Synthesis of Indole Derivatives Using Biosynthesized ZnO-CaO Nanoparticles as an Efficient Catalyst

Article Preview

Abstract:

The principal aim of this research is using biosynthesized ZnO-CaO nanoparticles (NPs) for preparation of indole derivatives. ZnO-CaO NPs have been prepared using Zn(CH3COO)2 and eggshell waste powder in solvent-free conditions. Morphology and structure of NPs were determined by FT-IR, X-ray diffraction (XRD), transmission electron microscopy (TEM), scanning electron microscopy (SEM), and energy dispersive spectra (EDS). It was used as a highly efficient catalyst for the synthesis of indole derivatives. Some indole derivatives were synthesized by the reaction of indole, formaldehyde, aromatic and aliphatic amines in the presence of ZnO-CaO NPs (5 mol%) in ethanol under reflux conditions. The assigned structure was further established by CHN analyses, NMR, and FT-IR spectra. Because of excellent capacity, the exceedingly simple workup and good yield, eco-friendly catalyst ZnO-CaO NPs were proved to be a good catalyst for this reaction.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

61-71

Citation:

Online since:

February 2021

Export:

Price:

* - Corresponding Author

[1] B. Vinay Kumar, H.S. Bhojya Naik, D. Girija, B. Vijaya Kumar, ZnO nanoparticle as catalyst for efficient green one-pot synthesis of coumarins through Knoevenagel condensation, J. Chem. Sci. 123 (2011) 615-621.

DOI: 10.1007/s12039-011-0133-0

Google Scholar

[2] H. Sachdeva, R. Saroj, ZnO Nanoparticles as an efficient, heterogeneous, reusable, and ecofriendly catalyst for four-component one-pot green synthesis of pyranopyrazole derivatives in water, Scientific World J. 2013 (2013) 680671.

DOI: 10.1155/2013/680671

Google Scholar

[3] M. Haghighi, K. Nikoofar, Z. Ahmadvand, Growth of wurtzite ZnO nanorods using different capping agents: Characterization, morphology, and investigation the catalytic activity in some oxindoles and indolyl organics, Nanochem. Res. 3 (2018) 131-141.

Google Scholar

[4] M. Hosseini-Sarvari, Catalytic organic reactions on ZnO, Curr. Org. Synth. 10 (2013) 697-723.

DOI: 10.2174/1570179411310050003

Google Scholar

[5] M.C.J. Bradford, M.V. Konduru, D.X. Fuentes, Characterization and application of Cr2O3/ZnO catalysts for methanol synthesis. Fuel Process Technol. 83 (2003) 11-25.

DOI: 10.1016/s0378-3820(03)00080-8

Google Scholar

[6] M. Zangeneh, H. A. Nedaei, H. Mozdarani, A. Mahmoudzadeh, S. Kharrazi, M. Salimi, The role and mechanisms of zinc oxide nanoparticles in the improvement of the radiosensitivity of lung cancer cells in clinically relevant megavoltage radiation energies in-vitro, Nanomed. J. 6 (2019) 276-290.

DOI: 10.1016/j.msec.2019.109739

Google Scholar

[7] N. Wiesmann, W. Tremel, J. Brieger, Zinc oxide nanoparticles for therapeutic purposes in cancer medicine, J. Mater. Chem. B, 8 (2020) 4973-4989.

DOI: 10.1039/d0tb00739k

Google Scholar

[8] M. Martínez-Carmona, Y. Gun'ko, I.D.M. Vallet-Reg, ZnO nanostructures for drug delivery and theranostic applications, Nanomaterials, 8 (2018), 268.

DOI: 10.3390/nano8040268

Google Scholar

[9] B. Lallo da Silva, B.L. Caetano, B.G. Chiari-Andréo, R.C.L.R. Pietro, L.A. Chiavacci, Increased antibacterial activity of ZnO nanoparticles: Influence of size and surface modification, Colloids Surf. B. Biointerfaces, 177 (2019) 440-447.

DOI: 10.1016/j.colsurfb.2019.02.013

Google Scholar

[10] Z. Emami-Karvani, P. Chehrazi, Antibacterial activity of ZnO nanoparticle on gram positive and gram-negative bacteria, Afr. J. Microbiol. Res. 5 (2011) 1368-1373.

