Bainitic Steels, their Characteristics and Applications

Article Preview

Abstract:

Abstract. Excellent combination of mechanical properties makes bainitic steels very attractive for commercial application. The most potential benefit of bainitic steels is found in the lightweight design of car bodies. The chemical composition, productions process and the austenite state control the properties of those steels. To reach the target of the correct component design it is important to focus on transformation kinetics. High carbon steels have been investigated, which contain approximately 0.5% C, 1.5% Si, 1.5% Mn, 0.9% Cr and 1.5% Cu. It’s expected to form a carbide free bainitic microstructure due to the Si addition. The residual austenite in the microstructure of high carbon bainitic steels ensures the forming ability besides the high strength. Maximum tensile strength is 1650 MPa and elongation is around 30%. Those steels can be used to produce large scale components.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

104-110

Citation:

Online since:

February 2016

Export:

Price:

* - Corresponding Author

[1] Campbell F. Elements of Metallurgy and Engineering Alloys, ASM Intl (Oh), (2008).

Google Scholar

[2] Bhadeshia, H.K.D.H. Bainite in steels. s. l. : The University Press Oxford, (2001).

Google Scholar

[3] Ohtani, H., et al., Morphology and Properties of Low-Carbon Bainite. Metallurgical Transactions A. 1990, Bd. 21A, S. 877-888.

Google Scholar

[4] Sebastian, Weangler und Waengler, Sebastian. Bainitischer Stahl mit Restaustenit Teil 3. Freiberg : s. n., (2008).

Google Scholar

[5] Zajac, S., Schvinn, V. und Tacke, K. Characterization and Quantification of Complex Bainitic Microstructures in High and Ultra-High Strength Linepipe Steels, Material Science Forum. 2005, Bde. 501-502, S. 387-394.

DOI: 10.4028/www.scientific.net/msf.500-501.387

Google Scholar

[6] Bhadeshia, H. K. D. H. The Teory and Significance of Retained Austenite in Steels. Cambridge. : s. n., 1979. Dissertation.

Google Scholar

[7] Bhadeshia, H. K. D. H. Developments in Martensitic and Bainitic Steels. [WebSeite] http: /www. msm. cam. ac. uk/phase-trans/2003/ESOMAT. Shape. Deformation. ppt: Phase Transformations & Complex Properties Research Group, (2009).

Google Scholar

[8] Shipway, P. H. und Bhadeshia, H. K. D. H. Mechanical stabilisation of bainite. Materials Science and Technology. 1995, S. 1116-1128.

DOI: 10.1179/mst.1995.11.11.1116

Google Scholar

[9] Sherif, M. Y. Characterisation and Development of Nanostructured, Ultrahigh Strength, and Ductile Bainitic Steels. Cambridge : s. n., 2006. Dissertation.

Google Scholar

[10] Bhadeshia, H. K. D. H. Developments in Martensitic and Bainitic Steels. [WebSeite] http: /www. msm. cam. ac. uk/phase-trans/2003/ESOMAT. Shape. Deformation. ppt : Phase Transformations & Complex Properties Research Group, (2009).

Google Scholar

[11] Shipway, P. H. und Bhadeshia, H. K. D. H. Mechanical stabilisation of bainite. Materials Science and Technology. 1995, S. 1116-1128.

DOI: 10.1179/mst.1995.11.11.1116

Google Scholar

[12] Caballero, F. G., Miller, M. K. und Garcia-Mateo, C. Redistribution of alloying elements during tempering of a nanocrystalline steel. Acta Materialia. 2008, Bd. 56, S. 188–199.

DOI: 10.1016/j.actamat.2007.09.018

Google Scholar

[13] Caballero, F. G. und Bhadeschia, H. K. D. H. Very Strong Bainite. Current Opinion in Solid State and Materials Science. 2004, Bd. 8, S. 251-257.

DOI: 10.1016/j.cossms.2004.09.005

Google Scholar

[14] Caballero, F. G., Santofimia, M. J. und Capdevila, C. Novel high strength, high toughness carbide-free bainitic steels. 2005. 7210-PR/345.

Google Scholar