Study on Process of Ion Implantation on AZ31 Magnesium Alloy

Article Preview

Abstract:

Ti ion and C ion is implanted into AZ31 magnesium alloy surface by metal vapor vacuum arc (MEVVA) implanter operating with a modified cathode. This metal arc ion source has a broad beam and high current capabilities. Implantation energy is fixed at 45K eV and dose is 9×1017 cm-2 and 3×1017 cm-2 respectively. Through ion implantation, Ti ion implantation layer approximately 1000nm thick is directly formed on the surface of AZ31 magnesium alloy, by which its surface property is greatly improved. Microstructure, the component distribution and phase composition are analyzed using scanning electron microscopy (SEM) and X-ray diffraction (XRD). The property of hardness of the ion implantation layer was studied by HMV-1T Vickers micro hardness tester. The results show that Ti ion implantation layer of a magnesium alloy surface is mainly composed of TiO2, MgO and a little of TiO. The Ti-C double ions implantation layer is composed of MgO, TiC. The hardness of ion implantation layer is improved.

You might also be interested in these eBooks

Info:

Periodical:

Key Engineering Materials (Volumes 373-374)

Pages:

342-345

Citation:

Online since:

March 2008

Export:

Price:

[1] M.K. Lei, P. Li, H.G. Yang.: Surf. Coat. Technol., Vol. 201 (2007) , p.5182.

Google Scholar

[2] Solodukhin I.A., Khodasevich V.V., Uglov V.V.: Surf. Coat. Technol., Vol. 142-144 (2001) , p.1144.

Google Scholar

[3] Poon R.W.Y., Yeung K.W.K., Liu X.Y., Chu P.K.: Biomaterials, Vol. 26 (2005), p.2265.

Google Scholar

[4] Kutsenko L., Fuks D., Kiv A., Burlaka L.: Acta Materialia, Vol. 52 (2004), p.4329.

DOI: 10.1016/j.actamat.2004.05.049

Google Scholar

[5] Larisa Kutsenko, David Fuks, Arnold Kiv. et al.: Acta Materialia, Vol. 54(2006), p.2637.

Google Scholar

[6] X.B. Tian, C.B. Wei, S.Q. Yang.: Surf. Coat. Technol., Vol. 198 (2005), p.454.

Google Scholar

[7] A. Bakkar, V. Neubert. : Corrosion Science, Vol. 47 (2005), p.1211.

Google Scholar

[8] L. Kutsenko, D. Fuks, A. Kiv, L. Burlaka. et al.: Acta Materialia, Vol. 52 (2004), p.4329.

DOI: 10.1016/j.actamat.2004.05.049

Google Scholar

[9] L. Tan, R. A. Dodd, W. C. Crone.: Biomaterials, Vol. 24 (2003), p.3931.

Google Scholar

[10] Xuemin Wang, Xiaoqin Zeng, Guosong Wu.: Applied Surface Science, Vol. 253 (2007), p.3574.

Google Scholar