Biodegradable Magnesium Alloys: A Review of Material Development and Applications

Article Preview

Abstract:

Magnesium Based Alloys Possess a Natural Ability to Biodegrade due to Corrosion when Placed within Aqueous Substances, which Is Promising for Cardiovascular and Orthopaedic Medical Device Applications. these Materials Can Serve as a Temporary Scaffold when Placed in Vivo, which Is Desirable for Treatments when Temporary Supportive Structures Are Required to Assist in the Wound Healing Process. the Nature of these Materials to Degrade Is Attributed to the High Oxidative Corrosion Rates of Magnesium. in this Review, a Summary Is Presented for Magnesium Material Development, Biocorrosion Characteristics, as Well as a Biological Translation for these Results.

You might also be interested in these eBooks

Info:

Pages:

25-39

Citation:

Online since:

February 2012

Export:

Price:

[1] T. Pollock. Weight Loss with Magnesium Alloys, Science, 2010; 328: 986-987.

Google Scholar

[2] R. Bonan, A. W Asgar. Biodegradable Stents - Where are we in 2009, US Cardiology 2009; 6 (1): 81-4.

DOI: 10.15420/usc.2009.6.1.81

Google Scholar

[3] M. Staiger, A. Pietak, J. Huadamai, G. Dias. Magnesium and its Alloys as Orthopaedic Biomaterials: a review, Biomaterials, 2006; 27 (9): 1728-34.

DOI: 10.1016/j.biomaterials.2005.10.003

Google Scholar

[4] F. Witte, J. Fischer, J. Nellesen, H. A Crostack, V. Kaese, A. Pisch, F. Beckmann, H. Windhagen. In Vitro and In Vivo Corrosion Measurements of Magnesium Alloys, Biomaterials, 2006; 27 (7): 1013-8.

DOI: 10.1016/j.biomaterials.2005.07.037

Google Scholar

[5] B. A Saw. Corrosion Resistance of Magnesium Alloys, ASM Handbook, 2003; 13 (A).

Google Scholar

[6] G. Song. Control of Biodegradation and Biocompatible Magnesium Alloys, Corrosion Science, 2007; 49 (4): 1696-1701.

DOI: 10.1016/j.corsci.2007.01.001

Google Scholar

[7] F. Witte, V. Kaese, H. Haferkamp, E. Switzer, A. Meyer-Lindenberg, C.J. Wirth, H. Windhagen. In Vivo Corrosion of Four Magnesium Alloys and the Associated Bone Response, Biomaterials, 2005; 26 (17): 3557-63.

DOI: 10.1016/j.biomaterials.2004.09.049

Google Scholar

[8] G. L Song, A. Atrens. Corrosion Mechanisms of Magnesium Alloys, Advanced Engineering Materials, 1999; 1 (1): 11-33.

Google Scholar

[9] B. Hueblein, R. Rohde, V. Kaese, M. Niemeyer, W. Hartung, A. Haverich. Biocorrosion of Magnesium Alloys: A New Principle in Cardiovascular Implant Technology, Heart, 2003; 89 (6): 651-6.

DOI: 10.1136/heart.89.6.651

Google Scholar

[10] Y. Chen, Y. Song, S. Zhang, J. Li, C. Zhao, X. Zhang. Interaction between a High Purity Magnesium Surface and PCL and PLA Coatings During Dynamic Degradation, Biomedical Materials, 2011; 6 (2): 1-8.

DOI: 10.1088/1748-6041/6/2/025005

Google Scholar

[11] R. Waksman, R. Pakala, P. K Kuchulakanti, R. Baffour, D. Hellinga, R. Seabron, F. O Tio, E. Wittchow, S. Hartwig, C. Harder, R. Rohde, B. Heublein, A. Andreae, K. H Waldmann, A. Haverich. Safety and Efficacy of Bioasborbable Magnesium Alloy Stents in Porcine Coronary Arteries, Catheterization and Cardiovascular Interventions, 2006; 68 (4): 607-17.

