Physical and Tensile Properties of NiTi Alloy by Selective Electron Beam Melting

Article Preview

Abstract:

NiTi is characterized as a shape memory alloy that has found interesting applications from aerospace to biomedical engineering. The use of NiTi in biomedical applications is due to its excellent biocompatibility, shape memory and pseudoelastic properties. These properties make NiTi an excellent candidate for many functional designs in biomedical fields. However, difficulties in manufacturing and processing of this alloy are significant hindrance to widespread applications. Advances in additive manufacturing (AM) such as selective laser and electron beam techniques have provided opportunities in manufacturing complex shaped NiTi parts. In this research paper, we demonstrate manufacturing of NiTi parts using a selective electron beam melting (SEBM) technique. Complete evaluation of physical, chemical and mechanical properties was carried out to determine the suitability of SEBM process. Differential scanning calorimeter (DSC), X-ray diffraction (XRD), and metallographic analyses were employed for the thermal and structural characterizations. The obtained results suggest that it is imperative to, and challenging to control the additive manufacturing process in order to obtain the desired microstructures and avoid unwanted texture. An exhaustive heat treatment of the samples after SEBM process might also be necessary.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

148-154

Citation:

Online since:

May 2018

Export:

Price:

* - Corresponding Author

[1] M.H. Elahinia, M. Hashemi, M. Tabesh, S.B. Bhaduri, Manufacturing and processing of NiTi implants: A review, Progress in Materials Science, 57 (2012) 911-946.

DOI: 10.1016/j.pmatsci.2011.11.001

Google Scholar

[2] D.C. Lagoudas, P.B. Entchev, P. Popov, E. Patoor, L.C. Brinson, X. Gao, Shape memory alloys, Part II: Modeling of polycrystals, Mechanics of Materials, 38 (2006) 430-462.

DOI: 10.1016/j.mechmat.2005.08.003

Google Scholar

[3] E. Patoor, D.C. Lagoudas, P.B. Entchev, L.C. Brinson, X. Gao, Shape memory alloys, Part I: General properties and modeling of single crystals, Mechanics of Materials, 38 (2006) 391-429.

DOI: 10.1016/j.mechmat.2005.05.027

Google Scholar

[4] E. Tarkesh Esfahani, M.H. Elahinia, Developing an Adaptive Controller for a Shape Memory Alloy Walking Assistive Device, Journal of Vibration and Control, 16 (2010) 1897-(1914).

DOI: 10.1177/1077546309344163

Google Scholar

[5] T. Bormann, R. Schumacher, B. Müller, M. Mertmann, M. de Wild, Tailoring Selective Laser Melting Process Parameters for NiTi Implants, Journal of Materials Engineering and Performance, 21 (2012) 2519-2524.

DOI: 10.1007/s11665-012-0318-9

Google Scholar

[6] L. Petrini, F. Migliavacca, Biomedical Applications of Shape Memory Alloys, Journal of Metallurgy, 2011 (2011).

Google Scholar

[7] K. Weinert, V. Petzoldt, Machining of NiTi based shape memory alloys, Materials Science and Engineering: A, 378 (2004) 180-184.

DOI: 10.1016/j.msea.2003.10.344

Google Scholar

[8] J. Mentz, M. Bram, H.P. Buchkremer, D. Stöver, Improvement of Mechanical Properties of Powder Metallurgical NiTi Shape Memory Alloys, Advanced Engineering Materials, 8 (2006) 247-252.

DOI: 10.1002/adem.200500258

Google Scholar

[9] G. Chen, K.-D. Liss, P. Cao, In situ observation and neutron diffraction of NiTi powder sintering, Acta Materialia, 67 (2014) 32-44.

DOI: 10.1016/j.actamat.2013.12.013

Google Scholar

[10] G. Chen, P. Cao, NiTi Powder Sintering from TiH2 Powder: An In Situ Investigation, Metallurgical and Materials Transactions A, 44 (2013) 5630-5633.

DOI: 10.1007/s11661-013-2078-z

Google Scholar

[11] G. Chen, G. Wen, P. Cao, N. Edmonds, Y. Li, Processing and characterisation of porous NiTi alloy produced by metal injection moulding, Powder Injection Moulding International, 6 (2012) 83-88.

DOI: 10.1016/j.intermet.2013.02.006

Google Scholar

[12] G. Chen, P. Cao, G. Wen, N. Edmonds, Y. Li, Using an agar-based binder to produce porous NiTi alloys by metal injection moulding, Intermetallics, 37 (2013) 92-99.

DOI: 10.1016/j.intermet.2013.02.006

Google Scholar

[13] G. Chen, Powder metallurgical titanium alloys (TiNi and Ti-6Al-4V) : injection moulding, press-and-sinter, and hot pressing, (2014).

Google Scholar

[14] G. Chahine, M. Koike, T. Okabe, P. Smith, R. Kovacevic, The design and production of Ti-6Al-4V ELI customized dental implants, JOM, 60 (2008) 50-55.

DOI: 10.1007/s11837-008-0148-2

Google Scholar

[15] I. Gibson, D. Rosen, B. Stucker, Additive Manufacturing Technologies, 2nd ed., Springer-Verlag New York, New York, (2015).

Google Scholar

[16] S.F.S. Shirazi, S. Gharehkhani, M. Mehrali, H. Yarmand, H.S.C. Metselaar, N. Adib Kadri, N.A.A. Osman, A review on powder-based additive manufacturing for tissue engineering: selective laser sintering and inkjet 3D printing, Science and Technology of Advanced Materials, 16 (2015).

