Data-Driven Compensation for Bulk Formed Parts Based on Material Point Tracking

Article Preview

Abstract:

Currently, common inefficient trial-and-error procedures are used in designing bulk forming dies. Numerous iterations, consisting of numerical simulations and subsequent real tests, are needed to achieve accurate parts. During the compensation cycles, manual redesign in CAD environments is necessary to transform discrete data into parametric descriptions causing approximation errors. Automation of these surface reconstruction processes is barely possible. To address these issues, different data-driven numerical strategies have been deduced based on either displacement or force. In this work, a material point tracking method in forming simulation between die and part geometry is presented. Based on this, enhanced displacement-based and stress-based methods for compensation of bulk forming parts are compared. The convergence behavior of both methods is analyzed with respect to the compensation factor. Finally, the material point tracking approach is validated and verified by compensating a two-dimensional bulk-formed component.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

277-284

Citation:

Online since:

February 2019

Export:

Price:

* - Corresponding Author

[1] Hoffmann, H., Spur, G., Neugebauer, R., 2012. Handbuch Umformen. Carl Hanser Verlag, München.

Google Scholar

[2] Balendra, R., 2001. Net-shape forming: state-of-the-art. J. Mater. Process. Technol. 115, 172–179.

Google Scholar

[3] Hartmann, C., Eder, M., Opritescu, D., Maier, D., Santaella, M., Volk, W., 2018. . Geometrical Compensation of Deterministic Deviations for Part Finishing in Bulk Forming J. Mater. Process. Technol. 261, 140–148.

DOI: 10.1016/j.jmatprotec.2018.06.008

Google Scholar

[4] Balendra, R., Qin, Y., Lu, X., 2000. Analysis, evaluation and compensation of component errors in the net-forming of engineering components. J. Mater. Process. Technol. 106, 204–211.

DOI: 10.1016/s0924-0136(00)00615-4

Google Scholar

[5] Behrens, B.-A., Odening, D., 2009. Process and tool design for precision forging of geared components. Int. J. Mater. Form. 2, 125–128.

DOI: 10.1007/s12289-009-0577-7

Google Scholar

[6] Hattangady, N., Shepard, M., Chaudhary, A., 1999. Towards realistic automated 3D modelling of metal forming problems. Eng. Comput. 15, 356–374.

DOI: 10.1007/s003660050030

Google Scholar

[7] Eder, M., Hartmann, C., Volk, W., 2017. Geometriebasierte prozessbegleitende Abweichungskompensation. massivUMFORMUNG 09, 66–71 (in German).

Google Scholar

[8] C. Hartmann, M. Eder, D. Opritescu, W. Volk, Process-integrated Compensation of Geometrical Deviations for Bulk Forming, Procedia Engineering. 207 (2017) 466–471.

DOI: 10.1016/j.proeng.2017.10.806

Google Scholar

[9] W. Gan and R.H. Wagoner, 2004. Die design method for sheet springback, Int. J. Mech. Sci. 46, 1097-1113.

Google Scholar

[10] Lingbeek, R., Huetink, J., Ohnimus, S., Petzoldt, M., Weiher, J., 2005. The development of a finite elements based springback compensation tool for sheet metal products. J. Mater. Process. Technol. 169, 115–125.

DOI: 10.1016/j.jmatprotec.2005.04.027

Google Scholar

[11] Meiders, T., Burchitz, I., Bonte, M., Lingbeek, R., 2008. Numerical product design. Springback prediction, compensation and optimization. Int. J. Mach. Tool Manuf. 48, 499–514.

DOI: 10.1016/j.ijmachtools.2007.08.006

Google Scholar

[12] Mole, N., Cafuta, G., Stok, B., 2014. A 3D forming tool optimisation method considering springback and thinning compensation. J. Mater. Process. Technol. 214, 1673–1685.

DOI: 10.1016/j.jmatprotec.2014.03.017

Google Scholar

[13] Braibant, V., Fleury, C., 1984. Shape optimal design using B-splines. Comput. Methods Appl. Mech. Eng 44, 247–267.

DOI: 10.1016/0045-7825(84)90132-4

Google Scholar

[14] Fourment, L., Chenot, J., 1996. Optimal design for non-steady-state metal forming processes – I. Shape optimization method. Int. J. Numer. Methods Eng. 39, 33–50.

DOI: 10.1002/(sici)1097-0207(19960115)39:1<33::aid-nme844>3.0.co;2-z

Google Scholar

[15] Fourment, L., Balan, T., Chenot, J., 1996. Optimal design for non-steady-state metal forming processes – II. Application of shape optimization in forging. Int. J. Numer. Methods Eng. 39, 51–65.

DOI: 10.1002/(sici)1097-0207(19960115)39:1<51::aid-nme845>3.0.co;2-#

Google Scholar

[16] Yang, X., Ruan, F., 2011. A die design method for springback compensation based on displacement adjustment. Int. J. Mech. Sci. 53, 399–406.

DOI: 10.1016/j.ijmecsci.2011.03.002

Google Scholar