DOI: 10.1002/ccd.20727

Google Scholar

[12] M. Maeng, L. O Jensen, E. Falk, H. R Andersen, L. Thuesen. Negative Vascular Remodelling After Implantation of Bioabsorbable Magnesium Alloy Stents in Porcine Arteries: A Randomized Comparison with Bare-Metal Stent and Sirolimus-Eluting Stents, Heart, 2009; 95 (3): 241-6.

DOI: 10.1136/hrt.2007.139261

Google Scholar

[13] R. Waksman, R. Erbel, C. Di Mario, J. Bartunek, B. de Bruyne, F.R. Eberli, P. Erne, M. Haude, M. Horrigan, C. Ilsley, D. Böse, H. Bonnier, J. Koolen, T. F Lüscher, N.J. Weissman. Early and Long-Term Intravascular Ultrasound and Angiographic Findings After Bioabsorbable Magnesium Stent Implantation in Human Coronary Arteries. JACCC Cardiovascular Intervention, 2009; 2 (4): 312-20.

DOI: 10.1016/j.jcin.2008.09.015

Google Scholar

[14] R. Erbel, M. C Di Mario, J. Bartunek, J. Bonnier, B. de Bruyne, F. R Eberli, P. Erne, M. Haude, B. Heublein, M. Horrigan, C. Ilsley, D. Böse, J. Koolen, T. F Lüscher, N. Weissman, R. Waksman. Temporary Scaffolding of Coronary Arteries with Bioabsorbable Magnesium Stents: A Prospective Non-Randomized Multi-Centre Trial. Lancet, 2007; 369 (9576): 1869-75.

DOI: 10.1016/s0140-6736(07)60853-8

Google Scholar

[15] C. Castellani, R. A Lindtner, P. Hausbrandt, E. Tschegg, S. E Stanzl-Tschegg, G. Zanoni, S. Beck, A. M Weinberg. Bone-Implant Interface Strength and Osseointegration: Biodegradable Magnesium Alloys versus Standard Titanium Control. Acta Biomaterialia, 2011; 7 (1): 432-40.

DOI: 10.1016/j.actbio.2010.08.020

Google Scholar

[16] G. D Zhang, J. J Huang, K. Yang, B. C Zhang, H. J Ai. Experimental Study of In Vivo Implantation of Magnesium Alloy at Early Stage. Acta Metallurgica Sinica, 2007; 43 (11): 1186-90.

Google Scholar

[17] E. Zhang, L. Xu, G. Yu, F. Pan, K. Yang. In Vivo Evaluation of Biodegradable Magnesium Alloy Bone Implant in the First 6 Months Implantation. Journal of Biomedical Material Research: Part A, 2009; 90 (3): 882-93.

DOI: 10.1002/jbm.a.32132

Google Scholar

[18] H. X Wang, S. K Guan, X. Wang, C. X Ren, L. G Wang. In Vitro Degradation and Mechanical Integrity of Mg-Zn-Ca Alloy Coated with Ca-Deficient Hydroxyapetite by the Pulse Electrodeposition Process. Acta Biomaterialia. 2010; 6 (5): 1743-8.

DOI: 10.1016/j.actbio.2009.12.009

Google Scholar

[19] J. Zhang, F. S Pan, Z. Guo. Development of a T-Type Mg-Zn-Al Alloy: An Investigation of the Microstructure and Solidification Characteristics. Materials Science Forum, 2007; 546-549: 123-8.

DOI: 10.4028/www.scientific.net/msf.546-549.123

Google Scholar

[20] L. Lin, F. Wang, L. Yang, L. Chen, L. Zheng. Solute Pre-Precipitation and Phase Transformation in an Mg-Zn-Gd Alloy. Advanced Materials Research, 2010; 152-153: 864-7.