DOI: 10.1088/1468-6996/16/3/033502

Google Scholar

[17] A. Bernard, G. Taillandier, K.P. Karunakaran, Evolutions of rapid product development with rapid manufacturing: concepts and applications, International Journal of Rapid Manufacturing, 1 (2009) 3-18.

DOI: 10.1504/ijrapidm.2009.028929

Google Scholar

[18] I.V. Shishkovsky, Shape memory effect in porous volume NiTi articles fabricated by selective laser sintering, Technical Physics Letters, 31 (2005) 186-188.

DOI: 10.1134/1.1894427

Google Scholar

[19] I.V. Shishkovsky, M.V. Kuznetsov, Y.G. Morozov, Porous titanium and nitinol implants synthesized by SHS/SLS: Microstructural and histomorphological analyses of tissue reactions, International Journal of Self-Propagating High-Temperature Synthesis, 19 (2010).

DOI: 10.3103/s1061386210020123

Google Scholar

[20] I.V. Shishkovsky, L.T. Volova, M.V. Kuznetsov, Y.G. Morozov, I.P. Parkin, Porous biocompatible implants and tissue scaffolds synthesized by selective laser sintering from Ti and NiTi, Journal of Materials Chemistry, 18 (2008) 1309-1317.

DOI: 10.1039/b715313a

Google Scholar

[21] J.P. Kruth, G. Levy, F. Klocke, T.H.C. Childs, Consolidation phenomena in laser and powder-bed based layered manufacturing, CIRP Annals - Manufacturing Technology, 56 (2007) 730-759.

DOI: 10.1016/j.cirp.2007.10.004

Google Scholar

[22] B. Vandenbroucke, J.P. Kruth, Selective laser melting of biocompatible metals for rapid manufacturing of medical parts, Rapid Prototyping Journal, 13 (2007) 196-203.

DOI: 10.1108/13552540710776142

Google Scholar

[23] A. Mazzoli, M. Germani, R. Raffaeli, Direct fabrication through electron beam melting technology of custom cranial implants designed in a PHANToM-based haptic environment, Materials & Design, 30 (2009) 3186-3192.

DOI: 10.1016/j.matdes.2008.11.013

Google Scholar

[24] L.E. Murr, E.V. Esquivel, S.A. Quinones, S.M. Gaytan, M.I. Lopez, E.Y. Martinez, F. Medina, D.H. Hernandez, E. Martinez, J.L. Martinez, S.W. Stafford, D.K. Brown, T. Hoppe, W. Meyers, U. Lindhe, R.B. Wicker, Microstructures and mechanical properties of electron beam-rapid manufactured Ti–6Al–4V biomedical prototypes compared to wrought Ti–6Al–4V, Materials Characterization, 60 (2009).

DOI: 10.1016/j.matchar.2008.07.006

Google Scholar

[25] P. Wang, M.L.S. Nai, X. Tan, G. Vastola, S. Raghavan, W.J. Sin, S.B. Tor, Q.X. Pei, J. Wei, Recent Progress of Additive Manufactured Ti-6Al-4V by Electron Beam Melting, 2016 Annual International Solid Freeform Fabrication Symposium - An Additive Manufacturing ConferenceAustin, Texas, USA, (2016).

DOI: 10.3390/ma10101121

Google Scholar

[26] ASTM, Standard Test Methods for Density of Compacted or Sintered Powder Metallurgy (PM) Products Using Archimedes' Principle, ASTM B962-15, ASTM International, West Conshohocken, PA, (2015).

DOI: 10.1520/b0962-14

Google Scholar

[27] D.H. Abdeen, B.R. Palmer, Effect of processing parameters of electron beam melting machine on properties of Ti-6Al-4V parts, Rapid Prototyping Journal, 22 (2016) 609-620.

DOI: 10.1108/rpj-09-2014-0105

Google Scholar

[28] K. Otsuka, X. Ren, Physical metallurgy of Ti–Ni-based shape memory alloys, Progress in Materials Science, 50 (2005) 511-678.

DOI: 10.1016/j.pmatsci.2004.10.001

Google Scholar

[29] M. Whitney, S.F. Corbin, R.B. Gorbet, Investigation of the mechanisms of reactive sintering and combustion synthesis of NiTi using differential scanning calorimetry and microstructural analysis, Acta Materialia, 56 (2008) 559-570.

DOI: 10.1016/j.actamat.2007.10.012

Google Scholar

[30] M. Whitney, S.F. Corbin, R.B. Gorbet, Investigation of the influence of Ni powder size on microstructural evolution and the thermal explosion combustion synthesis of NiTi, Intermetallics, 17 (2009) 894-906.

DOI: 10.1016/j.intermet.2009.03.018

Google Scholar

[31] A. Biswas, Porous NiTi by thermal explosion mode of SHS: processing, mechanism and generation of single phase microstructure, Acta Materialia, 53 (2005) 1415-1425.

DOI: 10.1016/j.actamat.2004.11.036

Google Scholar

[32] M.D. McNeese, D.C. Lagoudas, T.C. Pollock, Processing of TiNi from elemental powders by hot isostatic pressing, Materials Science and Engineering: A, 280 (2000) 334-348.

DOI: 10.1016/s0921-5093(99)00550-x

Google Scholar