Application of Response Surface Analysis and Genetic Algorithm for the Optimization of Single Point Incremental Forming Process

Article Preview

Abstract:

Single point incremental forming (SPIF) is a modern method of forming sheet metal, where parts can be formed without the use of dedicated dies. The ability of SPIF to form a part is based on various forming parameters. Previous work was not accomplished with the help of design of experiments (DOE), thus reducing the number of parameters varied at any time. This paper presents a Box-Behnken experimental design, which develops the numerical plan, formalizes the forming parameters critical in SPIF and analyse data. The most critical factors affecting SPIF were found to be wall inclination angle, incremental step size, material thickness and tool size. The main effects of these parameters on the quality of the formed parts were studied in detail. Actually this work aims to “optimize the thinning rate and the maximum force by considering the tool diameter and the vertical pitch as unknown parameters for two different wall angles and thicknesses”. To this purpose, an optimization procedure based on the use of response surface methodology (RSM) and genetic algorithms (GA) have been proposed for application to find the optimum solutions. Finally, it demonstrated that the developed methods can solve high non-linear problems successfully. Associated plots are shown to be very efficient for a quick localization of the region of the search space containing the global optimum values of the SPIF parameters.

You might also be interested in these eBooks

Info:

Periodical:

Key Engineering Materials (Volumes 554-557)

Pages:

1265-1272

Citation:

Online since:

June 2013

Export:

Price:

[1] R. Ben Hmida, S. Thibaud, A. Gilbin, F. Richard, Influence of the initial grain size in single point incremental forming process for thin sheets metal and microparts: Experimental investigations, J. Mater. Des. 45 (2013) 155-165.

DOI: 10.1016/j.matdes.2012.08.077

Google Scholar

[2] R. Bahloul, H. Arfa, H. Bel Hadj Salah, Process analysis based on experimental tests and numerical modelling of single point incremental forming of sheet metal: effect of the principal process parameters, In: Proceedings of the XI International Conference on Computational Plasticity (COMPLAS), Barcelona, Spain, (2011).

Google Scholar

[3] G. hussain, L. Gao, N. Hayat, Xu. Ziran, A new formability indicator in single point incremental forming, J. Mater. Process. Technol. 209 (2009) 4237-4242.

DOI: 10.1016/j.jmatprotec.2008.11.024

Google Scholar

[4] H. Arfa, R. Bahloul, H. BelHadjSalah, Finite element modelling and experimental investigation of single point incremental forming process of aluminum sheets: influence of process parameters on punch force monitoring and on mechanical and geometrical quality of parts, Int. J. Mater. Form. doi:10.1007/s12289-012-1101-z, (2012).

DOI: 10.1007/s12289-012-1101-z

Google Scholar

[5] M. Ham, J. Jeswiet, Single point incremental forming limits using a Box-Behnken design of experiment, Key. Eng. Mater. 344 (2007) 629-636.

DOI: 10.4028/www.scientific.net/kem.344.629

Google Scholar

[6] H. Arfa, R. Bahloul, H. BelHadjSalah, Simulation numérique du formage incrémental, 19ème Congrès Français de Mécanique (CFM'2009), Marseille, France, (2009).

Google Scholar

[7] S. Dejardin, S. Thibaud, J.C. Gelin, G. Michel, Experimental investigations and numerical analysis for improving knowledge of incremental sheet forming process for sheet metal parts, J. Mater. Process. Technol, 210 (2010) 363-369.

DOI: 10.1016/j.jmatprotec.2009.09.025

Google Scholar

[8] C. Bouffioux, P. Pouteau, L. Duchêne, H.Vanhove, J.R. Duflou, A.M. Habraken, Material data identification to model the single point incremental forming process, Int. J. Mater. Form. 3 (Suppl. 1), doi:10.1007/s12289-010-0933-7, (2010) 979-982.

DOI: 10.1007/s12289-010-0933-7

Google Scholar

[9] C. Henrard, C. Bouffioux, P. Eyckens, H. Sol, J.R. Duflou, P. Van Houtte, A. Van Bael, L. Duchene, A.M. Habraken, Forming forces in single incremental forming: prediction by finite element simulations, validation and sensitivity, Comput. Mech. 47 (2011) 573-590.

DOI: 10.1007/s00466-010-0563-4

Google Scholar

[10] A. Attanasio, E. Ceretti, C. Giardini, L. Mazzoni, Asymmetric two points incremental forming: improving surface quality and geometric accuracy by tool path optimization, J. Mater. Process. Technol. 197 (2008) 59-67.

DOI: 10.1016/j.jmatprotec.2007.05.053

Google Scholar

[11] R. Matthieu, J.Y. Hascoet, J.C. Hamann, Y. Plenel, Tool path programming optimization for incremental sheet forming applications, J. Comput-Aided. Des. 41 (2009) 877-885.

DOI: 10.1016/j.cad.2009.06.006

Google Scholar

[12] R. Bahloul, Optimisation of process parameters in flanging operation in order to minimise stresses and Lemaitre's damage, J. Mater. Des, 32 (2011) 108-120.

DOI: 10.1016/j.matdes.2010.06.028

Google Scholar

[13] M. Azaouzi, N. Lebaal, Tool path optimization for single point incremental sheet forming using response surface method, Simulation. Modelling, Practice and Theory, 24 (2012) 49-58.

DOI: 10.1016/j.simpat.2012.01.008

Google Scholar

[14] R. Bahloul, L. Ben Ayed, A. Potiron, J.L Batoz, Comparison between three optimization methods for the minimization of maximum bending load and springback in wiping die bending obtained by an experimental approach, Int. J. Adv. Manuf. Technol. 48 (2010) 1185-1203.

DOI: 10.1007/s00170-009-2332-0

Google Scholar

[15] Y. Ledoux, P. Sébastian, S. Samper, Optimization method for stamping tools under reliability constraints using genetic algorithms and finite element simulations, J. Mater. Process. Technol. 210 (2010) 474-486.

DOI: 10.1016/j.jmatprotec.2009.10.010

Google Scholar

[16] F. Yin, H. Mao, L. Hua, A hybrid of back propagation neural network and genetic algorithm for optimization of injection molding process parameters, J. Mater. Des. 32 (2011) 3457-3464.

DOI: 10.1016/j.matdes.2011.01.058

Google Scholar