DOI: 10.4028/www.scientific.net/amr.152-153.864

Google Scholar

[21] Z. G Huan, M. A Leeflang, J. Zhou, L. E Fratila-Apatichei, J. Duszczyk. In Vitro Degradation Behaviour and Cytocompatibility of Mg-Zn-Zr Alloys. Journal of Material Science: Materials in Medicine, 2010; 21 (9): 2623-35.

DOI: 10.1007/s10856-010-4111-8

Google Scholar

[22] J. Wang, L. Wang, S. Guan, S. Zhu, C. Ren, S. Hou. Microstructure and Corrosion Properties of as Sub-Rapid Solidification Mg-Zn-Y-Nd Alloy in Dynamic Simulated Body Fluid for Vascular Stent Application. Journal of Material Science: Materials in Medicine. 2010; 21 (7): 2001-8.

DOI: 10.1007/s10856-010-4063-z

Google Scholar

[23] W. D Callister Jr. Materials Science and Engineering: An Introduction, 7th Edition. John Wiley & Sons. (2006).

Google Scholar

[24] D. R Askeland, P. P Phule. The Science and Engineering of Materials. Cengage Learning, 5th Edition. Thomson. (2006).

Google Scholar

[25] F. Witte, N. Hort, C. Vogt, S. Cohen, K. Kainer, R. Willumeit, F. Feyerabend. Degradable Biomaterials Based on Magnesium. Current Opinion in Solid State and Material Science, 2008; 12 (5-6): 63-72.

DOI: 10.1016/j.cossms.2009.04.001

Google Scholar

[26] R. W Revie. Ulig's Corrosion Handbook. 2nd Edition. NY, USA: John Wiley & Sons, (2000).

Google Scholar

[27] M. Ahamed. Toxic Response of Nickel Nanoparticles in Human Lung Epithelial A549 Cells. Toxicology In Vivo. 2011, 25(4): 930-6.

DOI: 10.1016/j.tiv.2011.02.015

Google Scholar

[28] P. Viswanadham, P. Singh. Failure Modes and Mechanisms in Electronic Packages. NY, USA: Chapman & Hall, (1998).

Google Scholar

[29] R. W Murray, J. E Hillis. Magnesium Finishing: Chemical Treatment and Coating Practices, SAE Technical Paper Series #900791, Detroit (1990).

DOI: 10.4271/900791

Google Scholar

[30] J. E Hillis, R. W Murray. Finishing Alternatives for High Purity Magnesium Alloys, SDCE 14th International Die Casting Congress and Exposition, Toronto 1987, Paper # G-T87-003.

Google Scholar

[31] A. L Olsen. Corrosion Characteristics of New Magnesium Alloys, Translation of Paper presented at the Bauteil '91, DVM Berlin 1991, 1-21.

Google Scholar

[32] J. Hill, H. Petrucci. General Chemistry: An Integrated Approach. 2nd edition. Upper Saddle River, NJ: Prentice Hall. (1999).

Google Scholar

[33] G. Tortora, S. Grabkowski. Principles of Anatomy and Physiology, 10th edition, Wiley, (2002).

Google Scholar

[34] A. Roy, D. Fleming, S. Gordon. Effect of Chloride Concentration and pH on Pitting Corrosion of Waster Package Container Materials, 190th Meeting of the Electrochemical Society, INC. December 1996, Lawrence Livermore National Laboratory.

Google Scholar

[35] A. Davenport, A. J Aldykiewics, H. S Isaacs. XANES Studies of Chromate Replacements in Oxide Films of Aluminium. In X-Ray Methods in Corrosion and Interfacial Chemistry. 1992: The Electrochemical Society.

Google Scholar

[36] M. Kendig, S. Jeanjaquet, H. Jensen. Non-Chromate-Inhibiting Pigments for Aluminium 2024-T3. Electrochemical Society. 1995, Chicago, IL, USA: Electrochemical Society.

