Structural Characteristics and Dielectric Properties of Nd-Doped SrTiO3 Ceramics by Introducing Ti Vacancies for Valence Compensation

Article Preview

Abstract:

By introducing Ti vacancies for valence compensation, Nd-doped SrTiO3 ceramics yielding the formula NdxSr1-xTi1-x/4O3 (0≤x≤0.200) were successfully prepared by solid state reaction route in air. All the ceramics had single perovskite structure indexed by XRD profiles, while the symmetry changed from cubic to tetragonal with increasing x value. The grain size markedly decreased from ~30 μm for un-doped SrTiO3 ceramics to ~1 μm for NdxSr1-xTi1-x/4O3 ceramics with x=0.024, which was observed by scanning electron microscopy (SEM). The dielectric properties were measured at 1 kHz in ambient temperature. The dielectric constant was found to be leading to a maximum value of 5410 for as-sintered sample with x=0.104. The breakdown strength of all NdxSr1-xTi1-x/4O3 samples was examined to be higher than 10 kV/mm. These results indicated that Nd-doped SrTiO3 ceramics could be used to fabricate high voltage capacitors with enhanced energy storage density.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 284-286)

Pages:

1435-1441

Citation:

Online since:

July 2011

Export:

Price:

[1] A. Tkach and P.M. Vilarinho, Scandium doped strontium titanate ceramics: structure, microstructure, and dielectric properties, Bol. Soc. Esp. Ceram. 47 (2008) 238-241.

DOI: 10.3989/cyv.2008.v47.i4.183

Google Scholar

[2] T. Shimada, K. Kura and S. Ohtsuki, Dielectric properties and far infrared reflectivity of lanthanum aluminate-strontium titanate ceramics, J. Eur. Ceram. Soc. 26 (2006) 2017-2021.

DOI: 10.1016/j.jeurceramsoc.2005.09.052

Google Scholar

[3] R.C. Neville, B. Hoeneisen and C.A. Mead, Permittivity of strontium titanate, J. Appl. Phys. 43 (1972) 2124-2131.

DOI: 10.1063/1.1661463

Google Scholar

[4] Y.M. Chiang and T. Takagi, Grain-boundary chemistry of barium titanate and strontium titanate: II, origin of electrical barriers in positive-temperature-coefficient thermistors, J. Am. Ceram. Soc. 73 (1990) 3286-3291.

DOI: 10.1111/j.1151-2916.1990.tb06451.x

Google Scholar

[5] D.S. Krueger, R.V. Shende and S.J. Lombardo, Effect of porosity on the electrical properties of Y2O3-doped SrTiO3 internal boundary layer capacitors, J. Appl. Phys. 95 (2004) 4310-4315.

DOI: 10.1063/1.1686903

Google Scholar

[6] Z.Y. Shen, H. Liu, Z. Wu, Z. Yao, M. Cao and D. Luo, Preparation and dielectric properties of Sr (Ti0.95Zr0.05)O3 ceramics doped with CaO-TiO2-SiO2(CTS), Mater. Sci. Eng. B 136 (2007) 11-14.

DOI: 10.1016/j.mseb.2006.06.011

Google Scholar

[7] K.A. Müller and H. Burkard, SrTiO3: An intrinsic quantum paraelectric below 4K, Phys. Rev. B 19 (1979) 3593-3602.

Google Scholar

[8] S. Chao and F. Dogan, BaTiO3-SrTiO3 Layered Dielectrics for Energy Storage, Mater. Lett. (2010).

DOI: 10.1016/j.matlet.2010.12.043

Google Scholar

[9] Q. Zhang, L. Wang, J. Luo, Q. Tang and J. Du, Ba0.4Sr0.6TiO3/MgO Composites with Enhanced Energy Storage Density and Low Dielectric Loss for Solid-State Pulse-Forming Line Int. J. Appl. Ceram. Technol. 7 (2010) E124-E128.

