Voltage Reversal during Stacking Microbial Fuel Cells with or without Diodes

Article Preview

Abstract:

Stacking microbial fuel cells (MFCs) in series can provide higher voltage; however, voltage reversal (VR) adversely affects performance of the stacked MFCs. In this paper, diodes are introduced into three stacked MFCs so as to investigate the VR behavior and offer a diodes-based explanation of the VR. The results show that VR occurs in the different stacked MFCs systems. VR of the stacked MFCs connected with forward diodes (~0.37 V) happens in a similar pattern as that without diodes (~0.80 V). However, it only happens at the end of a cycle. This can be analyzed that the resistance of the diodes consume a part of the flowing electrons and the speed of potential changes of the electrodes slows down. Differently, in the stacked MFCs connected with reverse diodes, the voltages of each unit MFC approximately equal their open circuit voltages (~0.75 V), and VR happens in the unit MFC with reverse diodes at the cathode end only. It implies that the imbalanced consumption of electrons in unit MFCs and the potential changes of specific electrode directly result in VR.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 396-398)

Pages:

188-193

Citation:

Online since:

November 2011

Export:

Price:

[1] B. Min, J.R. Kim, S.E. Oh, J.M. Regan, and B.E. Logan: Water Res. Vol. 39 (2005), p.4961

Google Scholar

[2] F. Rezaei, D.F. Xing, R. Wagner, J.M. Regan, T.L. Richard, and B.E. Logan: Appl. Environ. Microbiol. Vol. 75 (2009), p.3673

Google Scholar

[3] S.E. Oh, and B.E. Logan: Water Res. Vol. 39 (2005), p.4673

Google Scholar

[4] S.J. You, Q.L. Zhao, J.Q. Jiang, J.N. Zhang, and S.Q. Zhao: J. Environ. Sci. Health Part A Vol. 41 (2006), p.2721

Google Scholar

[5] B.E. Logan, B. Hamelers, R. Rozendal, U. Schröder, J. Keller, S. Freguia, P. Aelterman, W. Verstraete, and K. Rabaey: Environ. Sci. Technol. Vol. 40 (2006), p.5181

DOI: 10.1021/es0605016

Google Scholar

[6] S.A. Cheng, H. Liu, and B.E. Logan: Environ. Sci. Technol. Vol. 40 (2006), p.2426

Google Scholar

[7] B.E. Logan, S.A. Cheng, V. Watson, and G. Estadt: Environ. Sci. Technol. Vol. 41 (2007), p.3341

Google Scholar

[8] Y.Z. Fan, E. Sharbrough, and H. Liu: Environ. Sci. Technol. Vol. 42 (2008), p.8101

Google Scholar

[9] C.H. Feng, L. Ma, F.B. Li, H. Mai, X. Lang, and S. Fan: Biosens. Bioelectron. Vol. 25 (2010), p.1516

Google Scholar

[10] Y.J. Feng, Q. Yang, X. Wang, and B.E. Logan: J. Power Sources Vol. 195 (2010), p.1841

Google Scholar

[11] N.W. Zhu, X. Chen, T. Zhang, P.X. Wu, P. Li, and J.H. Wu: Bioresour. Technol. Vol. 102 (2011), p.422

Google Scholar

[12] P. Aelterman, K.Rabaey, H.T. Pham, N. Boon, and W. Verstraete: Environ. Sci. Technol. Vol. 40 (2006), p.3388

DOI: 10.1021/es0525511

Google Scholar

[13] S.E. Oh, and B.E. Logan: J. Power Sources Vol. 167 (2007), p.11

Google Scholar

[14] H. Liu, and B.E. Logan: Environ. Sci. Technol. Vol. 38 (2004), p.4040

Google Scholar

[15] D.R. Lovley, and E.J.P. Phillips: Appl. Environ. Microbiol. Vol. 54 (1988), p.1472

Google Scholar