Google Scholar

[37] C. S Jeffcoate, H. S Isaacs, A. J Aldykiewicz Jr, M. P Ryan. Journal of the Electrochemical Society, 2000; 147 (2): 540-7.

Google Scholar

[38] B. Craig, D. Anderson. Handbook of Corrosion Data, ASM International. 2nd Edition, 1995; 998.

Google Scholar

[39] Z. Yang, Z. P Li, J. X Zhang, G. W Lorimer, J. Robson. Review on Research and Development of Magnesium Alloys. Acta Metallurgica Sinica. 2008; 21 (5): 313-28.

DOI: 10.1016/s1006-7191(08)60054-x

Google Scholar

[40] G. L Makar, J. Kruger. Corrosion of Magnesium, International Materials Reviews, 1993, 38 (3): 138-53.

Google Scholar

[41] R. W Revie, H. Uhlig. Corrosion and Corrosion Control. 2008. Wiley-Interscience.

Google Scholar

[42] J. A Crowley, D. A Traynor, D. C Weatherburn. Enzymes and proteins containing manganese: an overview. 1999, 209-257. In A. Sigel, H. Sigel (ed. ), Manganese and its role in biological processes. Metal ions in biological systems, vol. 37. Marcel Dekker, New York, N. Y.

DOI: 10.1201/9781482289893-18

Google Scholar

[43] C. L Keen, J. L Ensunsa, M. S Clegg. Manganese metabolism in animals and humans including the toxicity of manganese, 1999, 90-114. In A. Sigel, H. Sigel (ed. ), Manganese and its role in biological processes. Metal ions in biological systems, vol. 37. Marcel Dekker, New York, N. Y.

DOI: 10.1201/9781482289893-14

Google Scholar

[44] V. C Culotta, M. Yang, M. Hall. Manganese Transport and Trafficking: Lessons Learned from Saccharomyces cerecvisiae. Eukaryotic Cell. 2005; 4 (7): 1159-65.

DOI: 10.1128/ec.4.7.1159-1165.2005

Google Scholar

[45] G. Cypher. Copper and Human Health and Safety, International Copper Association Limited, 260 Madison Avenue, New York, NY 10016, USA.

Google Scholar

[46] D. Strausak, J. F Mercer, H. H Dieter, W. Stremmel, G. Multhaup. Copper in Disorders with Neurological Symptoms: Alzheimer's, Menkes, and Wilson Disease. Brain Research Bulletin, 2001; 55 (2): 175-8.

DOI: 10.1016/s0361-9230(01)00454-3

Google Scholar

[47] N. Leone, D. Courbon, P. Ducimetiere, M. Zureik. Zinc, Copper, and Magnesium, and Risks for All-Cause, Cancer, and Cardiovascular Mortality. Epidemiology, 2006; 17 (3): 308-14.

DOI: 10.1097/01.ede.0000209454.41466.b7

Google Scholar

[48] C. Suman. Creep of Diecast Magnesium Alloys AZ91D and AM60B. SAE Technical Paper No. 910416, Warrendale, PA, Society of Automotive Engineering, (1991).

DOI: 10.4271/910416

Google Scholar

[49] P. A Mackowiak, S. S Wasserman, M. M Levine. A critical appraisal of 98. 6 degrees F, the upper limit of the normal body temperature, and other legacies of Carl Reinhold August Wunderlich. JAMA. 1992; 268 (12): 1578–80.

DOI: 10.1001/jama.1992.03490120092034

Google Scholar

[50] W. A Banks, A. J Kastin. Aluminium-induced neurotoxicity: alterations in membrane function at the blood-brain barrier. Neuroscience Biobehaviour Review, 1989; 13 (1): 47–53.

DOI: 10.1016/s0149-7634(89)80051-x

Google Scholar

[51] P. D Darbre. Metalloestrogens: an emerging class of inorganic xenoestrogens with potential to add to the oestrogenic burden of the human breast. Journal of Applied Toxicology, 2006; 26 (3): 191-7.

