

DOI: 10.1016/s1359-6462(03)00020-4

Google Scholar

[20] B. Reichenbach, Auf- und abtragen in einer Aufspannung, Technische Rundschau (2014) 22–25.

Google Scholar

[21] J.M. Wilson, C. Piya, Y.C. Shin, F. Zhao, K. Ramani, Remanufacturing of turbine blades by laser direct deposition with its energy and environmental impact analysis, Journal of Cleaner Production 80 (2014) 170–178.

DOI: 10.1016/j.jclepro.2014.05.084

Google Scholar

[22] Roland Berger Strategy Consultants, Additive Manufacturing: A game changer for the manufacturing industry?, available at http: /www. rolandberger. com/media/pdf/Roland_Berger_ Additive_Manufacturing_20131129. pdf (accessed on June 2, 2015).

Google Scholar

[23] Roeben Gas, Argonpreis Roeben Gas, available at http: /www. roebengas24. de/technische-gase/bestellen-argon-4-6/ (accessed on March 22, 2015).

Google Scholar

[24] BDEW, BDEW-Strompreisanalyse Juni 2014: Haushalte und Industrie, available at https: /www. bdew. de/internet. nsf/id/20140702-pi-steuern-und-abgaben-am-strompreis-steigen-weiter-de/$file/140702%20BDEW%20Strompreisanalyse%202014%20Chartsatz. pdf (accessed on March 1, 2015).

Google Scholar

[25] C. Brecher, W. Herfs, C. Heyers, W. Klein, J. Triebs, E. Beck, T. Dorn, Ressourceneffizienz von Werkzeugmaschinen im Fokus der Forschung: Effizienzsteigerung durch Optimierung der Technologien zum Komponententrieb, wt Werkstatttechnik online 100 (2010).

DOI: 10.37544/1436-4980-2010-7-8-559

Google Scholar

[26] E. Abele, Verteilung der Betriebskosten bei Werkzeugmaschinen in Deutsch-land im Jahr 2010, available at http: /de. statista. com. eaccess. ub. tum. de/statistik/da-ten/studie/236805/umfrage/ lebenszykluskosten-bei-werkzeugmaschinen/ (accessed on June 2, 2015).

Google Scholar

[27] M. Shukla, R.M. Mahamood, E.T. Akinlabi, S. Pityana, Effect of Scanning Speed on Material Efficiency of Laser Metal Deposited Ti6Al4V, International Journal of Mechanical, Aerospace, Industrial and Mechatronics Engineering 6 (2012) 58–62.

Google Scholar