Influence of Friction on the Loads in a Roll Forming Simulation with Compliant Rolls

Article Preview

Abstract:

Roll forming is an important economic forming process for manufacturing of profiles. For an optimal design of the process, it is important to determine the loads occurring during the forming process. Furthermore, the information of the load behavior enables an evaluation of the formability of the planned profiles with the chosen roll forming machine. An experimental determination of loads in roll forming processes requires a complex measurement setup in combination with a high amount of measurement devices. Hence, the analysis of roll loads by means of finite element simulation is of special interest. The use of roll forming simulations for the determination of geometrical outputs is state of the art. However, due to simplifications, a realistic and reliable output of roll loads in roll forming is impossible. Therefore, the compliance behavior under load and the frictional behavior have to be incorporated in the simulation model. The friction behavior in roll forming processes is presented to be very insignificant in literature. The value of the friction coefficients vary in a broad range. Due to lack of knowledge in the compliance behavior of the used stands, simulation models with rigid rolls are still state of the art. This paper will show the reproduction of realistic roll loads, e.g. torques and forces, in a roll forming simulation. Therefore, the friction coefficients of each roll-sheet metal contact will be gained experimentally and implemented in the numerical model. Furthermore, a characteristic compliance of the roll forming stands will be analyzed and also considered in the simulation. Finally, the influence of changing parameters, e.g. raise of the friction coefficients, on the roll loads will be investigated. To verify the simulation the numerical results will be compared to data gained by experiments.

You might also be interested in these eBooks

Info:

Periodical:

Key Engineering Materials (Volumes 611-612)

Pages:

436-443

Citation:

Online since:

May 2014

Export:

Price:

* - Corresponding Author

[1] M. O. Goertan, D. Vucic, P. Groche, et al.: Roll Forming of branched profiles, Journal of Materials Processing Technology, 209/17 (2009).

DOI: 10.1016/j.jmatprotec.2009.07.004

Google Scholar

[2] G.T. Halmos: Roll Forming Handbook, Tailor & Francis Group, LLC (2006).

Google Scholar

[3] G. Huebener, A. Neubauer: Berechnung der Anstellkräfte und Drehmomente beim Profilieren von Magnetbändern, Fertigungstechnik und Betrieb 22, Magdeburg (1972), in German.

Google Scholar

[4] K.N. Bogojaw1enskij, A. Neubauer, V.W. Ris: Technologie der Fertigung von Leichtbauprofilen, VEB Deutscher Verlag für Grundstoffindustrie Leipzig (1979), in German.

Google Scholar

[5] I.S. Trischewskij, W.W. Klepanda, F.I. Skokow: Kaltgebogene Profile, VVB Stahl- und Walzwerke Büro Neue Technik, Berlin (1964), in German.

Google Scholar

[6] J. Oswald: Ein Beitrag zum Profilieren von Kreisprofilen, Technische Hochschule Magdeburg, Dissertation (1969), in German.

Google Scholar

[7] J. Fewtrell: An Experimental Analysis of Operating Conditions in Cold Roll-Forming, Doctor Thesis, The University of Aston in Birmingham (1990).

Google Scholar

[8] S. Hong, S. Lee, N. Kim: A parametric study on forming length in roll forming. J. Mater. Process. Technol., 113 (2001).

Google Scholar

[9] A. Istrate, D. Schmoeckel: Sensitivitätsanalyse von Prozeßparametern beim Walzprofilieren mit Hilfe der FEM-Simulation, Forschung für die Praxis P 306, Studiengesellschaft Stahlanwendung e. V. Stiftung Industrieforschung (1999), in German.

Google Scholar

[10] S.H. Jeong, et al.: Computer simulation of U-Channel for under-rail roll forming using rigid-plastic finite elements methods, Journal of Materials Processing Technology, 201 (2008).

DOI: 10.1016/j.jmatprotec.2007.11.130

Google Scholar

[11] S. Huart, M. Dubar, R. Deltombe, A. Dubois, L. Dubar: Asperity deformation, lubricant trapping and iron fines formation mechanism in cold rolling processes, Elsevier, Wear 257 (2004).

DOI: 10.1016/j.wear.2004.01.012

Google Scholar

[12] G. Zeng, S.H. Li, et al., Optimization design of roll profiles for cold roll forming based on response surface method, Materials and Design 30 (2009).

DOI: 10.1016/j.matdes.2008.09.018

Google Scholar

[13] M. Lindgren: Finite Element Model of Roll Forming of a U-Channel Profile, International Conference on Technology of Plasticity ICTP (2005).

Google Scholar

[14] M. Lindgren: Validation of Finite Element Model of Roll Forming, International Deep Drawing Research Group IDDRG 2008 International Conference, Sweden (2008).

Google Scholar

[15] A. Gehring: Beurteilung der Eignung von metallischem Band und Blech zum Walzprofilieren, Dissertation, Karlsruhe (2006), in German.

Google Scholar

[16] Zeng G., Lai X.M., Yu Z. Q, Lin Z.Q.: Sensitive Analysis of Parameters for Multi-stand Roll Forming Using a New Booting Model, DOI: 10. 1007/s12204-008-0707-2, J. Shanghai Jiaotong University, 13 (6): 707-711 (2008).

DOI: 10.1007/s12204-008-0707-2

Google Scholar

[17] T. Hama, K. Iguchi, H. Hishida, H. Takuda: Roll Forming Simulations of a Steel Sheet using various Finite Element Method Codes, 12th, International conference on metal forming; Metal forming, Verlag Stahleisen (2008).

DOI: 10.1093/oso/9780195044027.003.0014

Google Scholar

[18] Q.V. Bui, J.P. Ponthot: Numerical simulation of cold roll-forming processes, Journal of Materials Processing Technology, 202 (2008).

DOI: 10.1016/j.jmatprotec.2007.08.073

Google Scholar

[19] J. Paralikas, K. Salonitis, et al.: Investigation of the effects of main roll-forming process parameters on quality for a V-section profile from AHSS, International Journal of Advance Manufactering Technology (2009).

DOI: 10.1007/s00170-008-1822-9

Google Scholar

[20] J. Larranaga Amilibia: Geometrical accuracy improvement in flexible roll forming process by means of local heating, Tesis Doctoral Arrasate-Mondragón Unibertsitatea (2011).

Google Scholar

[21] A.S. Galakhar, W.J.T. Daniel, P.A. Meehan: Prediction of Roll Profile Wear in the Cold Roll Forming Process, Key Engineering Materials (2009).

DOI: 10.4028/www.scientific.net/kem.410-411.643

Google Scholar

[22] P. Groche, C. Mueller, T. Traub, K. Butterweck: Experimental and Numerical Determination of Roll Forming Loads, steel research international, Vol. 85 Iss. 1 (2014).

DOI: 10.1002/srin.201300190

Google Scholar

[23] C. Mueller, P. Groche, L. Baeumer: Numerical Determination of Loads in Roll Forming Processes, Proceedings of the 16th International Conference on Advances in Materials & Processing Technologies (AMPT), Taipei (2013).

Google Scholar