DOI: 10.5897/ajmr10.159

Google Scholar

[11] M. Gupta, R.S. Tomar, S. Kaushik, R.K. Mishra, D. Sharma, Effective antimicrobial activity of green ZnO nano particles of Catharanthus roseus, Front. Microbiol. 9 (2018) (2030).

DOI: 10.3389/fmicb.2018.02030

Google Scholar

[12] R. Ondo-Ndong, G. Ferblantier, F. Pascal-Delannoy, A. Boyer, A. Foucaran, Electrical properties of zinc oxide sputtered thin films, Microelectronics Journal, 34 (2003) 1087-1092.

DOI: 10.1016/s0026-2692(03)00198-8

Google Scholar

[13] E. Muchuweni, T.S. Sathiaraj, H. Nyakotyo, Synthesis and characterization of zinc oxide thin films for optoelectronic applications, Heliyon, 3 (2017) e00285.

DOI: 10.1016/j.heliyon.2017.e00285

Google Scholar

[14] K.M. Huang, C.L. Ho, H.J. Chang, M.C. Wu, Fabrication of inverted zinc oxide photonic crystal using sol-gel solution by spin coating method, Nanoscale Research Letters, 8 (2013) 306-310.

DOI: 10.1186/1556-276x-8-306

Google Scholar

[15] S.S. Mousavi, B. Sajad, M.H. Majlesara, Fast response ZnO/PVA nanocomposite-based photodiodes modified by graphene quantum dots, Materials & Design, 162(2019) 249-255.

DOI: 10.1016/j.matdes.2018.11.037

Google Scholar

[16] P. Kumar Shrestha, Y.T. Chun, D. Chu, A high-resolution optically addressed spatial light modulator based on ZnO nanoparticles, Light Sci. Appl. 4 (2015) e259.

DOI: 10.1038/lsa.2015.32

Google Scholar

[17] K.B. Kim, Y.W. Kim, S.K. Lim, T.H. Roh, D.Y. Bang, S.M. Choi, D.S. Lim, Y.J. Kim, S.H. Baek, M.K. Kim, H.S. Seo, M.H. Kim, H.S. Kim, J.Y. Lee, S. Kacew, B.M. lee, Risk assessment of zinc oxide, a cosmetic ingredient used as a UV filter of sunscreens, J. Toxicol. Environ. Health B Crit. Rev. 20 (2017), 155-182.

DOI: 10.1080/10937404.2017.1290516

Google Scholar

[18] V. Sogne, F. Meier, T. Klein, C. Contado, Investigation of zinc oxide particles in cosmetic products by means of centrifugal and asymmetrical flow field-flow fractionation, Journal of Chromatography A, 1515 (2017) 196-208.

DOI: 10.1016/j.chroma.2017.07.098

Google Scholar

[19] P. Singh, A. Nanda, Enhanced sun protection of nano-sized metal oxide particles over conventional metal oxide particles: An in vitro comparative study, Int J Cosmetic Sci. 36 (2014) 273-283.

DOI: 10.1111/ics.12124

Google Scholar

[20] T.G. Smijs, S. Pavel, Titanium dioxide and zinc oxide nanoparticles in sunscreens: focus on their safety and effectiveness, Nanotechnol Sci Appl. 4 (2011) 95-112.

DOI: 10.2147/nsa.s19419

Google Scholar

[21] M. Sathya, A. Claude, P. Govindasamy, K. Sudha, Growth of pure and doped ZnO thin films for solar cell applications, Adv. Appl. Sci. Res. 3 (2012) 2591-2598.

Google Scholar

[22] F. Rahman, Zinc oxide light-emitting diodes: a review, Optical Engineering, 58 (2019) 010901.

Google Scholar

[23] K. Liu, M. Sakurai, M. Aono, ZnO-based ultraviolet photodetectors, Sensors, 10 (2010) 8604- 8634.

DOI: 10.3390/s100908604

Google Scholar

[24] V. Galstyan, E. Comini, C. Baratto, G. Faglia, G. Sberveglieri, Nanostructured ZnO chemical gas sensors, Ceramics International, Ceram. Int. 41B (2015) 14239-14244.

