FEM Analysis of Small Punch Tests

Article Preview

Abstract:

In recent years the small punch test method has become an attractive alternative compared to traditional material testing procedures, especially in cases where only small amounts of material are available. In contrast to standard test methods, the relevant material parameters can not be as simply obtained from the experimental measurements of SPTs because of its non-uniform stress and deformation state. However this can be achieved by comparing the experimental SPT results with those obtained by finite element simulations of SPT using advanced material models. Then the task is to determine the parameters of the material models using special optimization techniques. This paper gives an overview about the common techniques used to simulate SPT experiments. It should give the reader answer to the questions: Why are FEM simulations useful How should such simulations be performed Which material laws can be used What are the limitations of finite element simulations How to determine material parameters from SPT-experiments and the corresponding simulations

You might also be interested in these eBooks

Info:

Periodical:

Pages:

23-36

Citation:

Online since:

April 2017

Export:

Price:

* - Corresponding Author

[1] M. Abendroth, Identifikation elastoplastischer und schädigungsmechanischer Materialparameter aus dem Small Punch Test, PhD Thesis, Freiberger Forschungshefte B 329 (2005), ISBN 3-86012-247-9.

Google Scholar

[2] M. Abendroth, M. Kuna, Determination of deformation and failure properties of ductile materials by means of the small punch test neural networks, Computational Material Science 28 (2003) 633-644.

DOI: 10.1016/j.commatsci.2003.08.031

Google Scholar

[3] M. Abendroth, M. Kuna, Identification of ductile damage and fracture parameters from the small punch test using neural networks, Engineering Fracture Mechanics 73 (2006) 710-725.

DOI: 10.1016/j.engfracmech.2005.10.007

Google Scholar

[4] M. Abendroth. Identification of creep properties for P91 steels at high temperatures using the small punch test, Metallurgical Journal 63: 39-43(2010).

Google Scholar

[5] J.M. Baik, J. Kameda, O. Buck, Small punch test evaluation of intergranular embrittlement of an alloy steel, Scripta Metallurgica 17 (1983) 1443-1447.

DOI: 10.1016/0036-9748(83)90373-3

Google Scholar

[6] K.J. Bathe, Finite Element Procedures, Prentice Hall (1996), ISBN 0-13-301458-4.

Google Scholar

[7] T. Belytschko, W.K. Liu, B. Moran, Nonlinear Finite Elements for Continua and Structures, Wiley & Sons (2000).

Google Scholar

[8] E. Cardenas, F.J. Belzunce, C. Rodriguez, I. Penuelas, C. Betegon, Application of the small punch test to determine the fracture toughness of metallic materials, Fatigue & Fracture of Engineering Materials & Structures 35 (2012) 441-450.

DOI: 10.1111/j.1460-2695.2011.01635.x

Google Scholar

[9] CEN Workshop Agreement. Small punch test method for metallic materials. Technical report, CWA 15627: 2006, CEN, Brussels, Belgium, (2006).

Google Scholar

[10] F. Dymáček, K. Milička. Creep small-punch testing and its numerical simulations. Materials Science and Engineering, A510–511 (2009) 444–449.

DOI: 10.1016/j.msea.2008.06.053

Google Scholar

[11] M. Suzuki et al., Evaluation of thoughness degradation by small punch tests for neutron-irradiated 2 ¼ Cr-1Mo steel, Journal of Nuclear Materials 179-181 (1991) 441-444.

DOI: 10.1016/0022-3115(91)90119-r

Google Scholar

[12] I. Penuelas et al., Inverse determination of the elastoplastic and damage parameters on small punch tests, Fatigue & Fracture of Engineering Materials & Structures 32 (2009) 872-885.

DOI: 10.1111/j.1460-2695.2009.01387.x

Google Scholar

[13] T.E. Garcia, C. Rodriguez, F.J. Belzunce, C. Suarez, Estimation of the mechanical properties of metallic materials by means of the small punch test, Journal of Alloys and Compounds 582 (2014) 708-717.