DOI: 10.1002/jat.1135

Google Scholar

[52] V. Rondeau, H. Jacqmin-Gadda, D. Commenges, C. Helmer, J. F Dartigues. Aluminium and Silica in Drinking Water and the Risk of Alzheimer's Disease or Cognitive Decline: Findings From 15-Year Follow-up of the PAQUID Cohort. American Journal of Epidemiology, 2008; 169 (4): 489–96.

DOI: 10.1093/aje/kwn348

Google Scholar

[53] S. Yumoto, S. Kakimi, A. Ohsaki, A. Ishikawa. Demonstration of aluminium in amyloid fibers in the cores of senile plaques in the brains of patients with Alzheimer's disease. Journal of Inorganic Biochemistry, 2009; 103 (11): 1579-84.

DOI: 10.1016/j.jinorgbio.2009.07.023

Google Scholar

[54] F. W Bach, M. Schaper, C. Jaschik. Influence of Lithium on hcp Magnesium Alloys, Material Science Forum, 2003 (419-422); 1037.

DOI: 10.4028/www.scientific.net/msf.419-422.1037

Google Scholar

[55] J. Y Rho, R. B Ashman, C. H Turner. Young's Modulus of Trabecular and Cortical Bone Material: Ultrasonic and Microtensile Measurements. Journal of Biomechanics, 1993; 26 (2): 111-9.

DOI: 10.1016/0021-9290(93)90042-d

Google Scholar

[56] C. K Seal, K. Vince, M. A Hodgson. Biodegradable Surgical Implants Based on Magnesium Alloys - A Review of Current Research. Material Science and Engineering, 2009; 4: 1-5.

DOI: 10.1088/1757-899x/4/1/012011

Google Scholar

[57] B. Zberg, P. J Uggowitzer, J. F Loffler. MgZnCa Glasses without Clinically Observable Hydrogen Evolution for Biodegradable Implants. Nature Materials-Letters, 2009; 8: 887- 91.

DOI: 10.1038/nmat2542

Google Scholar

[58] M. R Broadley, P. J White, J. P Hammond, I. Zelko, A. Lux. Zinc in plants, New Phytologist, 2007; 173 (4): 677-702.

DOI: 10.1111/j.1469-8137.2007.01996.x

Google Scholar

[59] A. S Prasad. Zinc in human health: effect of zinc on immune cells, Molecular Medicine, 2008; 14 (5-6): 353-7.

Google Scholar

[60] B. Sugarman. Zinc and infection, Review of Infectious Disease. 1983, 5 (1): 137-47.

Google Scholar

[61] F. A Cotton, G. Wilkinson. Advanced Inorganic Chemistry, Wiley, 1999, 6th Edition, 625-9.

Google Scholar

[62] E. G Brandt, M. Hellgren, T. Brinck, T. Bergman, O. Edholm. Molecular dynamics study of zinc binding to cysteines in a peptide mimic of the alcohol dehydrogenase structural zinc site. Physical Chemistry Chemical Physics, 2009; 11 (6): 975–83.

DOI: 10.1039/b815482a

Google Scholar

[63] D. N Bothwell, E. A Mair, B. B Cable. Chronic Ingestion of a Zinc-Based Penny, Paediatrics, 2003; 111 (3): 689-91.

DOI: 10.1542/peds.111.3.689

Google Scholar

[64] J. C Gao, S. Wu, L. Qiao, Y. Wang. Corrosion Behaviour of Mg and Mg-Zn Alloys in Simulated Body Fluid, Transactions of Nonferrous Metals Society of China, 2008; 18 (3): 588-592.

DOI: 10.1016/s1003-6326(08)60102-8

Google Scholar

[65] E. McCafferty. Introduction to Corrosion Science. Springer, USA. 2010, 1st Edition.