DOI: 10.1016/j.ceramint.2015.07.052

Google Scholar

[25] R. Kumar, O. Al-Dossary, G. Kumar, A. Umar, Zinc oxide nanostructures for NO2 gas–sensor applications: A review, Nano-Micro Lett. 7(2015) 97-120.

DOI: 10.1007/s40820-014-0023-3

Google Scholar

[26] B. Chatterjee, A. Bandyopadhyay, Development of zinc oxide sensors for detecting ammonia gas in the ambient air: A critical short review, Environmental Quality Management, 26 (2016) 89-104.

DOI: 10.1002/tqem.21483

Google Scholar

[27] X. Chen, Z. Wu, D. Liu, G. Zhenzhen, Preparation of znO photocatalyst for the efficient and rapid photocatalytic degradation of azo dyes. Nanoscale Res. Lett. 12 (2017) 143-153.

DOI: 10.1186/s11671-017-1904-4

Google Scholar

[28] M. Darroudi, Z. Sabouri, R. Kazemi Oskuee, A. Khorsand Zake, H. Kargar, M.H.N. Abd Hamid, Sol–gel synthesis, characterization, and neurotoxicity effect of zinc oxide nanoparticles using gum tragacanth, Ceram. Int. 39 (2013) 9195-9199.

DOI: 10.1016/j.ceramint.2013.05.021

Google Scholar

[29] S. Jurablu, M. Farahmandjou, T.P. Firoozabadi, Sol-gel synthesis of zinc oxide (ZnO) nanoparticles: study of structural and optical, J. Sci. I.R. Iran, 26 (2015) 281-285.

Google Scholar

[30] Mebrahtu Hagos Kahsay, Dharmasoth RamaDevi, Y. Pavan Kumar, B. Sathish Mohan, Aschalew Tadesse, Gangarao Battu, K. Basavaiah, Synthesis of silver nanoparticles using aqueous extract of Dolichos lablab for reduction of 4-Nitrophenol, antimicrobial and anticancer activities, OpenNano, 3 (2018) 28-37.

DOI: 10.1016/j.onano.2018.04.001

Google Scholar

[31] H. Mohd Yusof, R. Mohamad, U.H. Zaidan, N.A. Abdol Rahman. Microbial synthesis of zinc oxide nanoparticles and their potential application as an antimicrobial agent and a feed supplement in animal industry: a review, J. Animal. Sci. Biotechnol. 10 (2019) 57.

DOI: 10.1186/s40104-019-0368-z

Google Scholar

[32] S. Scaccia, G. Vanga, D.M. Gattia, S. Stendardo, Preparation of CaO-based sorbent from coal fly ash cenospheres for calcium looping process, Journal of Alloys and Compounds, J. Alloys Compd. 801 (2019) 123-129.

DOI: 10.1016/j.jallcom.2019.06.064

Google Scholar

[33] M. Minaria, Preparation and characterization of calcium oxide from crab shells (Portunus pelagicus) and its application in biodiesel synthesis of waste cooking oil, Sci. Technol. Indonesia, 1 (2016) 1-7.

DOI: 10.26554/sti.2016.1.1.1-7

Google Scholar

[34] V. Shankar, R. Jambulingam, Waste crab shell derived CaO impregnated Na-ZSM-5 as a solid base catalyst for the transesterification of neem oil into biodiesel, Sustain. Environ. Res. 27 (2017) 273-278.

DOI: 10.1016/j.serj.2017.06.006

Google Scholar

[35] R. Abd Rashid, R. Shamsudin, M.A. Abdul Hamid, A. Jalar, Low temperature production of wollastonite from limestone and silica sand through solid-state reaction, J. Asian Ceram. Soc. 2 (2014) 77-81.

DOI: 10.1016/j.jascer.2014.01.010

Google Scholar

[36] J.H. Seo, S.M. Park, B.J. Yang, J.G. Jang, Calcined oyster shell powder as an expansive additive in cement mortar, Materials, 12 (2019) 1322.

DOI: 10.3390/ma12081322

Google Scholar

[37] A. Lesbani, Y. Susi, M. Verawaty, R. Mohadi, Calcium oxide decomposed from chicken's and goat's bones as catalyst for converting discarded cooking oil to be biodiesel, Aceh Int. J. Sci. Technol. 4 (2015), 7-13.