DOI: 10.1016/j.jallcom.2013.08.009

Google Scholar

[14] A.L. Gurson,. Continuum theory of ductile rupture by void nucleation and growth: part I – yield criteria and flow rules for porous ductile media. Journal of Engineering. Material Technology 99 (1977) 2–15.

DOI: 10.1115/1.3443401

Google Scholar

[15] M. Kuna et al., Characterization of temperature and irradiation dependent material properties by means of the small punch test and advanced numerical methods, Metallurgical Journal 63 (2010) 151-160.

Google Scholar

[16] M. Kuna, Finite Element in Fracture Mechanics, Springer (2013), 10. 1007/978-94-007-6680-8.

Google Scholar

[17] X. Mao, H. Takahashi, Development of a further miniaturized specimen of 3mm diameter for TJZM disc (0. 3mm) small punch tests, Journal of Nuclear Materials 150 (1998) 42-52.

DOI: 10.1016/0022-3115(87)90092-4

Google Scholar

[18] U. Mühlich, W. Brocks, T. Siegmund. A user material subroutine of the Gurson-Tveergard-Needleman model of porous metal plasticity for rate and temperature dependent hardening. Technical Note GKSS/WMG/98/1, GKSS-Forschungszentrum Geesthacht, (1998).

Google Scholar

[19] P. Egan et al., Small punch test: An approach to solve the inverse problem by deformation shape and finite element optimization, Computational Material Science 40 (2007) 33-39.

DOI: 10.1016/j.commatsci.2006.10.021

Google Scholar

[20] P. Egan et al., Random depth access full-field low-coherence interferometry applied to a small punch test, Optics and Lasers Engineering 45 (2007) 523-529.

DOI: 10.1016/j.optlaseng.2006.10.005

Google Scholar

[21] T. Linse, G. Hütter, M. Kuna, Simulation of crack propagation using a gradient-enriched ductile damage model based on dilatational strain, Engineering Fracture Mechanics 95 (2012) 13-28.

DOI: 10.1016/j.engfracmech.2012.07.004

Google Scholar

[22] T. Linse, Quntifizierung des spröd-duktilen Versagensverhaltens von Reaktorstählen mit Hilfe des Small-Punch-Tests und mikromechanischer Schädigungsmodelle, PhD-Thesis, Berichte des Institutes für Mechanik und Fluiddynamik, Heft 9 (2013).

Google Scholar

[23] F. Reusch, B. Svendsen, D. Klingbeil D, A non-local extension of Gurson-based ductile damage modeling. Computational Material Science 26 (2003) 219–29.

DOI: 10.1016/s0927-0256(02)00402-0

Google Scholar

[24] C. Soyarslan, B. Gülcimen, S. Bargmann, P. Hähner, Modeling of fracture in small punch tests for small- and large scale yielding conditions at various temperatures. International Journal of Mechanical Science 106 (2016) 266-285.

DOI: 10.1016/j.ijmecsci.2015.12.007

Google Scholar

[25] P.R. Roberts, Material sampling from components within the nuclear industry and the extraction of useful materials information, Metallurgical Journal 63 (2010) 19-25.

Google Scholar

[26] K. Turba, B. et al., Introduction of a new notched specimen geometry to determine fracture properties by small punch testing, Engineering Fracture Mechanics 78 (2011) 2826-2833.

DOI: 10.1016/j.engfracmech.2011.08.014

Google Scholar

[27] V. Tvergaard, Influence of voids on shear band instbilities under plane strain conditions. International Journal of Fracture 17 (1981) 389–407.

DOI: 10.1007/bf00036191

Google Scholar

[28] V. Tvergaard, A. Needleman, Analysis of the cup-cone fracture in a rod tensile bar. Acta Metall 32 (1984) 57–69.

DOI: 10.1016/0001-6160(84)90213-x

Google Scholar

[29] O.C. Zienkiewcz, Y.K. Cheung, The Finite Element Method in Structural and Continuum Mechanics, McGraw-Hill (1967).

Google Scholar