Finite Element Simulation of Martensitic Transformation in Single-Crystal TRIP Steel Based on Crystal Plasticity Theory with Cellular Automata Approach

Article Preview

Abstract:

You might also be interested in these eBooks

Info:

Periodical:

Key Engineering Materials (Volumes 274-276)

Pages:

679-684

Citation:

Online since:

October 2004

Export:

Price:

[1] R. J. Asaro: J. Appl. Mech. Vol. 50 (1983), p.921.

Google Scholar

[2] C. M. Wayman: Introduction to the crystallography of martensitic transformations (Macmillan, 1964).

Google Scholar

[3] M. Tokuda, M. Ye, M. Takakura and P. Sittner: Int. J. Plast. Vol. 15 (1999), p.223.

Google Scholar

[4] H. Sehitoglu, I. Karaman, X. Zhang, A. Viswanath, Y. Chumlyakov and H. J. Maier: Acta Mater. Vol. 49 (2001), p.3621.

DOI: 10.1016/s1359-6454(01)00192-6

Google Scholar

[5] Y. Kitajima, N. Sato, K. Tanaka and S. Nagaki: Int. J. Plast. Vol. 18 (2002), p.1527.

Google Scholar

[6] M. Cherkaoui, M. Berveiller and H. Saber: Int. J. Plast. Vol. 14 (1998), p.597.

Google Scholar

[7] J. F. Ganghoffer and K. Simonsson: Mech. Mater. Vol. 27 (1998), p.125.

Google Scholar

[8] J. Kratochvil: Foundation of plasticity (ed. A. Sawczuk) (Noordhoff, 2001), p.401.

Google Scholar

[9] D. Peirce, C. F. Shih and A. Needleman: Comp. Struct. Vol. 18 (1984), p.875. (a) = 30 [deg] (b) = 60 [deg] (a) = 90 [deg] Fig. 4 Distribution of martensitic phase.

Google Scholar