Optimization of Heat Treatment Parameters with the Taguchi Method for the A7050 Aluminum Alloy

Article Preview

Abstract:

This paper describes a heat treatment process using dual aging for the A7050 aluminum alloy with the Taguchi method to optimize process parameters. The current study considers micro hardness and electrical conductivity as optimization criteria. Pre-aging temperature, pre-aging time, re-aging temperature, and re-aging time are important factors influencing these optimization criteria. Experiment results show that re-aging temperature is the most significant parameter for electrical conductivity, and both aging times are important influence factors for micro hardness performance. The optimal hardness for A7050 heat treatment conditions are pre-ageing temperature 120 °C, pre-ageing time 12hrs., re-aging temperature140 °C, and re-aging time 8 hrs., respectively. The best electrical conductivity parameters are pre-ageing temperature 120 °C, pre-ageing time 4 hrs., re-aging temperature180 °C, and re-aging time 24 hrs., respectively. The current study obtained contributing individual parameters for hardness, and electrical conductivity in dual aging of heat treatment.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 139-141)

Pages:

157-162

Citation:

Online since:

October 2010

Export:

Price:

[1] Dumony D, Deschamps A.: Materials Science and Technology, 20(5) (2004), pp.567-576.

Google Scholar

[2] T. S. Srivatsan, S. Sriram, D. Veeraraghavan, V. K. Vasudevan: Journal of Materials Science, 32 (1997), pp.2883-2894.

DOI: 10.1023/a:1018676501368

Google Scholar

[3] Chen K H, Liu H W, Zhang Z, Li S, Tood R I.: Journal of Materials Processing Technology, 142(1) (2003), pp.190-196.

Google Scholar

[4] J. R. Davis: ASM Specialty Handbook-Aluminum and Aluminum Alloys, edited by J. R. Davis, ASM International Handbook Committee, (2002), p.395.

Google Scholar

[5] I. N. Fridlyander: Metal Science and Heat Treatment, 43(2001), pp.1-2.

Google Scholar

[6] B. M. Cina: U. S. Patent No. 3856584, Dec. 24, (1974).

Google Scholar

[7] T. Engdahl, V. Hansen, P. J. Warren, K. Stiller: Mater. Sci. Eng. A, 327(2002), pp.59-64.

Google Scholar

[8] R. G. Song, Q. Z. Zang, M. K. Tseng: Mater. Sci. Eng. C., 3(1995), pp.39-45.

Google Scholar

[9] F. Viana, A. M. Pinto, H. M. Csantos, A. B. Lopes: J. Mater. Proc. Tech., 92(1999), pp.54-59.

Google Scholar

[10] C. G. Yang: PhD thesis, Taiwan, (2001).

Google Scholar

[11] Ber L. B: Mater. Sci. Eng., A280(2000), pp.91-96.

Google Scholar

[12] G. Taguchi: Introduction to Quality Engineering, Asian Productivity Organisation, Tokyo, (1990).

Google Scholar

[13] G. Taguchi: Taguchi on robust technology development methods. New York, NY: ASME Press, (1993), pp.1-40.

Google Scholar

[14] J. Iqbal, M. A. Shaikh, M. Ahmad and K. A. Shoaib: J. Mater. Sci. Technol., 16 (3)(2000).

Google Scholar

[15] Lin C K, Yang S T.: Engineering Fracture Mechanics, 59 (6) (1998), pp.779-795.

Google Scholar

[16] W. Wallace, J. C. Beddoes, M. C. Demalherbe: Aero. And Space J., 27(1981), pp.222-232.

Google Scholar

[17] Ohnishi and Shiota: Light Metal, 36(1986), pp.647-656.

Google Scholar