Polynomial Approach Modeling of Resonator Piezoelectric Disc

Article Preview

Abstract:

Legendre polynomial method which describes the structure and incorporates automatically the boundary conditions in constitutive and propagation equations is used to model acoustic wave cylindrical resonators. It is the first time this method is applied to study standing rather than propagative waves. The advantage of this approach is, in a unique formulation, to take into account electric sources. The analytical and numerical resolutions are presented to highlight the potentialities of the Legendre polynomial approach. The vibration characteristics of piezoelectric discs with regard to diameter to thickness D/H ratios are analyzed by the three dimensional modeling approach through both modal and harmonic analyses. Resonance and antiresonance frequencies, electric input impedance, dispersion curves, field profiles and electromechanical coupling coefficient, easily obtained, are presented for PZT5A resonator piezoelectric discs. To validate our approach, the results using our 3D polynomial modelling of acoustic wave resonator are compared with those obtained by an approximated analytical method. The developed software proves to be very efficient to retrieve the radial modes of all orders.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

11-20

Citation:

Online since:

June 2011

Export:

Price:

[1] K Wang and C.T. -C. Nguyen, VHF free-free beam high-Q micromechanical resonators, J. MEMS., vol. 9, no. 3 (2000), p.347.

Google Scholar

[2] V. Kaajabari, T. Mattila, A. Oja, and H. Seppa, Nonlinear limits for signal-crystal silicon microresonators, J. MEMS., vol. 3, no. 5, (2004), p.715.

DOI: 10.1109/jmems.2004.835771

Google Scholar

[3] S. Lee, and C. T-C. Nguyen, Influence of automatic level control on micromechanical resonator oscillator phase noise, International IEEE Trans. Ultrason., Ferroelect., Freq. Contr., Symposium, (2003), p.341.

Google Scholar

[4] D. S. Greywall, B. Yurke, P. A. Bush, A. N. Pargellis, and R. L. Willett, Evading amplifier noise in nonlinear oscillators, Phys. Rev. Lett., vol. 72, no. 19, (1994), p.2992.

DOI: 10.1103/physrevlett.72.2992

Google Scholar

[5] M.I. Younis, and A.H. Nayfeh, A study of the nonlinear response of a resonant microbeam to an electric actuation, Noulin. Dynam., vol. 31, (2003), p.91.

Google Scholar

[6] M. Agarwal, K. Park, R. Candler, M. Hopcroft, C. Jha, R. Melamud, B. Kim, B. Murmann, and T.W. Kenny, Non-linearity cancellation in MEMS resonators for improved power-handling, in Proceedings of the IEEE International Electron Devices Meeting, IEDM, (2005).

DOI: 10.1109/iedm.2005.1609330

Google Scholar

[7] S. Kal, S. Das, D.K. Maurya, K. Biswas, A. Ravi Sankar, and S.K. Lahiri, CMOS compatible bulk micromachined silicon piezoresistive accelerometer with low off-axis sensitivity, Microelectronics. J., vol. 37, (2006), p.22.

DOI: 10.1016/j.mejo.2005.06.020

Google Scholar

[8] A. Caonti, G. Caliano, R. Carotenuto, A. Savoia, M. Pappalardo, E. Cianci, V. Foglietti, Capacitive micromachined ultrasonic transducer (CMUT) arrays for medical imaging, Microelectronics. J., vol. 37, (2006), p.770.

DOI: 10.1016/j.mejo.2005.10.012

Google Scholar

[9] L.A. Liew, A. Tuantranont, and V.M. Bright, Modeling of thermal actuation in a bulk-micromachined CMOS micromirror, Microelectron. J., vol. 31 (2000), p.791.

DOI: 10.1016/s0026-2692(00)00061-6

Google Scholar

[10] Jemmy S. Bintoro, Peter J. Hesketh, and Yves H. Berthelot, CMOS compatible bistable electromagnetic microvalve on a single wafer, Microelectron. J. vol. 36 (2005), p.667.

DOI: 10.1016/j.mejo.2005.04.038

Google Scholar

[11] M.F. HribSsek, Electromechanical silicon beam filter bank, Microelectron. J., vol. 27, (1996), p.525.

Google Scholar

[12] S. Datta and B. J. Hunsinger, Analysis of surface waves using orthogonal functions, J. App. Phys, vol. 49, (1978), p.475.

Google Scholar

[13] Y. Kim and W. D. Hunt, Acoustic fields and velocities for surface-acoustic-wave propagation in multilayered structures: An extension of the Laguerre Polynomial approach, J. App. Phys, vol. 68, (1990), p.4993.

DOI: 10.1063/1.347086

Google Scholar

[14] J. E. Lefebvre, V. Zhang, J. Gazalet and T. Gryba, Conceptuel advantages and lilitations of the Laguerre polynomial approach to analyze surface acoustic waves in semi-infinite substrates and multilayerd structures, J. App. Phys, vol. 83, no. 1, (1998).

DOI: 10.1063/1.366697

Google Scholar

[15] J. E. Lefebvre, V. Zhang, J. Gazalet and T. Gryba, Legendre polynomial approach for modelling free ultrasonic waves in multilayered plates, J. App. Phys, vol. 85, no. 7, (1999) p.3419.

DOI: 10.1063/1.369699

Google Scholar

[16] L. Elmaimouni, J. E. Lefebvre, V. Zhang and T. Gryba, A Polynomial approach to the analysis of free guided waves in anisotropic cylinders of infinite length, Wave Motion, vol. 42, no. 2, (2005) p.177.

DOI: 10.1016/j.wavemoti.2005.01.005

Google Scholar

[17] J. E. Lefebvre, V. Zhang, J. Gazalet, T. Gryba and V. Sadaune, Acoustic Waves Propagation in Continuous Functionally Graded Plates: An Extension of the Legendre Polynomial Approach, J. IEEE TUF and FC, vol. 48, no. 5, (2001), p.1332.

DOI: 10.1109/58.949742

Google Scholar

[18] L. Elmaimouni, J. E. Lefebvre, V. Zhang and T. Gryba, Guided waves in inhomogeneous cylinders of Functionally Graded Materials (FGM), NDT&E International, vol. 38, no. 5, (2005), p.344.

DOI: 10.1016/j.ndteint.2004.10.004

Google Scholar

[19] A. Raherison, F. E. Ratolojanahary, J. E. Lefebvre, L. Elmaimouni, Legendre polynomial modeling of composite BAW resonators, J. App. Phys., vol. 104, no. 1 (2008) p.014508.

DOI: 10.1063/1.2953096

Google Scholar

[20] B. A Auld, Acoustic Fields and Waves in Solids, Krieger Publishing Company, Malabar, Florida, (1990).

Google Scholar

[21] N. Guo, The vibration characteristics of piezoelectric discs, Dissertation, Department of Mechanical Engineering, Imperial College of Science, Technology and Medicine, London, (1989).

Google Scholar

[22] M. Brissaud, Matériaux piézoelectriques: Caractérisation, modélisation et vibration, 2007, Presses Polytechniques et universitaires Romandes.

Google Scholar