DOI: 10.13170/aijst.4.1.2124

Google Scholar

[38] S. Trisupakitti, C. Ketwong, W. Senaju, C. Phukapak, S. Wiriyaumpaiwong, Golden apple cherry snail shell as catalyst for heterogeneous transesterification of biodiesel, Brazilian Journal of Chemical Engineering, 35 (2018) 1283-1291.

DOI: 10.1590/0104-6632.20180354s20170537

Google Scholar

[39] R. Mohadi, K. Anggraini, F. Riyanti, A. Lesbani, Preparation calcium oxide (CaO) from chicken eggshells, Sriwijaya Journal of Environment, 1 (2016) 32-35.

DOI: 10.22135/sje.2016.1.2.32-35

Google Scholar

[40] N.B. Singh, N.P. Singh, Formation of CaO from thermal decomposition of calcium carbonate in the presence of carboxylic acids, J. Therm. Anal. Calorim. 89 (2007) 159-162.

DOI: 10.1007/s10973-006-7565-7

Google Scholar

[41] M.L. Granados, M.D.Z. Poves, D.M. Alonso, R. Mariscal, F.C. Galisteo, R. Moreno-Tost, J. Santamaría, J.L.G. Fierro, Bio-diesel from sunflower oil by using activated calcium oxide, Appl. Catal. B-Environ. 73 (2007) 317-326.

DOI: 10.1016/j.apcatb.2006.12.017

Google Scholar

[42] J.T. Arana, J.J. Torres, D.F. Acevedo, C.O. Illanes, N.A. Ochoa, C.L. Pagliero, One-step synthesis of CaO-ZnO efficient catalyst for biodiesel production, Int. J. Chem. Eng. 1806017 (2019), 7 pages.

DOI: 10.1155/2019/1806017

Google Scholar

[43] C.H. Yulianti, R. Ediati, D. Hartanto, T.E. Purbaningtias, Y. Chisaki, A. Abdul Jalil, C.K.N. Liana, C.K. Hitam, D. Prasetyoko, Synthesis of CaOZnO Nanoparticles catalyst and Its application in transesterification of refined palm oil, Bulletin of Chemical Reaction Engineering & Catalysis, 9 (2014) 100-110.

DOI: 10.9767/bcrec.9.2.5998.100-110

Google Scholar

[44] B.E. Warren, X-ray diffraction, New York, Dover, (1990).

Google Scholar

[45] R.Y. Hong, T.T. Pan, H.Z. Li, Microwave synthesis of magnetic ZnO-CaO nanoparticles used as a precursor of nanocomposites and ferrofluids, J. Magn. Magn. Mater. 303 (2006) 60-68.

DOI: 10.1016/j.jmmm.2005.10.230

Google Scholar

[46] K. Phiwdang, S. Suphankij, W. Mekprasart, W. Pecharapa, Synthesis of CuO nanoparticles by precipitation method using different precursors, Energy Procedia, 34 (2013) 740-745.

DOI: 10.1016/j.egypro.2013.06.808

Google Scholar

[47] Z. Rostami, M. Rouhanizadeh, N. Nami, D. Zareyee, Fe3O4 magnetic nanoparticles (MNPs) as an effective catalyst for synthesis of indole derivatives, Nanochem. Res. 3 (2018) 142-148.

Google Scholar

[48] N. Nami, N. Nami, Efficient solvent-free synthesis of amidines using nano-Fe3O4, encapsulated-sillica particles bearing sulfonic acid, Journal of Chemical, Biological and Physical Sciences, Section B, 5 (2015) 1195-1204.

Google Scholar

[49] L. Habte, N. Shiferaw, D. Mulatu, T. Thenepalli, R.k.Chilakala, J. W. Ahn, Synthesis of nano- calcium oxide from waste eggshell by sol-gel method, Sustainability,11 (2019) 3196.

DOI: 10.3390/su11113196

Google Scholar

[50] J.N. Hasnidawani, H.N. Azlina, H. Norita, N.N. Bonnia, S. Ratim, E.S. Ali, Synthesis of ZnO nanostructures using sol-gel method, Procedia Chemistry, 19 (2016) 211-216.

DOI: 10.1016/j.proche.2016.03.095

Google Scholar