Characterization of the Weld Line Zones of an Inertia Friction Welded Superalloy

Article Preview

Abstract:

The Inertia Friction Welding (IFW) process is a high-temperature and high pressure process, with heavy plastic deformation, high power density, fast heating and fast cooling of the weld material. The microstructure produced in the weld line (WL)zones is therefore very different from parent material. A detailed microstructural investigation of the WL zones has been conducted using transmission electron microscopy and scanning electron microscopy. It has been shown that the morphology, energy status and microchemistry of grain boundaries in the WL zones are quite different from those in the parent material. It is also observed that, compared to a bi-modal distribution of intragranular ¢ particles in the parent material, a unimodal distribution of very fine spherical ¢ particles is produced in high density in the WL zones. This work provides a detailed understanding of the physical and chemical changes occurring across the weld line.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

440-445

Citation:

Online since:

July 2011

Export:

[1] J.P. Ferte: J. de Physique IV Vol. 3 (1993), p.1019.

Google Scholar

[2] M. Soucail, A. Moal, L. Naze, E. Massoni, C. Levaillant, in: Superalloys 1992, proceedings of the 7th International Symposium on Superalloys; 1992. TMS. p.847.

DOI: 10.7449/1992/superalloys_1992_847_856

Google Scholar

[3] M. Preuss, J.W.L. Pang, P.J. Withers, and G.J. Baxter: Met. Mat. Trans Vol. 33A (2002), p.3215.

Google Scholar

[4] Z.W. Huang, H.Y. Li, M. Preuss, M. Karadge, P. Bowen, S. Bray and G. Baxter: Met. Mat. Trans. Vol. 38A (2007), p.1608.

Google Scholar

[5] M. Preuss, J. Quinta da Fonseca, I. Kyriakoglou, P.J. Withers and G.J. Baxter, in: Superalloys 2004, edited by K.A. Green, T.M. Pollock, H. Harada, T.F. Howson, R.C. Reed, J.J. Schirra, and S. Walston, TMS Warrendale, PA, (2004), p.477.

DOI: 10.7449/2004/superalloys_2004_477_484

Google Scholar

[6] D. Roder, D. Helm, S. Neft, J. Albrecht, G. Luetjering, in: Proc. 6th Intern. Conf. on Superalloys 718, 625, 706 and Derivatives, Ed. E.A. Loria, TMS, Warrendale, USA, (2005), p.649.

DOI: 10.7449/2005/superalloys_2005_649_658

Google Scholar

[7] H.Y. Li, Z.W. Huang, S. Bray, G. Baxter and P. Bowen: Mater. Sci. Techn. Vol. 23 (2007), p.1408.

Google Scholar

[8] M.F. Henry, Y.S. Yoo, D.Y. Yoon and J. Choi: Metall. Trans 24A (1993), p.1733.

Google Scholar

[9] R.J. Mitchell, H.Y. Li and Z.W. Huang: J Mater Proc Techn Vol. 209 (2008), p.1011.

Google Scholar

[10] Z.W. Huang, H.Y. Li, G.J. Baxter, S. Bray, M Hardy and P. Bowen, unpublished work, (2010).

Google Scholar

[11] R.A. Ricks, A.J. Porter and R.C. Ecob: Acta Metall. Vol. 31(1983), p.43.

Google Scholar

[12] T. Grosdidier, A. Hazotte and A. Simon: Mater Sci Eng Vol. A256 (1998), p.183.

Google Scholar

[13] R.J. Mitchell, M. Preuss, M.C. Hardy and S. Tin: Mater Sci Eng Vol. A423 (2006), p.282.

Google Scholar