Efficient near Net-Shape Production of High Energy Rare Earth Magnets by Laser Beam Melting

Article Preview

Abstract:

In this publication we report on our progress in investigating the energy efficient production of rare earth permanent magnets by Laser Beam Melting in the powder bed (LBM). This innovative additive manufacturing process offers the potential to produce magnets of complex geometries without an energy intensive oven sintering step. Another advantage that increases the efficiency of this possible new process route is the high degree of material utilization due to a near net shape production of the magnets. Hence only little material is wasted during a post processing machining step. The main challenge in processing rare earth magnet alloys by means of LBM is the brittle mechanical behavior of the material and the change in microstructure due to the complete remelting of the magnet powder. We therefor expanded the parameter study presented in previous work in order to further increase relative density and magnetic properties of the specimens. In this context process stability and reproducibility could also be increased. This was achieved by investigating the impact of different exposure patterns and varying laser spot sizes. Simultaneously to the experiments the energy consumption of the LBM process was measured and compared with conventional rare earth magnet production routes.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

137-144

Citation:

Online since:

October 2017

Export:

Price:

* - Corresponding Author

[1] O. Gutfleisch, M.A. Willard, E. Bruck, C.H. Chen, et al.: Magnetic materials and devices for the 21st century: stronger, lighter, and more energy efficient. In: Advanced materials (Deerfield Beach, Fla. ) 23 (2011), Nr. 7, 821–842.

DOI: 10.1002/adma.201002180

Google Scholar

[2] Gebhardt, A.: Generative Fertigungsverfahren: Additive Manufacturing und 3D Drucken für Prototyping ; Tooling ; Produktion (2013).

DOI: 10.3139/9783446436527.fm

Google Scholar

[3] Norm DIN EN ISO/ASTM 52900: 2016-09: 19. 08. 2016, Additive manufacturing - General principles - Terminology (ISO/ASTM 52900: 2015); German and English version prEN ISO/ASTM 52900: (2016).

DOI: 10.31030/2631641

Google Scholar

[4] Schatt, W. (Hrsg. ); Kieback, B. (Hrsg. ); Wieters, K. -P. (Hrsg. ): Pulvermetallurgie: Technologien und Werkstoffe. 2., bearbeitete und erweiterte Auflage. Berlin, Heidelberg: Springer-Verlag Berlin Heidelberg, (2007).

DOI: 10.1002/maco.19960471210

Google Scholar

[5] Kolb, T.; Huber, F.; Akbulut, B.; Donocik, C., et al.: Laser Beam Melting of NdFeB for the production of rare-earth magnets. In: 2016 6th International Electric Drives Production Conference (EDPC), 34–40.

DOI: 10.1109/edpc.2016.7851311

Google Scholar

[6] Concept Laser GmbH: Datasheet Mlab Cusing R.

Google Scholar

[7] Molycorp Magnequench: Datasheet MQP-S-11-9-20001-070 isotropic powder.

Google Scholar

[8] Kruth, J. P.; Froyen, L.; van Vaerenbergh, J.; Mercelis, P., et al.: Selective laser melting of iron-based powder. In: Journal of Materials Processing Technology 149 (2004), 1-3, 616–622.

DOI: 10.1016/j.jmatprotec.2003.11.051

Google Scholar

[9] Yasa, E.; Deckers, J.; Kruth, J.: The investigation of the influence of laser re‐melting on density, surface quality and microstructure of selective laser melting parts. In: Rapid Prototyping Journal 17 (2011), Nr. 5, 312–327.

DOI: 10.1108/13552541111156450

Google Scholar

[10] Yasa, E.; Kruth, J. -P.: Microstructural investigation of Selective Laser Melting 316L stainless steel parts exposed to laser re-melting. In: Procedia Engineering 19 (2011), 389–395.

DOI: 10.1016/j.proeng.2011.11.130

Google Scholar

[11] Liu, F.; Lin, X.; Huang, C.; Song, M., et al.: The effect of laser scanning path on microstructures and mechanical properties of laser solid formed nickel-base superalloy Inconel 718. In: Journal of Alloys and Compounds 509 (2011).

DOI: 10.1016/j.jallcom.2010.11.176

Google Scholar

[12] Blattmeier, M.: Strukturanalyse von lasergesinterten Schichtverbunden mit werkstoffmechanischen Methoden (2012).

DOI: 10.1007/978-3-8348-2501-8

Google Scholar

[13] Yasa, E.; Kruth, J. P.: Application of Laser Re-Melting on Selective Laser Melting Parts. In: Advances in Production Engineering & Management (2011), Nr. 6, 259–270.

DOI: 10.1016/j.proeng.2011.11.130

Google Scholar