Google Scholar

[66] G. Song, A. Atrens, D. St John, J. Nairn, Y. Li. The electrochemical corrosion of pure magnesium in 1N NaCl. Corrosion Science. 1997; 39 (5): 855-75.

DOI: 10.1016/s0010-938x(96)00172-2

Google Scholar

[67] H. A Robinson, Trans. Electrochem. Soc. 1958, 90, 485.

Google Scholar

[68] L. Wang, B. P Zhang, T. Shinohara. Corrosion Behaviour of AZ91Magnesium Alloy in Dilute NaCl Solutions. Materials and Design, 2010; 31 (2): 857-863.

DOI: 10.1016/j.matdes.2009.07.049

Google Scholar

[69] G. Song, A. Atrens, Y. Li, B. Zhang. Negative Difference Effect of Magnesium. Proc. Corrosion and Prevention, Australasian Corrosion Association, Inc., 1997, p.38.

Google Scholar

[70] R. Baboian. Corrosion Tests and Standards: Application and Interpretation, ASTM International. 2005, 2nd Edition; 20.

Google Scholar

[71] M. Orazem, B. Tribollet. Electrochemical Impedance Spectroscopy. Wiley-Interscience, USA, (2008).

Google Scholar

[72] ASTM Standard G61, Standard Test Method for Conducting Cyclic Potentiodynamic Polarization Measurements for Localized Corrosion Susceptibility of Iron-, Nickel-, or Cobalt-Based Alloys, Annual book of ASTM Standards, Philadelphia, PA: ASTM.

DOI: 10.1520/g0061-86r03

Google Scholar

[73] R. Kossowsky. Surface Modification Engineering: Fundamental Aspects. Volume 1, CRC Press, 1989, p.389.

Google Scholar

[74] A. Hamdy, E. El-Shenawy, T. El-Bitar. Electrochemical Impedance Spectroscopy Study of the Corrosion Behaviour of Some Niobium Bearing Stainless Steels in 3. 5% NaCl. International Journal of Electrochemical Science, 2006; 1: 171-180.

DOI: 10.1016/j.matlet.2006.10.043

Google Scholar

[75] W. D Müller, M. L Nascimento, M. Zeddies, M. Córsico, L. M Gassa, M.A. F Lorenzo de Mele. Magnesium and its Alloys as Degradable Biomaterials. Corrosion Studies Using Potentiodynamic and EIS Electrochemical Techniques. Materials Research, 2007; 10 (1): 5-10.

DOI: 10.1590/s1516-14392007000100003

Google Scholar

[76] B. D Ratner, A. S Hoffman, F. J Schoen, J. E Lemons. Biomaterials Science: An Introduction to Materials in Science. Academic Press, 2004, 2nd Edition; 851.

Google Scholar

[77] R. E White, J. O'M Bockris, B. E Conway. Electrochemical Aspects of Stress Corrosion Cracking. Modern Aspects of Electrochemistry. 1995; 27: 234.

Google Scholar

[78] J. O'M Bockris, A. Reddy. Modern Electrochemistry 2B. Springer, USA, (2000).

Google Scholar

[79] N. Hassiotis, G. Petropoulos. Influence of Surface Roughness on Corrosion Resistance of Turned Carbon Steel Parts. International Journal of Machining and Machinability of Materials. 2006; 1: 202-212.

DOI: 10.1504/ijmmm.2006.011067

Google Scholar

[80] D. Landolt. Corrosion and Surface Chemistry of Materials, CRC Press, USA, (2007).

Google Scholar

[81] R. Williams, D. Williams. Albumin Adsorption on Metal Surfaces. Biomaterials, 1988; 9: 206-212.

DOI: 10.1016/0142-9612(88)90085-3

Google Scholar

[82] D. Williams, I. Askill, R. Smith. Protein Adsorption and Desorption Phenomena on Clean Metal Surfaces. Journal Biomedical Materials Research, 1985; 19: 313-320.

DOI: 10.1002/jbm.820190312

Google Scholar