DOI: 10.1111/j.1744-7402.2009.02456.x

Google Scholar

[10] W. Huebner, S.C. Zhang, B. Gilmore, M.L. Krogh, B.C. Schultz, R.C. Pate, L.F. Rinehart and J.M. Lundstrom, High breakdown strength, multilayer ceramics for compact pulsed power applications, 12th IEEE International Pulsed Power Conference 2 (1999) 1242-1245.

DOI: 10.1109/ppc.1999.823749

Google Scholar

[11] A.D. Hilton and B.W. Ricketts, Dielectric properties of Ba1-xSrxTiO3 ceramics, J. Phys. D: Appl. Phys. 29 (1996) 1321-1325.

DOI: 10.1088/0022-3727/29/5/028

Google Scholar

[12] G. Triani, A.D. Hilton and B.W. Ricketts, Dielectric energy storage in PbxSr1-xTiO3 ceramics, J. Mater. Sci.: Mater. Electron. 12 (2001) 17-20.

Google Scholar

[13] S. Nishigaki, K. Murano and A. Ohkoshi, Dielectric Properties of Ceramics in the System (Sr0.50Pb0.25Ca0.25)TiO3-Bi2O3·3TiO2 and Their Applications in a High-Voltage Capacitor, J. Am. Ceram. Soc. 65 (1982) 554-560.

Google Scholar

[14] R.D. Shannon, Acta Crystallographica Section A: Crystal Physics, Diffraction, Theoretical and General Crystallography, Acta Cryst. A32 (1976) 751-767.

Google Scholar

[15] JCPDF: Card No. 35-0734.

Google Scholar

[16] A. Tkach, P.M. Vilarinho and A.L. Kholkin, Structure-microstructure-dielectric tunability relationship in Mn-doped strontium titanate ceramics, Acta Mater. 53 (2005) 5061-5069.

DOI: 10.1016/j.actamat.2005.07.029

Google Scholar

[17] P. Singh, O. Parkash and D. Kumar, Electrical conduction behavior of La and Mn substituted strontium titanate, J. Appl. Phys. 99 (2006) 123704.

DOI: 10.1063/1.2204347

Google Scholar

[18] I. Burn and S. Neirman, Dielectric properties of donor-doped polycrystalline SrTiO3, J. Mater. Sci. 17 (1982) 3510-3524.

DOI: 10.1007/bf00752196

Google Scholar

[19] X. Wang, X. Lu, C. Zhang, X. Wu, W. Cai, S. Peng, H. Bo, Y. Kan, F. Huang and J. Zhu, Oxygen-vacancy-related high-temperature dielectric relaxation in SrTiO3 ceramics, J. Appl. Phys. 107 (2010) 114101.

DOI: 10.1063/1.3430987

Google Scholar

[20] L.C. Walters and R. E. Grace, Diffusion of point defects in strontium titanate, J. Phys. Chem. Solids 28 (1967) 245-248.

DOI: 10.1016/0022-3697(67)90115-1

Google Scholar

[21] F.D. Morrison, A.M. Coats, D.C. Sinclair and A.R. West, Charge Compensation Mechanisms in La-Doped BaTiO3, J. Electroceram. 6 (2001) 219-232.

Google Scholar

[22] F.D. Morrison, D.C. Sinclair and A.R. West, Doping mechanisms and electrical properties of La-doped BaTiO3 ceramics, Int. J. Inorg. Mater. 3 (2001) 1205-1210.

DOI: 10.1016/s1466-6049(01)00128-3

Google Scholar

[23] D. Hennings and G. Rosenstein, X-ray structure investigation of lanthanum modified lead titanate with A-site and B-site vacancies, Mater. Res. Bull. 7 (1972) 1505-1513.

DOI: 10.1016/0025-5408(72)90188-2

Google Scholar

[24] Y. Ye, S.C. Zhang, F. Dogan, E. Schamiloglu, J. Gaudet, P. Castro, M. Roybal, M. Joler and C. Christodoulou, Influence of nanocrystalline grain size on the breakdown strength of ceramic dielectrics, PPC-2003: 14th IEEE International Pulsed Power Conference 1 (2003) 719-722.

DOI: 10.1109/ppc.2003.1277809

Google Scholar